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Abstract: Background: The predictive role of vitamin D (VD) in breast cancer (BC) patients’ survival
is still being investigated. This paper aims to evaluate the changes in VD metabolites during
chemotherapy (CTH) and the predictive role of VD status in Caucasian BC patients treated with CTH.
Methods: Vitamin D and its metabolites were assessed with reference LC–MS/MS methodology
in 98 consecutive BC patients starting CHT, after 3 and 6 months, and compared to the control
group. Results: The frequency of VD deficiency in BC patients was greater than in the control group
(56.1% vs. 37.2%). After 6 months of CTH, the number of VD-deficient BC patients slightly increased
to 60%. The concentrations of VD active forms [25(OH)D2, 25(OH)D3], and catabolites [24,25(OH)2D3

and 3-epi-25(OH)D3] decreased after 3 and 6 months of CTH compared to the baseline values. Strong
positive correlations between concentrations of 3-epi-25(OH)D3 and 25(OH)D in both groups were
found. Similar correlations were also observed between 24,25(OH)2D3 and 25(OH)D levels. Kaplan–
Meier survival analysis showed significantly longer survival in BC patients without deficiency
(>20 ng/mL) at baseline (HR = 2.44 (95% CI 1.07–5.59), p = 0.026). Conclusions: (1) Our data provide
further evidence that BC patients before CTH are more VD-deficient than the general population
and this deficiency increases further during CTH treatment, as observed using the reference LC-MS
methodology. (2) Presented results show that VD catabolism is not affected in BC patients. (3) The
poorer survival in VD-deficient BP patients supports the importance of VD supplementation in BC
patients with 25(OH)D levels below 20 ng/mL.

Keywords: vitamin D; metabolites; breast cancer; catabolism; survival; liquid chromatography/tandem
mass spectrometry (LC–MS/MS)

1. Introduction

Breast cancer (BC) is the most common malignancy and cause of cancer-related mor-
tality among women worldwide [1]. Vitamin D (VD) via stimulation of Vitamin D receptor
(VDR) plays an important role in BC development, modulating cancer cell proliferation,
differentiation, apoptosis, and epithelial–mesenchymal transition, as shown in preclinical
and clinical studies [2–4]. VD plays a critical role not only in cancer, but also in maintaining
homeostasis in various conditions including cardiovascular and lung diseases, diabetes,
infections and pregnancy. VD deficiency has a negative impact on all-cause mortality [5].
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New research emphasizes the involvement of VD in the regulation of tumor
metabolism [6]. Of note, BC cells have a similar ability to convert the 25-OH metabolite
of the active form—1,25(OH)2 D as periurethral cells in the kidney, and this process is
independent of the hydroxylation regulation in the kidneys [7].

Low levels of VD increase the risk of BC development [8], and may affect the efficacy
of treatment and patients’ prognosis [7,9]. The metabolic effects of VD are mediated not
only by its active form but also metabolites [10].

Laboratory assessments of VD status in daily clinical practice are usually limited
to 25-monohydroxylated forms: 25(OH)D2 and 25(OH)D3. Contrary to the main active
form, 1,25(OH)2D, characterized by a short half-life (of 4–6 h), monohydroxylated forms
have a longer half-life of app. 15 days [11]. These compounds can be assessed with
immunoassays, high-performance liquid chromatography (HPLC), or liquid chromatog-
raphy/tandem mass spectrometry (LC–MS/MS). Immunoassays assessments offer high
sensitivity and automation. However, this method could over- or underestimate the total
25(OH)D level depending on the immunoassay type [12,13] due to the cross-reactivity
of different VD forms. HPLC is characterized by low costs, but has low sensitivity and
reduced ability to distinguish VD metabolites. LC–MS/MS is more expensive, but it iden-
tifies VD metabolites with high specificity and sufficient sensitivity. This technique also
enables quantification and differentiation between 25(OH)D2 and 25(OH)D3 and other
VD derivatives. Thus, LC–MS/MS is considered as the current reference method for the
determination of VD [14,15].

The majority of BC patients before [7,15], and even more after chemotherapy (CTH) [16–18]
demonstrated VD deficiency, but few previously published studies [7,19–21] used LC–MS/MS
assessments. Importantly, metabolically active vitamin D2 and D3 derivatives levels depend
significantly on the patient’s genotype [11], but limited data regarding BC Caucasian
population have been published so far. That is why we aimed to assess baseline VD status
and its changes during CTH using LC–MS/MS methodology in the Caucasian population.

Vitamin D metabolic effects depend on its catabolism. Thus, we considered the
significance of its catabolic pathways in BC patients. Vitamin D is catabolized mainly
by the transformation of 1,25(OH)2D and its precursor 25(OH)D via 24-hydroxylase en-
zyme into 24,25(OH)2D and 1,24,25(OH)3D derivatives, known as inactive metabolites.
Far less information is available about the function of the C3-epimerase catabolic path-
way [22,23], resulting in 3-epi-25(OH)D3 synthesis. However, due to different impacts on
calcium and bone metabolism [24], distinguishing between 25(OH)D3 and the C-3 epimer
is considered of biological importance [25]. So far, few clinical data are available regard-
ing 3-epi-25(OH)D3 in BC patients. Therefore, we assessed the level of VD catabolites,
24,25(OH)2D3 and 3-epi-25(OH)D3, to provide further data on VD catabolic pathways in
these patients.

Previous studies showed that VD could affect BC patients’ survival; however, the data
are inconsistent [26].

We evaluated changes in VD metabolites during CTH and the predictive role of VD
status in Caucasian patients with BC treated using CTH via the LC–MS/MS methodology.

2. Materials and Methods
2.1. Subjects

All patients screened for the study were admitted into the Department of Internal
Medicine and Chemotherapy between 2013 and 2018. The main inclusion criteria included
the diagnosis of BC confirmed with pathology result: Eastern Cooperative Oncology
Group (ECOG) performance status ≤ 2. The main exclusion criteria were pregnancy or
lactation, acute or chronic inflammatory diseases, and Vitamin D supplementation. All
patients signed an informed consent form before enrollment. Finally, 105 women with BC
were enrolled in the study. Subjects received CTH as neoadjuvant, adjuvant, or palliative
treatment with or without surgery, as planned by the oncologist, in accordance with the
current clinical guidelines of the National Comprehensive Cancer Network (NCCN), dated
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2014 [27]. Patients were assessed at baseline and followed-up for 6 months after the start of
treatment, then assessed for survival. Vitamin D levels were compared to the control group
which consisted of 43 all-comer women [age 59.0 ± 17.5 years; BMI 28.0 (24.9–29.7) kg/m2;
mean values ± SD] admitted consecutively into the endocrinology ward for the diagnosis
of suprarenal gland adenoma, found free of the disease. Characteristics of the study
group are shown in Table 1. The study was approved by the Bioethics Committee of the
Medical University of Silesia in Katowice (EC approval no: KNW/0022/KB1/2/15) and
was conducted in accordance with the Declaration of Helsinki.

Table 1. Characteristics of the study group with stratification according to Vitamin D status.

Parameter BC Patients
N = 98

25(OH)D ≤
20 ng/mL

N = 55

25(OH)D >
20 ng/mL

N = 43
p-Value 4

Age [years] 58.4 ± 11.0 58.1 ± 12.0 58.9 ± 9.8 0.72 1

Body mass index [kg/m2] 26.7 (24.5–29.9) 26.4 (24.3–30.1) 27.0 (24.6–29.9) 0.77 2

Clinical stage:

0.06 3

I 14 (14%) 11 (20%) 3 (7%)
II 44 (45%) 18 (33%) 26 (60%)
III 29 (30%) 18 (33%) 11 (26%)
IV 8 (8%) 5 (9%) 3 (7%)
n/a 2 (2%) 2 (4%) 0 (0%)

Histological subtype:

0.30 3NST 74 (76%) 41 (76%) 33 (77%)
lobular 17 (18%) 8 (15%) 9 (21%)
others 6 (6%) 5 (9%) 1 (2%)

Biological subtype:

0.43 3

luminal A 19 (20%) 7 (13%) 12 (28%)
luminal B 33 (34%) 20 (37%) 13 (30%)
luminal B HER2 positive 16 (16%) 9 (17%) 7 (16%)
non-luminal HER2 positive 13 (13%) 8 (15%) 5 (12%)
triple negative 16 (16%) 10 (19%) 6 (14%)

Chemotherapy:

0.25 3neoadjuvant 23 (24%) 12 (23%) 11 (26%)
adjuvant 41 (43%) 20 (38%) 21 (50%)
palliative 31 (33%) 21 (40%) 10 (24%)

Data presented as mean values ± SD or median (1–3Q). 1 Student’s t-test; 2 Mann–Whitney U test; 3 chi-square
test; 4 Student’s t-test, Mann–Whitney U test, chi-square test analyses performed for comparison between
25(OH)D ≤ 20 ng/mL and 25(OH)D > 20 ng/mL groups; NST—invasive carcinoma of no special type.

2.2. Materials

Metabolites of Vitamin D (25(OH)D3, 3-epi-25(OH)D3, 25(OH)D2, and 24,25(OH)2D3)
and deuterated internal standards (d6-25(OH)D3, d3-3-epi-25(OH)D3, d3-25(OH)D2, and
d6-24,25(OH)2D3) were purchased from Sigma-Aldrich (Gillingham, Dorset, UK). During
sample preparation, several reagents were used, such as water, methanol, ethyl acetate,
hexane (Honeywell, Sigma-Aldrich), and zinc sulfate (POCh S.A., Gliwice, Poland). 4-(4′-
dimethylaminophenyl)-1,2,4-triazoline-3,5-dione (DAPTAD) was used as a derivatization
agent. It was synthesized by Masdiag Laboratory (Warsaw, Poland). For chromatographic
separation, Agilent Eclipse ZORBAX XDB-C18 (1.7 m; 50 × 4.6 mm) column was used.
(Advanced Chromatography Technologies Ltd., Aberdeen, Scotland).

2.3. Apparatus and Chromatographic Conditions

ExionLC high-performance liquid chromatograph (Sciex, Framingham, MA, USA)
with CTC PAL autosampler (Zwinger, Switzerland) coupled with QTRAP® 4500 MS/MS
system (Sciex) was used. Liquid chromatograph was equipped with a degasser, two pumps,
and a column oven. Analyses were performed in a positive mode using electrospray
ionization (ESI). For quantitative analysis, multiple reaction monitoring (MRM) was used.
The ion source parameters were optimized with the flow injection analyses of the standards
mixture. The following operating parameters of MS/MS system were applied: curtain
gas (CUR) 30, ion source voltage (IS) 3000 V, temperature (TEM) 500 ◦C, nebulizing gas
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(GS1) 40, and drying gas (GS2) 50. CUR, GS1, and GS2 values are expressed in arbitrary
units. The raw data were collected with the use of Analyst Software. Multiquant Software
was used to process and quantify the collected data. The chromatographic analysis was
performed using the Agilent Eclipse ZORBAX XDB-C18 (1.7 m; 50 × 4.6 mm) column at
a flow rate of 0.8 mL·min−1 and the column oven temperature was 40 ◦C. The mobile phase
was prepared using water and acetonitrile with 0.1% formic acid. The gradient elution
program was as follows: 0 min.—50% B, 2.5 min.—78% B, 3.2 min.—98% B, 4.5 min.—98% B,
and 4.6 min.—50% B. The injection volume was 20 µL. Total run time was 5.5 min. The
quantitative analysis of vitamin D metabolites was performed using the isotope dilution
method. The concentration was calculated on the basis of the ratio of the area of a given
metabolite peak to the area of the internal standard peak. The obtained values from serum
were compared with the calibration curve. All LC-MS/MS assessments were performed
according to the methodology described in detail in the publications [28,29].

2.4. Serum Sample Preparation

Venous blood samples were collected before the administration of CTH and during the
selected follow-up visits (after 3 and 6 months of CTH initiation). Vitamin D concentration
was assessed in serum samples stored at a temperature below −170 ◦C until analysis was
carried out. The sample preparation process was started by incubating 100 µL of serum with
10 µL of solution of isotope-labeled standards for 30 min. Then, protein precipitation was
performed using 0.2 M zinc sulfate solution and methanol. The mixture was vortexed for
10 s. Subsequently, liquid–liquid extraction was carried out using hexane as an extractant.
The extraction was performed twice. After each extraction step, the sample was vortexed
and centrifuged (13,000 RPM, 5 min). Organic extracts were combined and evaporated
under a stream of nitrogen. Afterward, the derivatization reaction was performed with the
use of DAPTAD as a derivatization agent, for 30 min at room temperature. The mixture was
evaporated under the stream of nitrogen and the residue was dissolved in methanol/water
(1:1) solution. Finally, 20 µL of an aliquot was subjected to LC-MS/MS analysis.

2.5. Data Analysis

The total 25(OH)D concentration was calculated as the sum of 25(OH)D3 and 25(OH)D2
concentration. Subjects in the study and control groups were classified according to
25(OH)D concentration as severe deficient (≤10 ng/mL), deficient (10–20 ng/mL), insuffi-
cient (20–30 ng/mL), and sufficient (>30 ng/mL) [30,31].

2.6. Statistical Analyses

Statistical analyses were performed using Statistica 13.3 software (StatSoft, Tulsa, OK,
USA). The level of significance was set at p < 0.05. The Shapiro–Wilk test was used to
determine the distribution of the data. When the data were not distributed normally,
nonparametric tests were applied for statistical analyses. For normally distributed data
Student’s t-test was used. The chi-square test was applied to the categorical variables. The
ANOVA Friedman test and post hoc test were used to assess the differences between the
concentrations of 25(OH)D2, 25(OH)D3, 25(OH)D, 24,25(OH)2D3, and 3-epi-25(OH)D3 in
the BC patients prior and after CTH. Patients with missing values were not considered
in the statistical analysis for matched pairs. The correlation coefficients were calculated
using the Spearman rank correlation test. For Kaplan–Meier analysis, the time from sample
collection till the end of the follow-up or till death was taken into account.

3. Results
3.1. Vitamin D Status in BC Patients before and during Chemotherapy

In the BC patients group, at baseline, 56.1% of the patients were VD-deficient, 23.5%
were insufficient and 20.4% of the patients were sufficient. In the control group, 37.2% of
the patients were deficient, 46.5% of the patients were insufficient and 16.3% of the patients
were sufficient (Table 2). The proportion of BC patients with 25(OH)D deficiency at baseline



Metabolites 2023, 13, 996 5 of 13

was significantly lower than in controls. After 6 months, the number of BC patients with
25(OH)D deficiency increased further to 60% (Table 2).

Table 2. Results of 25(OH)D status (sum of 25(OH)D2 and 25(OH)D3 concentrations), 25(OH)D2,
25(OH)D3, 24,25(OH)2D3 and 3-epi-25(OH)D3 serum levels in the BC patients at baseline and after
3 and 6 months of CTH compared to the control group. Kruskall–Wallis test was non-significant for
comparison among all tested groups (control group, baseline, 3 months, 6 months, (p > 0.05). p values
were calculated for each group: baseline, after 3 and 6 months vs. control group. Chi-square test was
significant for comparisons among each group (baseline, 3 and 6 months) vs. the control group.

Vitamin D Status
(25(OH)D [ng/mL])

Control Group
N (%)

Breast Cancer Patient Group N (%)
Baseline p-Value 1 after 3 Months p-Value 1 after 6 Months p-Value 1

Severe deficiency (≤10) 2 (4.7%) 12 (12.2%)

0.04

15 (18.5%)

0.03

15 (21.4%)

0.002Deficiency (10–20) 14 (32.5%) 43 (43.9%) 33 (40.7%) 27 (38.6%)
Insufficiency (20–30) 20 (46.5%) 23 (23.5%) 19 (23.5%) 11 (15.7%)
Sufficiency (>30) 7 (16.3%) 20 (20.4%) 14 (17.3%) 17 (24.3%)

Vitamin D and Vitamin D
Metabolites [ng/mL] 2 Control Group Breast Cancer Patient Group

Baseline after 3 Months after 6 Months

25(OH)D 21.45 (17.23–25.94) 18.91 (13.07–26.60) 17.85 (12.66–27.11) 16.63 (11.00–29.91)
25(OH)D2 0.44 (0.29–0.70) 0.44 (0.29–0.71) 0.42 (0.27–0.63) 0.38 (0.26–0.59)
25(OH)D3 21.08 (16.90–25.10) 18.31 (12.69–26.34) 17.39 (12.23–26.92) 16.30 (9.84–29.64)
24,25(OH)2D3 1.47 (0.96–2.12) 1.18 (0.57–1.88) 1.02 (0.51–1.56) 0.89 (0.44–1.81)
3-epi-25(OH)D3 0.92 (0.59–1.27) 0.71 (0.48–1.14) 0.74 (0.45–1.29) 0.65 (0.40–1.25)

1 chi-square test, 2 data presented as medians with 25th and 75th percentiles.

3.2. Changes in 25(OH)D, 25(OH)D2, 25(OH)D3, 24,25(OH)2D3 and 3-epi-25(OH)D3 Levels
during Chemotherapy

The concentrations of assessed VD active forms, 25(OH)D2, 25(OH)D3, and 25(OH)D,
as well as catabolites, 24,25(OH)2D3 and 3-epi-25(OH)D3, decreased in BC patients after
3 and 6 months of CTH compared to the baseline (Table 2). The matched pairs analysis
showed a significant decrease in 25(OH)D, 25(OH)D2, 25(OH)D3, 24,25(OH)2D3, and
3-epi-25(OH)D3 levels in patients after 3 and 6 months of follow-up (Figure S1). Moreover,
a strong positive correlation between the serum concentrations of 3-epi-25(OH)D3 and
25(OH)D3 in the BC patients at baseline, after 3 and 6 months of CTH, and in the control
group was revealed (Figure 1). Similar positive correlations were also observed between
24,25(OH)2D3 and 25(OH)D3 levels (Figure 2). Of note, strong positive correlations were
found also between 3-epi-25(OH)D3 and 25(OH)D (Figure 3) as well as 24,25(OH)2D3 and
25(OH)D levels (Figure 4).

In this study, BC patients receiving neoadjuvant, adjuvant, and palliative CTH, BC
patients with different biological subtypes, histological subtypes, clinical stages, BC surgery,
radiation therapy, hormone therapy, immunotherapy, and biological subtype were shown
to have no significant differences in 25(OH)D, 3-epi-25(OH)D3, and 24,25(OH)2D3 levels
at baseline, after 3, and 6 months of CTH (Kruskal–Wallis test or Mann–Whitney U test,
p > 0.05).

3.3. Predictive Role of Vitamin D Status

The survival probability of BC patients was analyzed using the Kaplan–Meier estimate
for baseline measurement of 25(OH)D levels (Table 1). There was a significant survival dif-
ference between BC patients with 25(OH)D levels ≤ 20 ng/mL and >20 ng/mL at baseline
(log-rank test, HR = 2.44 (95% CI 1.07–5.59), p = 0.026), see Figure 5. The 25th percentile
of the survival time was 6 months for BC patients with 25(OH)D level ≤ 20 ng/mL and
23 months for BC patients with 25(OH)D level > 20 ng/mL at baseline. Moreover, the
median overall survival was 25 months for patients with 25(OH)D deficiency.
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Figure 5. Kaplan–Meier curves for survival probability of BC patients with 25(OH)D levels (a sum of
serum levels of 25(OH)D2 and 25(OH)D3] ≤ 20 ng/mL and > 20 ng/mL at baseline (log-rank test,
HR = 2.44 (95% CI 1.07–5.59) p = 0.026).

4. Discussion
4.1. Vitamin D Status in BC Patients at Baseline and during CTH

The aim of this study was to assess baseline VD status [defined as a sum of serum levels
of 25-(OH)D2 and 25-(OH)D3] and changes during CTH using LC–MS/MS methodology
in non-supplemented BC patients.

At baseline, 56.1% BC patients were VD-deficient (<20 ng/mL), 23.5% were insuf-
ficient and only 20.4% had sufficient VD levels (>30 ng/mL). In comparison with the
control group, we found more patients with VD deficiency (56.1% vs. 37.2%) among the
BC patients. Decreased levels of VD in BC patients compared to control subjects were
observed previously [32–39], and our results confirm these findings with the LC–MS/MS
methodology. Presented findings could be a result of decreased sun exposure. However, we
cannot exclude the increased demand for VD during carcinogenesis among the BC patients.

Moreover, the concentrations of VD [measured as a sum of 25(OH)D2 and 25(OH)D3],
were further decreased in BC patients after 3 or 6 months of CTH, reaching 60% of BC
patients with deficiency after 6 months. In an Indonesian study, similar results were recently
published with the ELISA methodology. Severe VD deficiency [25(OH)D2 and 25(OH)D3)
was found in 82.4% of BC patients at baseline and the rate further increased to 89.0%
after CTH [16]. Kok et al. recorded decreased level of 25(OH)D3 1 to 3 weeks after CTH
compared to 25(OH)D3 status prior to CTH in BC patients using the LC-MS/MS method;
however only one VD form was assessed [33]. Kim et al. showed that only 26.9% of BC
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women were VD-sufficient after 6 months of CTH compared to 49.5% before CTH [40].
Our observations provide further evidence regarding the necessity of VD assessments and
supplementation during CTH in BC patients. It seems even more important in the context
of recent findings by El-Bassiouny et al. showing promising clinical evidence to support the
cardioprotective effects of VD against pro-inflammatory cytokines induced by doxorubicin
CTH [41].

4.2. Catabolites Status of 24,25(OH)2D3 and 3-epi-25(OH)D3 at Baseline and
during Chemotherapy

Another aim of this study was to determine the level of VD catabolites, 24,25(OH)2D3 and
3-epi-25-(OH)D3, to provide further data regarding VD catabolic pathways in BC patients.

We found that the concentrations of the main catabolites, 24,25(OH)2D3 and 3-epi-
25(OH)D3, were decreased at baseline in comparison to the control group and decreased
in BC patients after 3 and 6 months of CTH as compared to baseline. Strong positive
correlations between the serum concentrations of 3-epi-25(OH)D3 and 25(OH)D in the
BC patients at baseline, after 3 and 6 months of CTH, and in the control group were
found. Similar correlations were also observed between 24,25(OH)2D3 and 25(OH)D
levels. Additionally, we revealed strong positive correlations between 3-epi-25(OH)D3
and 25(OH)D3, 24,25(OH)2D3, and 25(OH)D3 levels both in the study and control groups.
The clinical implication of the observed strong correlations could be the limitation of
VD assessment to only 25(OH)D levels. However, the results should be confirmed in
other studies.

The presented results provide evidence that both catabolic pathways, via 24-hydroxylase
enzyme into 24,25(OH)2D and 1,24,25(OH)3D, considered as inert metabolites, and via C3-
epimerase catabolic pathway [22,23] resulting in 3-epi-25(OH)D3 synthesis, are engaged in
the catabolism of VD in BC patients, similar to healthy subjects.

Although several authors showed the positive correlation between serum concentra-
tions of 3-epi-25(OH)D3 and 25(OH)D3 using the LC-MS/MS method [42–44] in different
populations, no data so far has been published for BC patients. To our knowledge, this
is the first paper evaluating the impact of CTH on 24,25(OH)2D3 and 3-epi-25(OH)D3
metabolites in BC patients.

4.3. Predictive Role of Vitamin D Status

The additional goal of this study was to evaluate the predictive role of VD status in
Caucasian BC patients treated with CTH. The Kaplan–Meier survival analysis showed
poorer survival probability in BC patients with 25(OH)D levels ≤ 20 ng/mL at baseline.

Previously published results were inconsistent, but many authors observed an inverse
association between VD levels before treatment and mortality in BC patients [45,46]; others
did not confirm this relationship [47]. Among others, Tokunaga et al. showed that levels
of VD over 23.6 ng/mL diminished the risk of BC-related mortality in newly diagnosed
patients [9]. Vrieling et al. in a prospective study of BC patients found that a lower level of
25(OH)D assessed via enzyme immunoassay methodology was related to a higher risk of
death [48]. In another study, Yao et al. investigated the predictive role of 25(OH)D serum
levels measured at the time of diagnosis and found that 25(OH)D concentrations measured
via immunochemiluminometric assay were inversely associated with the risk of disease
progression and death [49].

Such results seem to justify vitamin VD supplementation in BC patients. Several
studies analyzed the supplementation of VD post cancer diagnosis. A recent study showed
that VD supplementation was associated with lower total mortality [50]. Other authors
found that de novo post-diagnostic supplementation of VD was associated with a 20%
reduction in breast cancer-specific mortality in a large cohort study [51].

The LC-MS/MS methodology presents a possibility to reliably assess VD and spectrum
of its metabolites. The main novelty of this study is presenting VD catabolism data in BC
patients using the LC-MS/MS methodology. Altered VD catabolism via 24-hydroxylase and
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3-epimerase pathways could potentially contribute to decreased VD levels in BC patients.
We showed that that VD catabolism is not affected in Caucasian BC patients receiving
CHT. Correlations observed between VD and its catabolites allow for assessment of only
25(OH)D in the Caucasian BC patients. Moreover, this study provides additional data
regarding the negative impact of VD deficiency for OS in Caucasian BC patients.

We realize some of this study’s limitations, including a lack of seasonal analysis
related to sunshine exposure, assessment of eating habits, and heterogeneity of the group
of BC patients starting CTH. Moreover, due to splitting the patients into deficiency/non-
deficiency subgroups, the sample size was smaller, which can affect the statistical analysis.

5. Conclusions

The presented data provide further evidence that BC patients before CTH are more
VD-deficient than the general population, and this deficiency increases further during the
CTH treatment, as observed using the reference LC-MS/MS methodology. VD metabolites
produced via 24-hydroxylase and C3-epimerase pathways could potentially contribute to
VD deficiency. They show that VD catabolism is not affected in BC patients.

VD is considered an important factor in BC development, affecting BC cells metabolism
and proliferation. VD deficiency can impact overall survival in BC patients’ population.
The presented results confirm decreased survival in VD-deficient BC patients. This finding
could suggest that VD supplementation is beneficial for patients with 25(OH)D levels below
20 ng/mL. However, the benefits from supplementation may not translate directly into
improved survival, and such recommendations should be assessed in the future studies.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/metabo13090996/s1, Figure S1. The quantitative relationships between
serum levels of 25(OH)D2 (A), 25(OH)D3 (B), 25(OH)D (C), 24,25(OH)2D3 (D) and 3-epi-25(OH)D3
(E) in the paired samples of the breast cancer patients at baseline and after chemotherapy. Each line
represents an individual subject, the bold black lines represent the median values, * p < 0.05 ANOVA
Friedman test followed with post hoc test, N = 68.
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