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Abstract: The chemical profiles of both Zygophyllum album (Z. album) aerial parts and roots extracts
were evaluated with LC-ESI-TOF-MS/MS analysis. Twenty-four compounds were detected. Among
them, some are detected in both the aerial parts and the roots extracts, and others were detected in the
aerial parts only. The detected compounds were mainly flavonoids, phenolic compounds, triterpenes
and other miscellaneous compounds. Such compounds contribute to the diverse pharmacological
activities elicited by the Z. album species. This study aimed to elucidate the antiepileptic effect of Z.
album aerial parts and roots crude extracts against pentylenetetrazole (PTZ)-induced kindling in mice.
Male albino mice were divided into four groups, eight animals each. All groups, except the control
group, were kindled with PTZ (35 mg/kg i.p.), once every alternate day for a total of 15 injections.
One group was left untreated (PTZ group). The remaining two groups were treated prior to PTZ
injection with either Z. album aerial parts or roots crude extract (400 mg/kg, orally). Pretreatment with
either extract significantly reduced the seizure scores, partially reversed the histological changes in the
cerebral cortex and exerted antioxidant/anti-inflammatory efficacy evinced by elevated hippocampal
total antioxidant capacity and SOD and catalase activities, parallel to the decrement in MDA content,
iNOS activity and the TXNIB/NLRP3 axis with a subsequent decrease in caspase 1 activation and
a release of IL-1β and IL-18. Moreover, both Z. album extracts suppressed neuronal apoptosis via
upregulating Bcl-2 expression and downregulating that of Bax, indicating their neuroprotective and
antiepileptic potential. Importantly, the aerial parts extract elicited much more antiepileptic potential
than the roots extract did.

Keywords: metabolomic profiling; LC-ESI-TOF-MS/MS; Zygophyllum album; PTZ; oxidative stress;
NLRP3 inflammasome; apoptosis

1. Introduction

Natural products have been used traditionally to cure a wide variety of illnesses for
thousands of years. It has been estimated that natural ingredients represent about half of
currently used pharmaceuticals [1–3]. Zygophyllaceae is one of the biggest families, with
approximately 25 genera and 240 species [4]. Zygophyllum, a genus that belongs to the
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family Zygophyllaceae, is of common occurrence in Egypt. It has been used traditionally
for curing various diseases such as hypertension, asthma, gout and diabetes [4,5].

Previous studies reported diversity of the chemical constituents and the interesting
biological activities of Zygophyllum album. Our previous investigation of Z. album aerial
parts has led to the isolation and identification of a number of compounds, such as β-
amyrin, ursolic acid, caffeic acid, kaempferol, quercetin, rutin and a new saponin assigned
the name Zygo-albuside A [6]. Additionally, investigation of root extracts of the same
plant has led to isolation and chemical identification of a new compound named Zygo-
albuside D along with the known compounds (3-O-[β-D-quinovopyranosyl]-quinovic
acid) and catechin [3]. These compounds were isolated using different chromatographic
techniques and identified with 1D and 2D NMR and HRMS spectral data. Z. album was
reported to have antioxidant [6], antiobesity, antiacetylcholinesterase [7], antihypertensive,
antidiabetic [8], and anticancer activities [9].

Epilepsy is a chronic neurological disease characterized by frequent seizures. Epilep-
togenesis has been reported to be elicited by either genetic or acquired factors that increase
one’s susceptibility to seizures [10]. Epileptic seizures are associated with various insults
including oxidative stress, neuronal cell damage, abnormal neurogenesis, deregulated
apoptosis and autophagy subsequently leading to cognitive impairment and neuroinflam-
mation [11–13]. Interestingly, a principal platform of the inflammatory signaling pathway
that senses both pathogenic microorganisms and sterile stressors is the inflammasome. The
latter is a multi-protein complex formed from the assembly of a sensor protein (pattern
recognition receptor (PRR) containing a pyrin and/or a caspase recruitment and activa-
tion domain), an adaptor protein (apoptosis-associated speck-like protein (ASC)) and a
caspase-1 effector protein [14]. The most classic inflammasome is nucleotide oligomer-
ization domain-like receptor protein 3 (NLRP3) which consists of NLRP3 as the sensor
protein. Stimulation with danger signals enhances recruitment and assembly of NLRP3 in-
flammasome components eventually leading to pro-caspase-1 cleavage into its active form,
which in turn promotes the activation and secretion of inflammatory cytokines including
interleukin (IL)-1β and IL-18. NLRP3 inflammasome has been reported to be involved
in many neurological disorders such as Alzheimer’s disease, cerebrovascular disease and
epilepsy [10].

The available antiepileptic drugs have been reported to be associated with serious side
effects such as agranulocytosis, teratogenicity, addiction and tolerance. Additionally, the
lack of good control and subsequent progression to drug-resistant epilepsy were recorded
in almost one third of patients. In this regard, studies revealed that the children exposed to
valproic acid demonstrated a high rate of facial dysmorphism and dental anomalies [15].
Moreover, a large percentage of patients with epilepsy who take antiepileptic drugs have
suffered from bone abnormalities. Drugs such as benzodiazepines, carbamazepine, pheny-
toin, phenobarbital and valproic acid cause induction of CYP450 isoenzymes. This in turn
can lead to vitamin D deficiency, hypocalcemia, increased risk for fracture and altered bone
turnover, causing impaired bone mineral density [16]. Therefore, there is an urgent need for
development of novel antiepileptic drugs that can mitigate epileptogenesis effectively and
safely. Natural anti-inflammatory therapies have been suggested as promising alternatives
for preventing and treating epileptic seizures by virtue of their multi-targeted effects [10,11].

This study aimed to investigate both Z. album aerial parts and roots crude extracts,
using the LC-ESI-TOF-MS/MS analysis technique, and the potential antiepileptic effect of
Z. album against pentylenetetrazole (PTZ)-induced kindling in mice is evaluated. A sub-
stantial goal is to establish a comparative study between the Z. album aerial parts and roots
crude extracts. Finally, the underlying mechanisms of action (in vitro and in vivo) were as-
sessed with attention being paid to thioredoxin (TRX)-interacting protein (TXNIP)/NLRP3
inflammasome signaling as a respectable epileptic therapeutic target.
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2. Materials and Methods
2.1. Plant Material

Z. album was collected from Marsa Matrouh at the Northern Coast of the Mediter-
ranean Sea in Egypt during May 2019. It was identified at the Faculty of Science, Alexan-
dria University. A voucher specimen was kept under registration number ZA-2019 in the
herbarium of the Pharmacognosy Department, Faculty of Pharmacy, Suez Canal University,
Ismailia, Egypt. The plant was air-dried at shade and room temperature (around 25 ◦C) for
2 weeks, the aerial parts were separated from the roots then each were chopped separately
into small pieces. A weight of 1.8 kg of Z. album was extracted with methanol (3 × 2 L) at
room temperature. The combined aerial extracts were concentrated under reduced pressure
to yield brownish-green viscous crude extract (50 g), and about 900 g of Z. album roots were
extracted with methanol (3 × 2 L) at 25 ◦C. The combined roots extracts were concentrated
under reduced pressure to afford 30 g of brownish-green crude extract.

2.2. Metabolomic Profiling with LC/MS/MS

High-resolution LC-ESI-TOF-tandem mass spectrometric analysis was executed as pre-
viously mentioned in [17]. For the Zygophyllum album aerial and roots extracts, 50 mg of each
extract were dissolved in 1 mL of solvent mixture composed of water:methanol:acetonitrile
(50:25:25, v/v). The extract solution was sonicated (10 min) and then centrifuged at
10,000 rpm (10 min) to ensure complete solubility. An aliquot (50 µL) of the prepared
solution was withdrawn and further diluted with the solvent mixture.

Finally, 2.5 µg/µL of the extract was prepared, of which 10 µL was injected in both
negative and positive modes. For confidence assurance in our experiment, blanks were
also analyzed.

The chromatographic separation was performed using a 28 min gradient elution pro-
gram with a constant flow rate of 0.3 mL/min. In the positive mode, mobile phase A
consisted of 5 mM ammonium formate buffer in 1% methanol (pH = 3.0), while mobile
phase B was acetonitrile. Conversely, for the negative mode, we employed 5 mM ammo-
nium formate in 1% methanol (pH 8.0) as mobile phase A, along with acetonitrile as mobile
phase B.

The UHPLC separation was achieved using an ExionLC system (AB Sciex, Framing-
ham, MA, USA) with a 2.5 µm, 2.1 × 150 mm XSelect HSS T3 column (Waters Corporation,
Milford, MA, USA), Phenomenex® in-line filter disks (0.5 µm × 3.0 mm) and an autosam-
pler system. The gradient elution followed these steps: 0% B for 1.0 min, 0–90% B in 20 min,
90% for 4.0 min, 90–0% B in 1.0 min and, finally, re-equilibration with 0% B for 3.0 min.

For mass spectrometry, this UHPLC was attached to a Triple TOF™ 5600+ system
equipped with a Duo-Spray source operating in the electrospray ionization (ESI) mode (AB
SCIEX, Concord, ON, Canada). Sprayer capillary and declustering potential voltages were
set to 4500 and 80 eV in the positive mode and −4500 and −80 V for the negative mode
using a source temperature of 600 ◦C. The curtain gas was 25 psi, and gas 1 and gas 2 were
40 psi. The TripleTOF5600+ operated using an information-dependent acquisition (IDA)
protocol. The collision energy was 35 V (positive mode) and −35 V (negative mode) with
CE spreading 20 V and ion tolerance of 10 ppm.

The information-dependent acquisition (IDA) method was employed to simulta-
neously collect full-scan MS and MS/MS data. This method involved acquiring high-
resolution survey spectra across the mass range from 50 to 1100 m/z. During operation,
the mass spectrometer followed a pattern where a 50 ms survey scan was detected. Subse-
quently, the top 15 intense ions were selected for acquiring MS/MS fragmentation spectra
after each scan.

MSDIAL3.52 was utilized for data processing. Master view software was employed for
the peak extraction from the total ion chromatogram (TIC) according to the criteria reported
previously by [17]. The compounds were identified with accurate mass estimations, MS/MS
transitions and the comparison of their retention time to those reported in the literature
and mass spectral databases for LC/MS-based metabolomic analysis.
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2.3. In Vivo Study of Z. album
2.3.1. Drugs and Chemicals

Pentylenetetrazole (PTZ) was purchased from Sigma Aldrich (St. Louis, MI, USA)
with 0.9% sterile saline being utilized for PTZ dissolution.

2.3.2. Experimental Animals and Study Protocol

Animal handling and experimental protocols were approved by the research ethics
committee at the Faculty of Pharmacy, Suez Canal University (Ethics code. 202307RA2)
and followed the Guide for the Care and Use of Laboratory Animals (8th edition, National
Academies Press) [18].

Thirty-two Swiss male albino mice, delivered from the Serum and Vaccine authority
(Cairo, Egypt), were used in this study with weights ranging from 20 to 25 g. Mice were
housed in stainless steel cages in groups of 8 animals per cage. Housing was under a
normal light/dark cycle with controlled room temperature (25 ± 1 ◦C), relative humidity
(55–65%) and free access to food and water. A one-week adaptation period was allowed
before starting the experiment.

Animals were randomly allocated into four experimental groups (eight mice per
group). The mice in the first group received 1% DMSO/distilled water orally and sterile
saline (0.9% NaCl) intraperitoneally (i.p.) and served as the normal control (NC) group.
Kindling was induced in the remaining three groups via injecting animals with a sub-
convulsive dose of PTZ (35 mg/Kg, i.p.) twice a week for five weeks to reach a total of
15 injections. Kindling was achieved after 14 ± 1 PTZ injections or when the mouse showed
a seizure score of 4.5 or 5 in three consecutive occasions [19]. Mice in the PTZ group were
left untreated, while mice in the aerial extract and root extract groups received a dose of
400 mg/Kg, orally (p.o.) of either Z. album aerial extract or root extract resuspended in
1% DMSO/distilled water 30 min before each PTZ injection. The dose of Z. album extract
from both aerial parts and roots was selected according to previous studies that utilized the
same dose of the extract and reported potential cardioprotective and antihyperlipidemic
effects [7,20]. The animals received equal doses from both extracts rather than doses
calculated based on the total phenolic content due to presence of other metabolites in
both extracts that may possess potent antiepileptic activity. Interestingly, two of these
metabolites were isolated for the first time from a natural source [3,6].

2.3.3. Assessment of Seizure Activity in PTZ-Kindled Mice

For all mice, convulsive behavior was observed in a blind manner for 30 min after
each PTZ injection. The seizure score was classified into the following stages, as described
by Fischer and Kittner: 0, no seizure; 0.5, weak nodding; 1, ear, face and eyelid spasms; 2,
myoclonic jerks, no rearing; 2.5, rapid clonic forelimb seizures, partial rearing; 3, severe
bilateral forelimb clonuses, complete rearing; 3.5, rearing and falling with forceful forelimb
clonus; 4, generalized clonic seizures with jumping or episodes of rearing-falling down; 4.5,
generalized clonic–tonic seizures with loss of righting reflex; 5, generalized clonic–tonic
seizures and status epilepticus. For each group, the mean of the reported seizure scores
over PTZ fifteen injections was calculated and used for comparison [21].

2.3.4. Tissue Sampling

Following convulsive behavioral assessment after the last PTZ injection, mice were
injected with ketamine (10 mg/kg, i.p.) and euthanized via decapitation with the brain
tissues being instantly excised. The whole cerebrum in both the right and left hemisphere
without cerebellum and brain stem was weighed, cut sagittally into left and right hemi-
spheres and blotted dry on tissue paper after rinsing in ice-cold physiological saline. The
right hemisphere was dipped in liquid nitrogen (−170 ◦C, provided from the Directorate
of Veterinary Medicine, Zagazig, Egypt) for 5 min and then kept frozen at −80 ◦C for
further biochemical and RT-PCR analysis. The left hemisphere was fixed in 10% neutral
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buffered formaldehyde (Sigma Aldrich Chemical Company, St. Louis, MO, USA, Cat. No.
HT501128) for histopathological examination.

2.3.5. Determination of Oxidative Stress Markers (iNOS, TAC, MDA, SOD and Catalase)

Following the manufacturer’s instructions, iNOS and TAC were measured in the brain tis-
sue of the groups under study using the mouse inducible nitric oxide synthase (iNOS) ELISA Kit
(MyBioSource, San Diego, CA, USA, Cat. No. MBS261100) and mouse total antioxidant capacity
ELISA Kit (MyBioSource, San Diego, CA, USA, Cat. No. MBS733680) [22,23], respectively.

The brain tissue’s levels of malondialdehyde (MDA), superoxide dismutase (SOD) and
catalase were assessed using Biodiagnostic colorimetric assay kits (Dokki, Giza, Egypt, Cat.
No. MD 2529 for MDA, SD 2521 for SOD, and CA 2517 for catalase). The manufacturer’s
instructions were followed for every procedure [23].

2.3.6. Determination of the Inflammatory Markers (IL-1β and IL-18)

Levels of interleukin (IL)1β and IL-18 were measured in the brain tissue of the study
groups using mouse-specific ELISA kits purchased from MyBioSource (San Diego, CA, USA,
Cat. No. MBS701092 and MBS9135813, respectively) and the manufacturer’s instructions
were followed [23,24].

2.3.7. Quantitative RT-PCR Analysis for Determination of Inflammatory Biomarkers

By using the ABT Total RNA Mini Extraction Kit (Applied Biotechnology, Ismailia,
Egypt, Cat. No. ABT001), RNA was extracted from the brain tissue of the study groups ac-
cording to the protocol supplied by the manufacturer. RNA concentration and purity were
measured spectrophotometrically using a NanoDrop 1000 spectrophotometer (NanoDrop
Tech, Wilmington, DE, USA).

The expression of NLRP3, TXNIP and caspase-1 genes were assessed using the GoTaq®

1-Step RT-qPCR System (Promega, Madison, WI, USA, Cat. No. A6020) and glyceraldehyde
3-phosphate dehydrogenase (GAPDH) as a reference gene. Table 1 shows the primer
sequence that was employed as well as the annealing temperature for each primer. In a
final volume of 20 µL, the reaction was conducted using the following components: 4 µL
RNA template, 0.4 µL GoScript™ RT mix for 1-step RT-qPCR, 1 µL of each forward and
reverse primer, 10 µL GoTaq® qPCR master mix, 0.31 µL additional CXR reference dye and
3.29 µL nuclease-free water. Cycle conditions included 15 min of reverse transcription at
37 ◦C, 10 min of reverse transcriptase enzyme inactivation at 95 ◦C, 40 cycles of denaturation
at 95 ◦C for 10 s, annealing for 30 s and extension at 72 ◦C for 30 s. All real-time PCR
reactions were performed in a StepOnePlus™ Real-Time PCR thermal cycling instrument
(Applied Biosystems, Waltham, MA, USA). The 2−∆∆CT method was utilized to ascertain
the relative expression of the evaluated genes [25].

Table 1. Annealing temperature and primer sequences for the assessed genes.

GenBank
Accession No. Gene Primers Annealing

Temperature Reference

NM_145827.4 NLRP3
Forward: 5′-AGCCTTCCAGGATCCTCTTC-3′

52 ◦C [26]Reverse: 5′-CTTGGGCAGCAGTTTCTTTC-3′

NM_001009935.2 TXNIP
Forward: 5′-GATACCCCAGAAGCTCCTCC-3′

54 ◦C [27]Reverse: 5′-ACCTCAGTGTAAGTGGGTGG-3′

NM_009807.2 Caspase-1 Forward: 5′-TGGCAGGAATTCTGGAGCTT-3′
53 ◦C [28]Reverse: 5′-CTTGAGGGTCCCAGTCAGTC-3′

NM_001289726.2 GAPDH
Forward: 5′-ATGACTCTACCCACGGCAAG-3′

55 ◦C [29]Reverse: 5′-GATCTCGCTCCTGGAAGATG-3′
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2.3.8. Histopathological Study of Brain Tissue Sections in Different Groups

Brain tissue sections were evaluated for the neurons and glial tissue in the cerebral
cortex and for any pathological changes. Neurons were counted in 3 different high-power
fields (hpf) (400×). The severity of microscopic lesions observed were graded based on the
degree and extent of tissue damage using a four-point scale: absent (grade 0), no lesions
detected; minimal (grade 1), lesions involved less than 10% of the tissue section; mild
(grade 2), lesions involved 11–40% of the tissue section and moderate (grade 3), lesions
involved 41–80% of the tissue section, modified from Jokinen et al. [30]. Neuronal tissues
were examined for the following pathological changes: red neurons, perineuronal edema,
inflammatory infiltrate, neuronal pyknosis, necrotic neurons, areas of necrosis and areas of
reactive gliosis.

2.3.9. Immunohistochemical Staining and Determination of Apoptotic Markers
Immunoexpression (Bcl-2 and Bax)

Sections from the selected paraffin blocks were cut into 4 µm thick sections for im-
munohistochemical (IHC) staining. Slides were prepared and incubated with primary
anti-Bcl-2 antibody and anti-Bax antibody were obtained from Abcam (Cambridge, UK).
This was followed by incubation with the appropriate secondary antibody. All slides were
counterstained with hematoxylin for 30 s prior to dehydration and mounting. Neuronal
cytoplasmic/nuclear reaction to antibody was considered positive. Semi-quantitative anal-
ysis of stained tissue sections was performed following the Allred scoring system [31].
Photographing was performed under a light microscope and photographs were later em-
ployed to measure the immunoreactivity to Bax and Bcl-2 using an image analysis system
“ImageJ 1.45F” (National Institute of Health, Bethesda, MD, USA).

2.3.10. Statistical Analysis

The statistical tests were carried out using GraphPad Prism version 7.0.1 (GraphPad
Software, Inc., San Diego, CA, USA). Data were presented as mean ± standard deviations
(SD). One-way ANOVA followed by Tukey’s post hoc test were used to compare means of
different groups. p values less than 0.05 were considered statistically significant.

3. Results and Discussion
3.1. LC-ESI-TOF-MS/MS Analysis of Zygophyllum album

Since Zygophyllum album was reported to be a rich source of miscellaneous active
compounds, aerial parts and roots crude extracts were evaluated with the LC-ESI-TOF-
MS/MS analysis technique (AB SCIEX, Concord, ON, Canada) in order to fully understand
the chemical diversity of its phytoconstituents including flavonoids and other metabolites.
Data are represented in Tables 2 and 3 and the LC-ESI-TOF-MS/MS profile is shown in
(Supplementary Materials Figures S1–S4). Comparing the chromatographic behaviour, m/z
values in the total ion chromatogram (TIC) and base peak chromatogram (BPC) profiles, as
well as the fragmentation pattern, with those described in the literature, allowed for the
possible identification of the individual components. The mass accuracy was calculated
as follows:

[Measured mass-expected mass/expected mass] × 106 and expressed in parts per
million (ppm) error [32].

More precisely, 24 hits were identified in Z. album (Tables 2 and 3, Figure 1) be-
longing to different chemical classes; mainly flavonoids. Thirteen flavonoids have been
detected in both Z. album crude aerial parts and roots extracts among which rutin, quercetin,
kaempferol, isorhamnetin-3-O-glucoside, isorhamnetin and isoquercetin were previously
isolated from the aerial parts crude extract of Z. album [5,6,33]. These compounds are
reported here for the first time in the roots crude extract. The catechin flavonoid was
previously isolated from the roots extract [3] and detected in this study for the first time
in the aerial parts extract. In addition, acacetin, quercitrin, 3, 5, 7-trihydroxy-4′-methoxy
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flavone (Kaempferide) and hesperidin are reported in this investigation for the first time
only in the aerial parts extract.
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Apigenin and 3,3′,4′,5-tetrahydroxy-7-methoxyflavone are reported in this investi-
gation for the first time in both the aerial parts and roots crude extracts. Additionally,
three triterpenes, ursolic acid, oleanolic acid and β-amyrin that have been previously iso-
lated from the aerial parts extract [6] are reported in this study in both the aerial parts
and the roots extract. Moreover, the aerial parts extract exhibited the presence of caffeic
acid, succinic acid, (-)-riboflavin and esculin while β-Sitosterol and choline were shown in
both extracts.

Table 2. Metabolites identified in Zygophyllum album crude extract of both aerial and roots parts
using LC-ESI/TOF/MS/MS (Positive Mode, 5 mM ammonium formate buffer in 1% methanol,
pH 3: Acetonitrile).

No.
Ret.

Time
(min)

Measured
m/z

Calculated
m/z

Mass
Error
(ppm)

Adduct Molecular
Formula

MS/MS
Spectrum Deduced Name Ref. Plant Part

1 26.52 415.3951 415.3940 2.65 [M + H]+ C29H50O 255, 147 β-Sitosterol [34,35] Roots
415.3935 −1.20 Aerial

2 22.88 427.3952 427.3940 2.81 [M + H]+ C30H50O 177, 259, 299 β-amyrin [36] Roots
427.3928 −2.81 Aerial

3 22.58 457.3687 457.3682 1.09 [M + H]+ C30H48O3 203, 161, 95 Ursolic acid [37,38] Roots
457.3674 −1.75 Aerial

4 9.99 287.0562 287.0556 2.09 [M + H]+ C15H10O6 241, 223 Kaempferol [39,40] Roots
287.0543 −4.53 Aerial

5 6.41 611.1993 611.1976 2.78 [M + H]+ C28H34O15 611 Hesperidin [41] Aerial
only

6 6.39 611.1582 611.1612 −4.91 [M + H]+ C27H30O16 303, 609 Rutin [42,43] Roots
611.1588 −3.93 Aerial

7 4.62 291.0857 291.0869 −4.12 [M + H]+ C15H14O6 205, 179 Catechin [44] Roots
291.0863 −2.06 Aerial

8 9.51 303.0520 303.0505 4.95 [M + H]+ C15H9O7 68, 121 Quercetin [45] Roots
303.0491 −4.62 Aerial

9 7.23 449.1064 449.1084 −4.45 [M + H]+ C21H20O11 254, 346 Quercitrin [46] Aerial
only

10 1.19 104.1071 104.1070 0.96 [M + H]+ C5H14NO 104, 60 Choline [47] Roots
104.1066 −3.84 Aerial

11 14.16 285.0762 285.0763 −0.35 [M + H]+ C16H12O5 285, 193, 153 Acacetin [48] Aerial
only

12 14.38 377.1446 377.1461 −3.98 [M + H]+ C17H20N4O6 359, 341 (-)-Riboflavin [49] Aerial
only

13 8.71
317.0657

317.0661
−1.26

[M + H]+ C16H12O7 302, 224

3,3′,4′,5-
tetrahydroxy-7-

methoxy
flavone(Rhamnetin)

[50]
Roots

317.0648 −4.10 Aerial

14 22.53 457.3659 457.3682 −5.03 [M + H]+ C30H48O3 457, 393 Oleanolic acid [51] Roots
457.3674 −1.75 Aerial

15 7.48 317.0647 317.0661 −4.42 [M + H]+ C16H12O7 300, 151 Isorhamnetin [52,53] Roots
317.0643 −5.67 Aerial

16 9.59 301.0701 301.0712 −3.65 [M + H]+ C16H12O6 269, 349

3,5,7-trihydroxy-
4′-methoxyfla-

vone
(Kaempferide)

[54] Aerialonly

Table 3. Metabolites identified in Zygophyllum album crude extract of both aerial and roots parts
using LC-ESI/TOF/MS/MS (Negative Mode, 5 mM ammonium formate buffer in 1% methanol,
pH 8: Acetonitrile).

No.
Ret.

Time
(min)

Measured
m/z

Calculated
m/z

Mass
Error
(ppm)

Adduct Molecular
Formula

MS/MS
Spectrum Deduced Name Ref. Plant Part

1 10.32 269.0439 269.0450 −4.09 [M − H]− C15H10O5 269 Apigenin [43] Roots
269.0459 3.35 Aerial

2 1.33 179.0343 179.0344 −0.56 [M − H]− C9H8O4 180, 161 Caffeic acid [43] Aerial
only
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Table 3. Cont.

No.
Ret.

Time
(min)

Measured
m/z

Calculated
m/z

Mass
Error
(ppm)

Adduct Molecular
Formula

MS/MS
Spectrum Deduced Name Ref. Plant Part

3 7.27 477.1031 477.1033 −0.42 [M − H]− C22H22O12
477, 314,

285, 271, 243
isorhamnetin-3-

O-glucoside [55–57] Roots
477.1032 −0.21 Aerial

4 6.22 463.0879 463.0877 0.43 [M − H]− C21H20O12 343, 303 Isoquercitrin [58] Roots
463.0879 0.43 Aerial

5 7.15 339.0699 339.0716 −5.01 [M − H]− C15H16O9 133, 148 Esculin [59] Aerial
only

6 1.08 117.0192 117.0188 3.42 [M− H]− C4H6O4 99 Succinic acid [60] Aerial
only

7 1.31 137.0242 137.0239 2.19 [M − H]− C7H6O3 75, 93 Salicylic acid [61] Roots
137.0241 1.46 Aerial

8 1.13 267.0734 267.0729 1.87 [M − H]− C10H12N4O5
267, 113, 92,

89, 71, 59 Inosine [62] Roots
267.0716 4.87 Aerial

3.2. The Antiepileptic Effect of Z. album Aerial Parts and Roots Crude Extracts against
Pentylenetetrazole (PTZ)-Induced Kindling in Mice

In the current study, kindling in mice was induced following fifteen PTZ injections,
as shown in Figure 2A. A progressive increase in the seizure scores was observed in PTZ
mice with elevated seizure scores at all injection days and consequently increased AUC
(p < 0.001), as compared to the control group. Treatment with either aerial parts or roots
crude extracts resulted in decreased seizure scores at all injection days, corroborated by
a reduced AUC compared to the PTZ mice (p < 0.001) with the greater reduction in the
AUC being observed in the aerial parts crude extracts (Figure 2B). The final seizure score
in each experimental group was compared. The final seizure score exhibited by PTZ mice
was significantly higher than that exhibited by the control mice (4.63 ± 0.52 versus 0 ± 0,
p < 0.001, Figure 2C). Treatment with aerial parts and roots crude extracts significantly
decreased the final seizure score compared to the PTZ group. Of note, the score recorded in
mice in either treatment group was not significantly different.

Importantly, all experimental mice in the PTZ group (stage 4 and 5 seizures), while
62.5% of mice in root extract group and only 25% of mice in aerial extract group, were fully
kindled. There was no appearance of stage 5 seizures in the treatment groups.

The anti-inflammatory and antioxidant effect of Z. album aerial parts and roots crude
extracts were investigated. Figure 3 reveals that PTZ administration was associated with
significant elevation in the levels of the ROS-generating inflammatory oxidative enzyme,
iNOS, and the lipid peroxidation marker, MDA, as well as a significant reduction in total
antioxidant capacity and the levels of SOD and catalase, as compared with the normal
group (p < 0.001). A significant decline in iNOS and MDA levels, as well as a significant
increase in the total antioxidant capacity and SOD and catalase levels in the brain tissue,
were observed in mice treated with Z. album aerial parts and roots crude extracts relative to
the PTZ control group (p < 0.001). The most significant improvement in such parameters
was exhibited by the group treated with Z. album aerial parts extract (p < 0.001).

NLRP3 inflammasome activation with subsequent caspase-1 cleavage and production
of IL-1β and IL-18 has been reported to play an essential role in inflammatory and neuro-
logical diseases such as epilepsy. TXNIP is an essential intermediate that bridges redox
signals with NLRP3 inflammasome activation [10,63].

As depicted in Figure 4A,E, the PTZ group showed a significantly activated NLRP3
inflammasome pathway, evinced by the 16.65-, 12.77- and 7.62-fold upregulation in NLRP3,
TXNIP and caspase-1 relative gene expression, respectively, as compared to the normal group
(p < 0.001). It was in the same context that IL-1β and IL-18 levels were significantly elevated
following PTZ injection by 2.74- and 2.53-fold, respectively, as compared to the normal
group (p < 0.001). PTZ-induced upregulated expression of NLRP3, TXNIP and caspase-1 and
elevated levels of IL-1β and IL-18 were significantly reduced upon treatment with either
Z. album aerial parts or roots crude extracts, as compared to the PTZ group (p < 0.001),
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pointing to their potential to inhibit NLRP3 inflammasome activation. Importantly, the
inhibitory effect of Z. album aerial parts extract on NLRP3 inflammasome activation has
been shown to be significantly superior to that of the roots crude extract (p < 0.001).

Regarding histopathological examination for brain tissues, the normal group showed
normal histopathological appearance, while the PTZ group showed obvious (grade 3)
lesions involving 80% of the tissue section with many red neurons, perineuronal edema,
gliosis and lymphocytic infiltrate. However, the aerial extract (400 mg/kg) group showed
mild (grade 2) lesions involving 40% of the tissue section with few red neurons. Further-
more, the root extract (400 mg/kg) group showed moderate neuron lesions (grade 3) with
60% of the tissue section being involved (Figure 5).
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Figure 2. Induction of kindling was achieved following fifteen PTZ injections (35 mg/Kg, i.p.,
three times a week for five weeks) with the seizure scores being assessed according to the Fischer
and Kittner scoring scale. The effect of Z. album aerial parts and roots crude extracts on (A) mean
seizure scores over the fifteen PTZ injections, (B) the AUC and (C) the final seizure score of the
experimental mice. PTZ = pentylenetetrazole and AUC = area under the curve. Data are expressed
as mean ± SD. Analysis was performed using one-way ANOVA followed by Tukey’s post hoc test
(n = 8). $ significantly different vs. the normal control group; * significantly different vs. the PTZ
group; a significantly different vs. the aerial extract (400 mg/kg) group. Differences were considered
significant at p < 0.01.
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Of note, Bcl-2 family members act as key regulators in the apoptotic process. The ratio
of the pro-apoptotic Bax to the anti-apoptotic Bcl-2 determines survival or death of a cell
following an apoptotic stimulus. It has been proposed that high Bax and/or low Bcl-2 as
well as a high Bax/Bcl-2 ratio favors apoptosis [64]. As shown in Figure 6, the normal
group showed strong Bcl-2 expression in many neurons, yet weak Bax expression. In the
PTZ group, there is a significant reduction in neuronal Bcl-2 expression and an increase
in Bax expression, pointing to a state of enhanced apoptosis. Such alterations of Bcl-2 and
Bax immunoexpression were significantly reversed in both aerial and root extract groups,
as compared to the PTZ group (p < 0.05). Additionally, Bcl-2 immunoexpression levels
observed in the aerial extract group approached normal values.
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Figure 3. The effect of Z. album aerial parts and roots crude extracts on the levels of (A) iNOS, (B) MDA,
(C) TAC, (D) SOD and (E) catalase. iNOS = inducible nitric oxide synthase; MDA = malondialdehyde
and TAC = total antioxidant capacity. Data are expressed as mean ± SD. Analysis was performed
using one-way ANOVA followed by Tukey’s post hoc test (n = 8). $ significantly different vs. the
normal control group; * significantly different vs. the PTZ group; a significantly different vs. the
aerial extract (400 mg/kg) group. Differences were considered significant at p < 0.01.

Epileptic seizures have been documented to be associated with altered levels of exci-
tatory and inhibitory neurotransmitter levels with neuronal hyper-excitability and dereg-
ulated neural connectivity [10,65]. Various factors such as excitotoxicity, mitochondrial
dysfunction, oxidative stress and neuroinflammation have been reported to be implicated
in epileptogenesis [65].

Given the multi-targeted effects of various natural compounds and their relative clini-
cal safety, a rising interest has been paid to the use of antioxidant and anti-inflammatory
natural products as respectable alternatives to control epileptogenesis and reduce the side ef-
fects of antiepileptic drugs [11]. Here, our aim was to evaluate the potential antiepileptic ef-
fect of Z. album aerial parts and roots crude extracts against PTZ induced kindling in mice.

PTZ, a gamma-aminobutyric acid (GABA) receptor antagonist, has been reported to
induce epileptic seizures through the blockade of GABA receptors, which is a principal
inhibitory neurotransmitter [66]. Chemical kindling can be achieved via repetitive PTZ
injections at a subconvulsive dose (35 mg/kg, i.p.) administered on every alternate day to
reach a total of 14 ± 1 injections [67]. In the same line, current results showed that repetitive
i.p. injection of a subconvulsive dose of PTZ (35 mg/kg) on alternate days provoked
kindling in PTZ-administered mice on the 15th PTZ injection with all experimental mice
in the PTZ group exhibiting stage 4 and 5 seizures. The final seizure score (4.63 ± 0.52)
exhibited by PTZ mice was significantly higher than that exhibited by the control mice
(0 ± 0), p < 0.001. There was a gradual rise in seizure susceptibility during the course
of kindling culminating in generalized tonic–clonic seizures. Furthermore, histological
examination showed that the PTZ group showed obvious (grade 3) lesions involving 80%
of the tissue section with many red neurons and substantial perineuronal edema, gliosis
and lymphocytic infiltrates.
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oligomerization domain-like receptor protein 3; TXNIP = Thioredoxin-interacting protein;
IL-1β = interleukin-1 beta and IL-18 = interleukin-18. Data are expressed as mean ± SD. Analy-
sis was performed using one-way ANOVA followed by Tukey’s post hoc test (n = 8). $ significantly
different vs. the normal control group; * significantly different vs. the PTZ group; a significantly
different vs. the aerial extract (400 mg/kg) group. Differences were considered significant at p < 0.001.
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Figure 5. Histopathological stained brain sections. Normal group showed uniform neuronal tissue 
with many viable uniform neurons (red arrowheads). In the PTZ group, few viable neurons are seen 
(red arrowheads) with many red neurons (black arrows), perineuronal edema (black arrowheads) 
and gliosis (red arrows), as well as many lymphocytic infiltrates (blue arrows) being observed. The 
aerial extract group showed a substantial increase in the number of viable neurons (red arrow-
heads), yet decreased red neurons (black arrows), attenuated perineuronal edema (black arrow-
heads), gliosis (red arrows) and lymphocytic infiltrates (blue arrows). The root extract group 
showed a mild increase in the number of viable neurons (red arrowheads). There are some red neu-
rons (black arrows) and moderate perineuronal edema (black arrowheads), gliosis (red arrows) and 
lymphocytic infiltrates (blue arrows). (H&E, 200×. Scale bar = 50 µm). 
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of the pro-apoptotic Bax to the anti-apoptotic Bcl-2 determines survival or death of a cell 
following an apoptotic stimulus. It has been proposed that high Bax and/or low Bcl-2 as 
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PTZ group, there is a significant reduction in neuronal Bcl-2 expression and an increase 
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Figure 5. Histopathological stained brain sections. Normal group showed uniform neuronal tissue
with many viable uniform neurons (red arrowheads). In the PTZ group, few viable neurons are seen
(red arrowheads) with many red neurons (black arrows), perineuronal edema (black arrowheads)
and gliosis (red arrows), as well as many lymphocytic infiltrates (blue arrows) being observed. The
aerial extract group showed a substantial increase in the number of viable neurons (red arrowheads),
yet decreased red neurons (black arrows), attenuated perineuronal edema (black arrowheads), gliosis
(red arrows) and lymphocytic infiltrates (blue arrows). The root extract group showed a mild increase
in the number of viable neurons (red arrowheads). There are some red neurons (black arrows) and
moderate perineuronal edema (black arrowheads), gliosis (red arrows) and lymphocytic infiltrates
(blue arrows). (H&E, 200×. Scale bar = 50 µm).

Interestingly, treatment with Z. album aerial parts and roots crude extracts significantly
decreased the final seizure score and the percentage of fully kindled mice (25% and 62.5%,
respectively) compared to the PTZ group. No mice recorded stage 5 seizures in either
treatment groups. Such effect was further confirmed with histopathological examination of
brain tissues which revealed that the aerial extract group showed mild (grade 2) lesions
involving 40% of the tissue section with few red neurons, attenuated perineuronal edema,
gliosis and lymphocytic infiltrates. Furthermore, the root extract group showed moderate
neuron lesions (grade 3) with 60% of the tissue section being involved. It is noteworthy
mentioning that the effect of the aerial extract on the final seizure score, as well as on
PTZ-induced histopathological changes, was superior to that of the root extract.

Of note, reactive free-radical generation and oxidative stress can considerably alter
neuronal function and contribute to the progression of epileptogenesis and neuronal
death. Previous studies demonstrated that the PTZ-induced kindling model was associated
with impaired antioxidant mechanisms, with the activities of the antioxidant enzymes
SOD and catalase being declined in the brain of PTZ-kindled mice [65,66]. Impaired
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antioxidant defense has been reported to trigger mitochondrial injury with subsequent
elevated production of reactive oxygen and nitrogen species. As a result, PTZ injection
enhances lipid peroxidation and increases MDA levels, together with elevated NO levels
that could be attributed to iNOS activation with the subsequent peroxynitrite radicals
formation [68]. Similarly, data from this study revealed increased oxidative stress in the
PTZ group as evinced by significantly elevated MDA levels and iNOS activity, parallel to
decreased TAC and SOD and catalase activities, as compared to the normal group.
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Figure 6. The effect of Z. album aerial parts and roots crude extracts on the immunoexpression levels 
of apoptotic markers in the brain tissue of the experimental mice. (A) Bcl-2 expression and (B) Bax 
expression. Positive immunofluorescence cytoplasmic reactions are indicated by black arrows. Bcl-
2 = B cell lymphoma-2 and Bax = Bcl-2 associated x. Data of the percentage of positive stained area 
are expressed as mean ± SD. Analysis was performed using one-way ANOVA followed by Tukey’s 
post hoc test (n = 8). $ significantly different vs. the normal control group and * significantly different 
vs. the PTZ group. Differences were considered significant at p < 0.05. (IHC, 200×. Scale bar = 50 µm). 

Epileptic seizures have been documented to be associated with altered levels of ex-
citatory and inhibitory neurotransmitter levels with neuronal hyper-excitability and de-
regulated neural connectivity [10,65]. Various factors such as excitotoxicity, mitochondrial 
dysfunction, oxidative stress and neuroinflammation have been reported to be implicated 
in epileptogenesis [65]. 

Given the multi-targeted effects of various natural compounds and their relative clin-
ical safety, a rising interest has been paid to the use of antioxidant and anti-inflammatory 

Figure 6. The effect of Z. album aerial parts and roots crude extracts on the immunoexpression
levels of apoptotic markers in the brain tissue of the experimental mice. (A) Bcl-2 expression and
(B) Bax expression. Positive immunofluorescence cytoplasmic reactions are indicated by black arrows.
Bcl-2 = B cell lymphoma-2 and Bax = Bcl-2 associated x. Data of the percentage of positive stained
area are expressed as mean ± SD. Analysis was performed using one-way ANOVA followed by
Tukey’s post hoc test (n = 8). $ significantly different vs. the normal control group and * significantly
different vs. the PTZ group. Differences were considered significant at p < 0.05. (IHC, 200×.
Scale bar = 50 µm).

Z. album aerial parts and roots crude extracts had the ability to reverse oxidative
damage caused by PTZ. Significant decline in iNOS and MDA levels, as well as a significant
increase of the total antioxidant capacity, SOD and catalase levels in the brain tissue, were
observed in mice pre-treated with Z. album aerial parts and roots crude extracts relative
to the untreated mice. Moreover, the group that received the Z. album aerial parts extract
showed the greatest improvement in these parameters. In agreement with these results,
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pretreatment with Z. album lowers MDA and raises catalase and SOD activity, which helps
to mitigate the oxidative stress in mice’s testicular injury caused by methotrexate [6].

A growing body of evidence has shown that inflammatory processes could mediate
neuronal cell death and exacerbate neuronal excitability consequently participating in
the etiology and clinical progression of epileptogenesis [10]. NLRP3, the most classic
inflammasome, is implicated in a wide range of pathologies including epilepsy with
NLRP3 being the sensor protein, ASC being the adaptor protein and caspase-1 being the
effector protein. It is activated by binding of TNF or IL-1β to different types of pattern
recognition receptors (PRRs) including toll-like receptors (TLRs) and nucleotide-binding
oligomerization domain (NOD), leucine-rich repeat (LRR)-containing protein receptors
(NLRs) and cytokine receptors [69]. Such activation leads to enhanced transcription of
NLRP3 and pro-IL-1β, oligomerization and auto-proteolytic maturation of pro-caspase-1
which cleaves pro-IL-1β and pro-IL-18 into their active forms [69]. In the same context,
TXNIP links redox signaling with inflammasome activation as it dissociates from Trx in
a reactive oxygen species (ROS)-sensitive manner and is allowed it to bind NLRP3 with
subsequent inflammasome activation [11,70].

Indeed, activated NLRP3 inflammasome with subsequent endorsed release of inflam-
matory cytokines has been previously reported in the hippocampus with PTZ-induced
kindled mice [10]. Current results were consistent with those of previous findings where
PTZ-kindled mice experienced activated NLRP3 inflammasome and revealed significantly
upregulated gene expression of NLRP3, TXNIP and caspase-1, parallel to elevated IL-1β
and IL-18 levels, as compared to the normal group.

According to previous reports, Z. album extract lowers proinflammatory cytokines
and inflammation [6]. This is consistent with the current findings, which show that, when
compared to the PTZ group, the groups pretreated with either the aerial part or the root
extract of Z. album showed a significant inhibition in the NLRP3 inflammasome pathway
and significantly downregulated NLRP3, TXNIP and caspase-1 expression, along with
reduced levels of IL-1β and IL-18. Indeed, NLRP3 inflammasome inactivation has been
reported to be a potential mechanism of action of various compounds found in Z. album
extract [71–75]. A better outcome has been observed with aerial part extract than the
root extract.

Importantly, oxidative stress and neuroinflammation have been demonstrated to
aggravate apoptosis of neurons in epilepsy [10,65]. Rong et al. [10] have reported a signifi-
cantly decreased Bcl-2/Bax ratio and increased expression of cleaved caspase-3 following
PTZ-induced kindling. Here, the PTZ group showed significantly decreased Bcl-2 im-
munopositivity yet an increased number of Bax positive cells in the hippocampus as
compared to normal group.

Moreover, current results revealed that administering Z. album extract reversed PTZ-
induced altered Bcl-2 and Bax expression, pointing to the fact that the Z. album neuroprotec-
tive effect could be attributed to inhibition of apoptosis with the antiapoptotic effect of the
aerial part being superior to that of the root extract. A similar result by Feriani et al. [76]
showed the antiapoptotic effects of Z. album leaf extract in a rat model of deltamethrin-
induced hepatic fibrosis by virtue of its phytochemical composition.

4. Conclusions

Metabolomic profiling of Z. album extracts exhibited a number of secondary metabo-
lites including flavonoids, triterpenes and phenolic compounds. To the best of our knowl-
edge, this is the first study evaluating the anti-epileptic effect of Z. album aerial parts and
roots crude extracts in a PTZ-induced kindling model. Current findings revealed that Z.
album aerial parts and roots crude extracts attenuated seizure severity score in kindled
mice and improved histological changes in the brain accompanying epileptogenesis. Such
neuroprotective effects could be attributed to decreased oxidative stress as evinced by
reduced iNOS and MDA levels, as well as restored total antioxidant capacity and levels of
antioxidant enzymes (SOD and catalase). Moreover, Z. album aerial parts and roots crude
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extracts inhibited PTZ-induced activation of NLRP3 inflammasome with the expression
of the inflammatory cytokines (IL-1β and IL-18) being decreased. Furthermore, adminis-
tration of Z. album augmented Bcl-2 yet decreased Bax immunoexpression in the kindled
mice brain with subsequent inhibition of apoptosis. Interestingly, the antiepileptic effect
of the Z. album aerial parts extract was superior to that of the roots which was associated
with higher antioxidant, anti-inflammatory and antiapoptotic activity. We hypothesize that
the effects described above are due to the higher amount of polyphenols present in the
aerial parts than in the roots. However, further studies are required to determine whether
this difference is due to different polyphenol content or to compounds present only in the
aerial extract.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo14060316/s1, Figure S1: Aerial parts crude extract: Negative-
MODE–TIC; Figure S2. Aerial parts crude extract: Negative-MODE–BPC; Figure S3. Roots crude
extract: Negative-MODE–TIC; Figure S4. Roots crude extract: Negative-MODE–BPC; Figure S5.
Aerial parts crude extract: Positive-MODE–TIC; Figure S6. Aerial parts crude extract: Positive-
MODE–BPC; Figure S7. Roots crude extract: Positive-MODE–TIC; Figure S8. Roots crude extract:
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