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Abstract: We used classical molecular dynamics simulation to study the ferrite–austenite phase
transformation of iron in the vicinity of a phase boundary to cementite. When heating a ferrite–cementite
bicrystal, we found that the austenitic transformation starts to nucleate at the phase boundary. Due to
the variants nucleated, an extended poly-crystalline microstructure is established in the transformed
phase. When cooling a high-temperature austenite–cementite bicrystal, the martensitic transformation is
induced; the new phase again nucleates at the phase boundary obeying the Kurdjumov–Sachs orientation
relations, resulting in a twinned microstructure.
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1. Introduction

The α–γ phase transition in iron, iron-based alloys, and steels is of considerable technological
importance. However, on an atomistic scale, still many features are poorly understood, such as
the influence of defects—grain and phase boundaries, surfaces, or dislocations—on the transition.
In recent years, molecular dynamics (MD) simulation has contributed to unraveling details of this
transformation [1–6].

In such simulations, it could be shown that—besides external stresses—defects play an important
role in starting the transformation. Often, they serve as nucleation centers where the new phase can
develop; this occurs for instance for free surfaces or grain boundaries [7–10]. This heterogeneous
nucleation pathway is only rarely supplemented by homogeneous nucleation in the new phase [11],
in particular in cases of strong overcooling or -heating, as it may occur in atomistic simulations.

In real materials, carbides may often form and accompany iron-based phases. It therefore appears
relevant to investigate to what extent carbide phases may induce (or inhibit) the phase transformation in
Fe. In this study, we focus on cementite (Fe3C), and study the martensitic and austenitic transformations
of an adjacent iron phase. Since previous studies demonstrated that the phase transformation behavior
of Fe is only little influence by small alloying elements—such as C, Ni, or Cr [12–15]—the restriction to
pure Fe appears justifiable.

Carbides play an important role in the development of modern steels. The microstructure
development of medium-carbon low-alloy steels containing Cr and Mo under ultrafast heat treatment
conditions (rapid heating, peak austenitization followed by quenching) considers the role of
undissolved carbides, such as cementite, which influence the austenite formation. Thus, the role
of the cementite interface on the microstructure formation in quench-partitioning (QP) and also in
ultrafast heating (UFH) steel are under intense discussion [16–25].

Experimental work using TEM and HRTEM microscopy investigated the lamellar structure of
cementite precipitations in ferrite and discussed the orientation relationships between cementite and
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bcc iron in pearlite [26–28]. The most important orientation relationships [29] have been identified as
the Bagaryatsky [30] and the Pitsch–Petch [31,32] orientation relationship.

Besides experiments, computer simulations based on DFT calculations and MD simulations have
been used to study the elastic properties [33–35] and the structure of the interface between cementite
precipitations and bcc iron [36–38].

In this paper, we describe a simulational framework with which to simulate an iron–cementite
bicrystal which is able to undergo both austenitic and martensitic phase transformations. The properties
of the interfaces between cementite and the ferrite and the austenite phase of Fe are discussed.
The phase transformation behavior was studied by a simulated heating and cooling process,
respectively. Our results show to what extent the cementite interface helps to nucleate the new
phase in iron, and what the crystallographic orientation relationships of the new phase are.

2. Simulation Method

The coordinates of the atoms in the orthorhombic cementite unit cell (cf. Figure 1a) are provided
in Refs. [39,40]. We constructed a ferrite–cementite and an austenite–cementite bicrystal, in which
both phases occupy approximately the same space (see Figure 1b). Details of the construction are
described in Section 2.2. By using periodic boundary conditions in all cartesian directions, an effectively
infinite interface was modeled; perpendicular to the interface, the system was actually a multilayer
iron–cementite array. For investigating the austenitic phase transition, the ferrite–cementite system
was heated up to 2000 K with a heating rate of 1 K/ps, while the martensitic phase transformation was
investigated by setting an austenite–cementite system up at 1000 K and cooling it down to 1 K with a
cooling rate of 0.2 K/ps. During these simulations, the temperature was controlled by a Nose–Hoover
thermostat [41,42], while the components of the pressure tensor in all cartesian directions were kept at
zero by a barostat.

All simulations were performed with the open-source LAMMPS code [43]. For the atomistic
analysis, we used the free software tool OVITO [44]. The local crystal structure of the atoms was
monitored using the common neighbor analysis (CNA) [45,46].

a

b

c

(a) (b)

Figure 1. (a) Orthorhombic cementite unit cell (Green: Fe; blue: C). (b) Setup of simulation system for
a ferrite (green)/cementite (red) bicrystal. The interface lies in a x–z plane.

2.1. Interatomic Interaction Potentials

For the Fe–Fe interaction, we used Meyer–Entel interaction [12], which implements the bcc–fcc
transition. To describe the Fe–C interaction, we used the pair potential developed by Johnson et al. [47],
as it was used in previous computational work on cementite [39,40]. As we demonstrated previously,
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the combination of the Meyer–Entel and the Johnson potential allows to model the α–γ phase
transformation in dilute Fe–C alloys satisfactorily [48,49]. The Johnson potential was also used
in combination with several Fe–Fe potentials to describe the elastic properties of α′-martensite
reliably [50,51].

For the C–C interaction, we followed previous work on cementite modeling [39,40] and used the
purely repulsive Born–Meyer potential [52],

ψC−C(r) = A · exp(−r/rs). (1)

We used the parameters A = 764.2 eV and rs = 0.219 Å with a cut-off radius of 1.5 Å as proposed
in [53]; note that this cut-off is substantially smaller than the distance between the nearest-neighbor
carbon atoms, 3.02 Å. Elmer and Levchenko [39,40] justified the use of a purely repulsive C–C potential
by noting that, during the simulation, C atoms will never come closer to each other than the cut-off
radius; we verified that this is the case also in our study.

2.2. Cementite–Fe Interface

In Figure 1b, the sample containing a ferrite/austenite interface is shown. In all simulations,
the interface lies in the x–y plane, such that the z axis is oriented perpendicular to the interface.
For constructing the iron–cementite interface and preparing the simulations, we used the most common
orientation relationships.

Note that we used pure Fe, rather than an Fe–C alloy, both for the ferrite and the austenite model.
Besides the ease of modeling, this is justified by the fact that the motion of C in the Fe matrix will occur
on diffusive time scales that are beyond our MD simulation approach.

For the ferrite–cementite interface, we used the orientation relationship determined by
Bagaryatsky [29,30]:

(001)cem ‖ (112̄)bcc,

[010]cem ‖ [111]bcc, [100]cem ‖ [11̄0]bcc, . (2)

We used as x direction the [010]cem ‖ [111]bcc; as y direction the [100]cem ‖ [11̄0]bcc; and as z
direction the [001]cem ‖ [112̄]bcc direction.

For the austenite–cementite interface, we used the orientation relationship by Pitsch–Petch [27]:

(001)cem ‖ (2̄25)fcc,

[100]cem ‖ [55̄4]fcc , [010]cem ‖ [110]fcc. (3)

We used as x direction the [100]cem ‖ [55̄4]fcc; as y direction the [010]cem ‖ [110]fcc; and as z
direction the [001]cem ‖ [2̄25]fcc direction.

The size of the interface system was governed by the request that the iron and cementite crystallites
must have identical lengths in x and y direction. The bicrystal containing the ferrite–cementite interface
contains 559,008 atoms with extensions of 81 Å × 208 Å × 351 Å in x, y, and z directions. The upper
half of the 351 Å is pure iron and the lower half cementite. The cementite block here contained
307,008 atoms and the iron block 252,000 atoms. For the austenite–cementite interface, we used
377,568 atoms extending over 207 Å× 234 Å× 83 Å. Here, the cementite block contained 207,552 atoms
and the iron block 170,016 atoms.

Before starting the investigation of the phase transformation process, the interface structures need
to be well relaxed. For a good result of the interface structure of the Bagaryatsky, we followed
the method proposed in [38]: First, we applied energy minimization by the conjugate-gradient
method [54] at 0 K. Thereafter, we relaxed and equilibrated the system for 10 ps at a temperature of
10 K. Subsequently, the system was annealed by heating it up to 500 K with a heating rate of 1 K/ps,
equilibrating at 500 K for 100 ps and cooling back to 0 K with a cooling rate of 0.333 K/ps. Then,
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the potential energy was minimized again with the conjugate-gradient algorithm. The transformation
simulations hence start at a temperature of 0 K.

The equilibration of the austenite–cementite interface was more subtle, since the austenite
must be hindered to transform to the lower-energy ferrite phase. After a first conjugate-gradient
energy minimization, we heated the sample up to 1000 K and equilibrated it for 1000 ps. At this
temperature, the cooling process started, which eventually induced the martensitic transformation.
Note that we calculated the interface properties at 400 K, which is still above the martensitic
transformation temperature.

3. Results

3.1. Pure Cementite Properties

We verified that our cementite is thermodynamically stable in the temperature range considered
here; when heating a pure cementite structure up to 2000 K—slightly below its melting temperature of
2110 K—it neither decomposes nor changes its structure, even after holding for 2000 ps.

The lattice constants are tabulated in Table 1 (a). They feature similar values as in experiment [55].
Note that the model by Evteev et al. [40] and Levchenko et al. [39] describes the experimental data better;
they used instead of the Meyer–Entel potential the pair potential by Johnson–Dienes–Damask [47].
Unfortunately, we could not use that model, since it does not implement the bcc–fcc transformation
in Fe.

Table 1. Lattice constants (a) and elastic constants (b) of cementite: present results compared with
literature data.

(a)

Present Results Refs. [39,40] Ref. [55]

a [Å] 4.548 4.523 4.51
b [Å] 4.832 5.089 5.08
c [Å] 6.782 6.743 6.73

(b)

Present Results Ref. [33] Ref. [56] Ref. [57] Ref. [35]

c11 [GPa] 465 375 363 480 322
c22 [GPa] 311 339 406 443 232
c33 [GPa] 353 298 388 480 326
c12 [GPa] 233 161 181 237 137
c13 [GPa] 190 144 130 236 118
c23 [GPa] 180 172 166 188 170
c44 [GPa] 72 13 91 −6 17
c55 [GPa] 74 132 125 149 103
c66 [GPa] 56 30 134 153 64

For the elastic constants, no experimental data appear to be available. We therefore compared our
results to the DFT data by Ghosh [33], Henriksson and Nordlund [56] and Mookherjee [57], as well as
to the MD simulation data by Liyanage et al. [35], obtained using their own MEAM potential. Given
the considerable spread in the literature data, our results are not unreasonable. Our moduli appear
somewhat too stiff, in particular the longitudinal moduli c11, c22 and c33, while the tetragonal and
rhombohedral shear moduli are closer to the average of the literature data. We assume, however,
that these discrepancies will have minor influence on the transformation behavior, since cementite
was modeled to be considerably stiffer than pure Fe; here, it is c11 = 248 GPa, c12 = 128 GPa and
c44 = 115 GPa in bcc Fe for the Meyer–Entel potential.
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3.2. Cementite–Iron Interface

We characterized the interface by the (specific) interface energy, which is calculated as

Eint =
Etot − [Ecem · Ncell + Ecoh · Natom]

2A
. (4)

Here, Etot is the potential energy of the bicrystal, Ecem is the energy of one cementite unit cell,
Ncell is the number of cementite unit cells, Ecoh is the cohesive energy of bcc iron, Natom is the number
of Fe atoms in the bcc Fe phase, and A is the area of the interface plane. The values of Ecoh and Ecem

for the pure materials are Ecoh = 4.27835 (4.23881) eV for bcc (fcc) Fe and Ecem = 59.144 eV.

3.2.1. Cementite–Ferrite Interface

For this interface, we obtained an interface energy of 2.15 J/m2 after the first conjugate-gradient
minimization (cf. Section 2.2). The annealing procedure, followed by the second conjugate-gradient
minimization reduces this value to only 0.6155 J/m2; this shows that a careful anneal is necessary
to produce well equilibrated cementite interfaces. We note that Kim et al. [38] reported a value of
0.6282 J/m2 for this interface, which nicely agrees with ours. The small deviation may be caused by
their using a different interaction potential.

The interface structure is shown in Figure 2. After the first energy-minimization step, a regular
defect structure builds up in the ferrite (Figure 2a). However, after the annealing and second
energy-minimization step, the defect structure has considerably disordered. In addition, a larger
fraction of hcp atoms has been generated. Note that, in the Meyer–Entel potential, the energy difference
between the hcp and fcc phases is small, such that the creation of hcp spots is not energetically
expensive. In the cementite, no defects could be observed; this is plausible since cementite is
considerable stiffer than Fe.

Figure 2c visualizes the interface after the phase transformation. This is now an interface
between cementite and austenite. It is characterized by an array of defect lines running in y direction.
This strongly defective character of the interface is not astonishing, since the phase transformation
changed the lattice matching between the cementite and the iron crystals. The blue stripes in Figure 2c
are stacking faults (SFs) that start at the interface and extend in oblique direction into the Fe crystal
(cf. Figure 6d).

Kim et al. [38] reported about rectangular misfit dislocations in the ferrite–cementite interface.
We show the defect structure on the pure iron side of the interface in Figure 3. In this plot, not only the
cementite, but also all bcc Fe atoms are deleted so that we see only the defect structure in Fe; note that,
in Figure 2b, part of the defect structure is hidden behind bcc atoms, demonstrating that the defect
network extends away from the interface plane into the Fe. Thus, Figure 3 gives evidence of a regular
two-dimensional defect pattern developing at the cementite–ferrite interface.

3.2.2. Cementite–Austenite Interface

The Pitsch–Petch interface, Equation (3), when minimized by conjugate gradients has an energy
of 2.01 J/m2; this value considerably drops after annealing at 1000 K to 0.3892 J/m2 (measured at
400 K, above the martensite start temperature). Note that the interface energy is even smaller than
that of the Bagaryatsky interface described above. Unfortunately, no literature values appear to be
available with which we could compare.

At 400 K, the interface has developed a stripe pattern (Figure 4a). These stripes have their origin
in a faceting of the interface structure which has lost its planar geometry. This is shown in a side view
in Figure 4c, which gives an atomistic view on one period of the stripe structure. In the austenite,
SF planes—and even several-atom-layer thick hcp plates—have been created which extend away from
the interface. In addition, some small nests of locally bcc-ordered atoms are seen close to the interface.
All these features point at a severely defected interface on the Fe side. However, defects can also be
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observed on the cementite side. While the atom rows in the uppermost cementite layers in Figure 4c
show their crystalline order, towards the interface strong local disorder sets in.

(a) (b) (c)

Figure 2. Top view—from the cementite side—of the Bagaryatsky interface: (a) after the first
conjugate-gradient minimization; (b) after the second conjugate-gradient minimization; and (c) after
the phase transition, at 1104 K (cf. Figure 6d). Only the Fe atoms on the iron side of the interface are
shown. They are colored by their local lattice structure as determined by CNA: bcc (green); fcc (dark
blue); hcp (light blue); and unidentified (red).

Figure 3. Perspective view—from the iron side—of the Bagaryatsky interface after the second
conjugate-gradient minimization (cf. Figure 2b). To highlight the defect structure, all bcc and cementite
atoms are deleted. Atoms are colored as in Figure 2.
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(a) (b)

(c)

Figure 4. Top view—from the cementite side—of the Pitsch–Petch interface (a) before (at 400 K) and
(b) after (at 1 K) the martensitic transformation. Only the Fe atoms on the iron side of the interface
are shown. (c) A side view of the interface at 400 K, before the martensitic transformation. The cross
section is located at the green line in (a) and has a width of 7 nm. Atoms are colored as in Figure 2.

Figure 4b shows the state of the interface after completion of the phase transformation. In the
stripes observed in Figure 4a, the fcc phase has survived; from the side view shown in Figure 4c,
these fcc patches are stabilized in the concave parts (“valleys”) of the facetted interface. The hcp phase
that existed in the form of platelets in the austenite, has survived to a lesser degree. In summary,
the Pitsch–Petch interface shows faceting in the austenite phase; after the transformation, these facets
help part of the close-packed phase to survive the transition.

3.3. Phase Transformation

We studied the phase transformation by heating the ferrite–cementite interface up from
0 K, and cooling the austenite–cementite interface down from 1000 K, as described in Section 2.
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The phase transformation can be studied by monitoring the dimensions of the Fe crystal during the
heating/cooling process; here, we used the length of the Fe part in z direction, perpendicular to the
interface plane (see Figure 5). Besides the obvious thermal expansion, we observed a jump in the
crystal extension, which we used to determine the transition temperature. In the case of the austenitic
transformation, the jump is well localized at 665–670 K (Figure 5a). For the martensitic transformation,
the temperature interval during which the transformation happens, is wider, 310–260 K.
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Figure 5. Variation in the length of the simulation volume in z direction (perpendicular to the interface
plane) with temperature for: (a) the austenitic transformation; and (b) the martensitic transformation.

We note that samples of pure Fe, without an interface to pure cementite, do not phase transform,
for the number of atoms used in our simulations [58]. This gives evidence that the transformation is
induced by the presence of the cementite.

3.3.1. Austenitic Transformation

Figure 6 displays snapshots of the austenitic transition process. The initially pure bcc phase
(Figure 6a) starts transforming at 631 K (Figure 6b); the new phase nucleates at the interface—note
that because of the periodic boundary conditions, the Fe is bounded by two interfaces to cementite.
At 671 K (Figure 6c), the close-packed phase has covered the majority of the Fe slab; grain boundaries
have formed where the crystallites meet. At 1104 K (Figure 6d), the entire Fe has transformed.
Note that—due to the almost vanishing free-energy difference between the two close-packed phases,
fcc and hcp, in the Meyer–Entel potential [5,59]—the material actually transforms to hcp. This behavior
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is well known from simulational studies of the austenitic transformation in Fe [8,60,61]. Embedded fcc
planes are SFs in this structure.

(a) (b)

(c) (d)

Figure 6. Cross-sectional views (in the z–y plane) of the transforming system during the austenitic
transformation at: 1 K (a); 631 K (b); 671 K (c); and 1104 K (d). Atoms are colored as in Figure 2;
in particular, the cementite crystallite is red.
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The close-packed grains produced by the transformation are variants obeying the same orientation
relationships with respect to the cementite phase. These are demonstrated in Figure 7. It gives a view
on the (110)bcc ‖ (0001)hcp plane. In this plane, the [11̄0]bcc direction transforms into the [01̄10]hcp
direction by an expansion, and the [001]bcc direction transforms into the [2̄110]hcp direction by a
compression. These operations transform the bcc crystal into an hcp crystal. We also note that every
second (0001)hcp plane is shifted in the [11̄0]bcc direction. This process leads to the stacking sequence
typical of the hcp structure.

This is the orientation relationship developed by Mao et al. [62] and by Wang and Ingalls [63]:

(110)bcc ‖ (0002)hcp,

[001]bcc ‖ [2̄110]hcp, [11̄0]bcc ‖ [01̄10]hcp. (5)

The transition conserves the close-packed planes, but not the close-packed directions in the two
phases. It is the bcc–hcp analog to the Nishiyama–Wassermann pathway [64,65] governing the bcc–fcc
phase transition; in analogy to that transition, the Mao et al. [62] orientation relationships do not allow
establishing a twin structure in the transformed material.

Figure 7. View on the transforming system at a temperature of 671 K, corresponding to Figure 6c.
The view direction is perpendicular on a (110)bcc ‖ (0001)hcp plane. In this plane, the [11̄0]bcc direction
transforms into the [01̄10]hcp direction by an expansion (blue arrows) The [001]bcc direction transforms
into the [2̄110]hcp direction by a compression (red arrows). The black hexagons show the transformation
from the relevant atoms in the bcc crystal into the hcp unit cell. Atoms are colored as in Figure 2.

3.3.2. Martensitic Transformation

Figure 8 displays several snapshots illustrating the martensitic transformation. The initial
structure of the austenite–cementite system—considerably above the martensitic transformation
temperature—is displayed in Figure 8a. Due to the interface, the fcc Fe phase is crossed by hcp planes
which span the entire phase from the top to the bottom interface. After cooling to 328 K (Figure 8b),
the transformation process has barely started. The new phase nucleates at the interface, in the vicinity of
these planar defect structures. Upon further cooling, the nucleated bcc phase spreads through the entire
crystallite (cf. Figure 8c) at 288 K. Since the bcc phase can nucleate in several variants, grain boundaries
develop between them. Upon further cooling, the new phase grows laterally (Figure 8d). Note that
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here, even after complete coolingm some fcc spots survive (Figure 8e), in particular in the vicinity of
the interface.

The transformation can be further discussed by following the transformation in detail; see Figure 9,
which gives a view on the close-packed plane in the original fcc crystallite. The red arrows in Figure 9a
mark the conserved directions in the close-packed plane, i.e., the (110)bcc plane or the (111)fcc plane,
respectively. The fcc crystal has two variants to transform to: the [110]fcc directions transforms into the
[111]bcc direction, and the [1̄10]fcc direction transforms into the [1̄11]bcc direction. This corresponds to
the classical Kurdjumov–Sachs orientation relationship [66]

(111)fcc ‖ (110)bcc, (6)

with the two variants of the direction conservation:

[110]fcc ‖ [111]bcc, (7)

or
[1̄10]fcc ‖ [1̄11]bcc. (8)

After the transition, a twin structure is built between these two variants, as shown in Figure 9b.
The twin boundary is a (1̄12)bcc plane.

(a)

(b) (c)

(d) (e)

Figure 8. Cross-sectional views (in the z–x plane) of the transforming system during the martensitic
transformation at: 400 K (a); 328 K (b); 288 K (c); 208 K (d); and 4 K (e). Atoms are colored as in Figure 2;
in particular, the cementite crystallite is red.
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[-111]

[111] [110] [-110]

(a)

(b)

Figure 9. View on the transforming system at a temperature of: (a) 208 K, corresponding to Figure 8d;
and (b) 4 K, corresponding to Figure 8e. The view direction is perpendicular on a (110)bcc ‖ (111)fcc

plane. Red arrows mark the conserved directions, [110]fcc ‖ [111]bcc and [1̄10]fcc ‖ [111]bcc. After
finishing the transformation, a twin boundary has been formed; red rectangles mark the twin structure
in (b).

4. Conclusions

Using classical MD simulation, we studied how the presence of a cementite phase modifies the
α–γ phase transformation behavior of iron. The Fe interaction is based on the Meyer–Entel potential
which is known to incorporate the transformation in pure Fe. For modeling the C–Fe and the C–C
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interaction, we follow previous work and use a pair-potential approach; this is justified, since C does
not diffuse from its sites in the time scales (ns) used in the simulation. We found that indeed our
cementite model is stable in the temperature range investigated here, and its crystallographic and
elastic properties are appropriately modeled.

The ferrite–cementite phase boundary is modeled according to the Bagaryatsky model;
the interface is planar and the interface energy (0.6282 J/m2) is in good agreement with literature
values. Upon heating, the transformation of the Fe crystal sets in at 665–670 K. Note that, without
a phase boundary, no transformation occurs up to the melting temperature, since defects (surfaces,
grain boundaries, point defects, etc.) are needed for the new phase to nucleate. As the free energy of
the two close-packed Fe phases (fcc and hcp) are nearly identical in the Meyer–Entel potential, and at
high energies the hcp phase is slightly preferred, the resulting phase is mostly hcp. The orientation
relationships at the interface obey the Mao et al. [62] rules. Due to the different variants nucleated at
the interface, the resulting microstructure is characterized by a polycrystalline network, with some
embedded SFs.

We also modeled an austenite–cementite interface based on the Pitsch–Petch model. Since
the fcc phase is not stable at 0 K, the interface properties were determined at 400 K, above the
martensitic transformation temperature. Here, no comparison to literature values is possible; however,
our interface energy of 0.3892 J/m2 is low enough and comparable to that of the ferrite–cementite
interface. Most notably, the interface did not remain planar under high-temperature anneal but
developed a faceted structure; in addition, planar defects (SFs and thin hcp plates) started at the facet
edges and spanned the entire austenite film. The new phase nucleates at the interface, in the vicinity of
these planar defect structures. It obeys the Kurdjumov–Sachs orientation relationships resulting in a
twinned microstructure of the transformed phase.
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