
metals

Review

Additive Manufacturing of Customized Metallic
Orthopedic Implants: Materials, Structures, and
Surface Modifications

Long Bai 1,* , Cheng Gong 1, Xiaohong Chen 1, Yuanxi Sun 1 , Junfang Zhang 1, Lecai Cai 2,
Shengyan Zhu 2 and Sheng Quan Xie 2,3

1 State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China;
gongcheng@cqu.edu.cn (C.G.); chenxh@cqu.edu.cn (X.C.); sunyuanxi@cqu.edu.cn (Y.S.);
20160702032@cqu.edu.cn (J.Z.)

2 Sanjiang Research Institute of Artificial Intelligence and Robotics, Yibin University, Yibin 644000, China;
ybxyclc@163.com (L.C.); lovely_pig0119@163.com (S.Z.); S.Q.Xie@leeds.ac.uk (S.Q.X.)

3 School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
* Correspondence: bailong@cqu.edu.cn

Received: 2 August 2019; Accepted: 9 September 2019; Published: 12 September 2019
����������
�������

Abstract: Metals have been used for orthopedic implants for a long time due to their excellent
mechanical properties. With the rapid development of additive manufacturing (AM) technology,
studying customized implants with complex microstructures for patients has become a trend of
various bone defect repair. A superior customized implant should have good biocompatibility and
mechanical properties matching the defect bone. To meet the performance requirements of implants,
this paper introduces the biomedical metallic materials currently applied to orthopedic implants from
the design to manufacture, elaborates the structure design and surface modification of the orthopedic
implant. By selecting the appropriate implant material and processing method, optimizing the
implant structure and modifying the surface can ensure the performance requirements of the implant.
Finally, this paper discusses the future development trend of the orthopedic implant.

Keywords: orthopedic implant; bone implant; additive manufacturing; biomedical materials; cellular
material; lattice material

1. Introduction

Various bone diseases have increased year by year due to the aging of the population and
accidental damages to the bone. In order to repair bone defects, surgical treatment is used as the most
fundamental treatment where various implants are needed during treatment. Among all implants,
metallic implants are the most general orthopedic implants due to their superior mechanical properties
and are commonly used for joint replacement, spinal fusion, and bone trauma repair, etc. However,
considering the individual differences of patients, the standard type of implant manufactured by
traditional processing methods cannot match the structure, the performance, and the physicochemical
properties of the implant for specific bone defects, which limits the therapeutic effect and the service
life of the implant [1].

In comparison with traditional processing methods, additive manufacturing (AM), a fabrication
technique that manufactures parts in a gradual accumulation, can fabricate complex geometries
with different materials, thereby enabling innovative designs, it also shortens the time of product
development [2,3]. With the rapid development of this advanced manufacturing technology, the
metallic orthopedic implant with complex structures that was impossible to manufacture using
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traditional processing methods can now be easily made. Thereby achieving personalized treatment for
the patient to ensure the implant have better bone repair effect [4].

To achieve compatibility between the metallic orthopedic implant and the surrounding bone
tissue, as well as to improve the bone defect repair effect, the customized implant processed by AM
should meet the following requirements:

(1) Good bio-functionality. Considering the adaptability of the implant to the bone after implantation,
the metal material of the implant should have adequate biocompatibility, which ensures that
no rejection reaction occurs after implantation. Moreover, to further improve the biological
functionality of the implant, surface modification is an effective and common way to enable the
implant with desirable osseointegration properties.

(2) Suitable mechanical properties. In order to avoid the phenomenon of “stress shielding” [5], the
implant requires mechanical properties such as Young’s modulus and strength compatible with
the bone. For solid metals, the mechanical properties are higher than the mechanical parameters
of the bone, resulting in the mismatch in modulus, thereby causing the “stress shielding”, which
can be easily solved by using a porous metal material, the topological configuration and relative
density of which can be adjusted to meet the mechanical and biological functional requirements
of the implant [6–9].

(3) Appropriate morphological structure and structural processability. It is also a requisite that the
shape and outer contour of the implant match the defect portion of the bone [10] to ensure a stable
support function. Moreover, because of the limitations of manufacturing equipment and the
influence of processing parameters, when designing customized metallic implants, the structure
should be modified based on the process to ensure the machinability of the implant.

The customized metallic orthopedic implants processed by AM have drawn increasing attention
owing to the favorable bone repair effect, which has been proved by the clinical applications [11–13].
However, there is not much literature on the summary of customized metallic implants; herein, we
systematically outline the method of obtaining metal implants and elaborate on the structural design
and surface modification of the implant. The paper is divided into five sections: introduction, materials
and process methods, design approaches of implants, the development trend of the metallic implants,
and summary. As shown in Figure 1, the second section of the paper introduces the metal biomaterials
applied to the implant and the manufacturing method. The third section, a description of the implant
design methodology, addresses the implant design flow and highlights the core technology. The core
technology is mainly reflected in the structural topology design and surface modification. The fourth
section discusses the problems with current implants and the further development of the implant.
Finally, the article is summarized. Through the detailed introduction of the implant, the paper can
open new avenues to design implants that better match natural bones.
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2. Additive Manufacturing Metallic Implants

Because additive manufacturing technology can form complex parts with good resolution and
shorten the manufacturing time, it is a suitable manufacturing method for orthopedic implants with
an irregular and complicated structure. To meet the need of the modulus, strength, and fatigue
characteristics of the implant, it can adjust the mechanical properties of the implant by changing
some parameters of the processing. Nowadays, the additive manufacturing technology applied to
the manufacture of metal implants is mainly powder bed fusion (PBF). The process is composed of
layers and filled with powders. As shown in Figure 2. Almost all metal biomaterials can be processed
by PBF as long as they can form powders. However, the size and shape of the powder particles can
directly determine the efficacy of the processing method. Therefore, by selecting the better uniformity
the powder size, the better manufacturing quality can be obtained [14]. Other processing parameters
of the PBF, such as the layer thickness, the molding direction, the sintering energy, the scanning speed,
and path, etc., will also affect the structural quality of the part [15,16]. The researchers have optimized
these process parameters, found it can improve the surface quality and mechanical properties of the
specimen [17], which guarantees the design effectiveness of the implant.
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PBF technology for the implant processing includes the selective laser sintering (SLS), the selective
laser melting (SLM), and the electron beam melting (EBM). As a simple processing method, SLS is free
of the support structure and is adaptive to many kinds of materials. It is widely used in the processing
of polymers [18–20] and metal powders [21]. Nevertheless, SLS is surpassed by SLM from two aspects.
One aspect is the surface quality; the surface quality of SLM is much better than that of SLS. The
other is that SLM can process a wider range of metal materials, such as pure titanium, titanium alloys,
cobalt-chromium alloys, stainless steel, and other metals. Hence, SLM is more widely used in metal
implants [22–24]. Another method used in metal materials processing is EBM [25,26]. It shares the
same molding principle with SLM. But they use different energy sources. All methods above belong to
PBF, which can achieve precision requirements and excellent mechanical properties when fabricating
complex structures. On the other hand, it is time-consuming and expensive. Apart from PBF, laser
engineered net shaping (LENS) can also be used in the processing of metal implants. Bandyopadhyay
et al. used LENS to process a series of metal biomaterials to get several porous implants [27], which
can eliminate “stress shielding” and adapts to bones well. However, its processing accuracy is
lower than that of the powder bed fusion. Thus, PBF is still the best choice for complex-structure
implants fabrication.

Biocompatible Metallic Materials

The material of orthopedic implants is the key to fulfilling its various functional demands. For
hard tissue replacement, it should have high enough Young′s modulus and compressive strength. Thus,
biocompatible metal materials have inherent advantages. Recently, there are many kinds of metals
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that can be used for orthopedic implants. Commonly used metal materials include pure titanium,
titanium alloys, cobalt-chromium alloys, and stainless steel [28]. In addition, expensive metals [29,30]
and degradable metals [31,32] are also suitable. ISO 13782: 1996 formulated the required characteristics
of biomedical metallic materials, including chemical composition, microstructure, and mechanical
properties, which provides the principle for the selection of implant materials.

(1) Common metals

Titanium and titanium alloys have the advantages of no cytotoxicity, excellent mechanical properties,
and biocompatibility. Although they are more expensive than stainless steel and have poorer wear
resistance than cobalt-chromium alloys, they adapt well to a bone when they are implanted into the
human body [33]. Hence, they are preferred as implant metal material. The most commonly used
titanium and titanium alloys are commercial pure titanium and Ti-6Al-4V alloy [34]. These materials
can be used in a variety of implants, including joints, spine, bone traumas, etc. [12,13,35]. The Young′s
modulus of titanium and titanium alloy is around 110 GPa, far exceeding the natural bone with a
modulus of 15–30 GPa [36]. According to Wolff′s functional recovery theorem, the modulus of the
materials affects the response of the bone tissue to the fixed implant [37]. Studies have shown that low
Young′s modulus titanium alloy implants have smaller stress shielding [38]. In the case of using a bone
plate fixed by screws [39], bone atrophy and refracturing due to uneven stress transmission between
the bone plate and the bone cause the bone screw to loosen, which seriously hinders the therapeutic
effect of the implant. Therefore, low modulus titanium alloys (β-titanium alloys, etc.) are considered
to have better biomechanical advantages [40].

The Ni–Ti alloy has pseudoelasticity and shape memory effect, which makes it similar to the
recoverability of the bone [41]. Therefore, Ni–Ti alloy is also a biocompatible metal material [42].
Considering that Nb has excellent corrosion resistance, chemical inertness, and is harmless to the
human body [43], it can be combined with biocompatible Ti to form biocompatible Ti–Nb alloys, for
example, Ti–6Al–7Nb [44]. However, Al, V, and Ni are toxic ions and should not be released inside the
human body. Thus, alloys such as Ti–27.5Nb [45], Ti–42Nb [46], etc., which are biomedical materials
with excellent properties, are used as alternatives to Ti–6Al–4V and Ni–Ti alloys.

The medical cobalt-chromium alloy has good corrosion resistance and excellent mechanical
properties. One of its main medical applications is the Co–Cr–Mo alloy, which has been applied to the
manufacture of dental and artificial joints [47]. It can be manufactured by PBF technology. Hazlehurst
et al. used SLM to fabricate porous Co–Cr–Mo alloy, and studied its quasi-static compression properties.
They found that the porous cobalt-chromium alloy satisfies the mechanical performance requirements
of implants [48].

Biocompatible medical stainless steel has been used in medical implants for a long time, mainly
316L stainless steel (316L SS). Because of its fine mechanical properties and low cost, it is the first
material used for the repair and replacement of hard tissues in the human body, especially in the
acetabular cup, which occupies half of the artificial hip joint product [49]. Jandin et al. successfully
prepared porous stainless steel materials using SLM for the first time [50]. Then, Čapek et al. found
that porous stainless steel using SLM has superior composite performance compared to solid stainless
steel specimens obtained by casting and hot forging [51]. Furthermore, Wehmoller et al. successfully
prepared a series of 316L SS implants using SLM technology [52]. They all confirmed that SLM is a
suitable technology for forming high porosity stainless steel implants.

(2) Expensive metals

In addition to common metals, tantalum has the characteristics of hardness, toughness, chemical
resistance, and good compatibility with human bones [53], and is also a biocompatible material. The
most common application to implants is porous tantalum (also known as Trabecular Metal). The
trabecular metal has an open-cell structure with excellent biocompatibility, high porosity, and a low
modulus of elasticity, which is similar to the trabecular bone. Therefore, it has been clinically applied
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to the orthopedic implant [54]. Figure 3a shows some examples of porous tantalum implant. However,
the molding quality of the porous tantalum implant is greatly affected by the irregular shape of the
powder. To solve this problem, Sungail et al. used the additive manufacturing technology to prepare
porous tantalum of higher surface quality by spheroidizing the tantalum powder [55]. Wauthle et al.
used SLM to manufacture internal interconnected porous tantalum implants [56], whose mechanical
properties were matched with human bones. The results of in vivo implantation experiments showed
that the contact interface between the implant and bone tissue was well combined, which implied
porous tantalum is favorable for bone replacement.

Additionally, some precious metals have a beautiful color, very stable chemical properties, and
excellent biocompatibility. They are widely used in dental implants, such as gold, platinum group
metals (platinum, palladium), and silver and their alloys [30]. In general, precious metal dental
materials often contain a variety of metals, taking into account the cost of the material and the
performance requirements of the implant. As the earliest metal material used in dentistry, gold is
commonly used in the production of dental filling materials, crowns, and dentures. Although it is
expensive, it has admirable performance, including beautiful color, inert chemical property, corrosion
resistance, and excellent biocompatibility. It is commonly used in alloy matrix materials [57], forming
such as Au–Pt–Pd, Au–Pd–Ag, Au–Pd, and Au–Ag–Cu alloys [58].

Due to the high price of gold, gold content is reduced to reduce the cost, but in order to ensure
the corrosion resistance of the implant, the platinum group element palladium is added to increase
the palladium content, and high-palladium alloys such as Pd–Cu–Ga, Pd–Ga, Pd–Ag alloy, etc.
are formed [59,60]. Because of its relatively low price, the expansion coefficient is matched with
ceramics. The resulting ceramic sintered alloy has better performance and is commonly used as a
bridge. However, clinical allergic cases of palladium alloys in recent years indicate that palladium
has potentially toxic effects on humans [61,62], and the specific reasons for palladium allergy need
to further study. Moreover, silver and its alloys are widely used as dentures. Pure silver is soft and
not wear-resistant; its corrosion resistance is not as good as that of the gold alloy. It is easy to change
color and lose color in the oral cavity [63], but it has a low price and good processing and casting
performance. Thus, the silver alloy like Ag–Pd and Ag–Cu–Pd–Au formed by compounding with
other precious metals can be used as crowns, bridges, and inlays, etc. [64].

(3) Degradable metals

The above biomedical metals are all non-degradable. In recent years, degradable metals are also
used to repair bone defects, particularly in the bone scaffold, which can completely regenerate the
defective bone. Among the degradable metals, magnesium metal has attracted much attention, because
magnesium ion is the fourth largest cation in the human body, and it mainly exists in bone tissue and
participates in its metabolism [65,66], which is beneficial to the growth of bone tissue. Researchers have
applied magnesium metal in implants. For example, Chung et al. [67] successfully manufactured a
pure magnesium sample, which has a lower modulus of elasticity and strength, using SLM for the first
time. The sample’s mechanical properties are very close to natural bones. Zhang et al. [31] fabricated
porous magnesium with interconnected pores. Moreover, they found that porous magnesium of
33–54% porosity is comparable to the cortical bone in the modulus, indicating that porous magnesium
has the potential to be the bone scaffold. However, the active chemical nature of magnesium will cause
big problems in medical applications because of hydrogen release during the corrosion process. This
issue can be improved by alloying magnesium with other elements to change its physical and chemical
properties [68–71].

Another shortcoming of magnesium is its rapid degradation. Unlike magnesium, as a degradable
biocompatible metal material, iron has a slower degradation rate [72]. Using the porous structure
with a high surface area can effectively increase the degradation rate of the iron-based alloy [73].
Meanwhile, iron-alloys have better strength and toughness than magnesium alloys and can be applied
to cardiovascular stents and bone stents [74,75].
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Compared to magnesium and iron, zinc has a moderate degradation rate [76]. The latter is also an
essential element in the body so that it can be used to orthopedic implants [77], as shown in Figure 3b.
In contrast, the processing of zinc by SLM is a challenge because of the low melting point and boiling
point, causing the prepared sample is low-density and unstable [32]. By optimizing the powder and
processing technology, the quality of the prototype can be effectively improved, thereby realizing the
preparation of zinc implants with excellent properties [78]. However, pure zinc is difficult to satisfy
the clinical mechanical requirements of bearing bone. Compounding with other elements to form the
zinc-based alloys can guarantee the mechanical properties and degradability [79–81].Metals 2019, 9, 1004 6 of 25 
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With the development of materials science, more composite metal materials have emerged, which
means we have a wide range of available metal implant materials. We can choose biomedical metal
materials according to our goals and their properties. The properties of different biomedical metals
are illustrated in Table 1. For traditional bone implant manufacturing processes, the metal material
selection depends on both performance and cost. Additive manufacturing techniques, however, are no
longer impacted by the choice of materials. They tailor materials according to the specific needs of the
customized implant. There is the clinical application of common metal implants as shown in Figure 4.
Selecting the appropriate metal material according to the bone repair area can integrate the mechanical
properties and biological properties of the implant, which is the trend of implant materials.
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Table 1. The properties of different biomedical metals.

Materials
Mechanical Property

Physicochemical Property Material
Degradability

Main ApplicationYoung Modulus
(GPa) Yield Strength (MPa) Tensile Strength

(MPa)

Pure Ti [34] 105 695 785
Superior biocompatibility, good

corrosion resistance, and relatively
inert

Non-degradable

• Joint replacement
• Bone defect repair
• Spinal fusion
• Bone scaffold

Ti–6Al–4V alloy [34] 110 850–900 960–970
Good biocompatibility, good

corrosion resistance, and relatively
inert

Non-degradable

• Joint replacement
• Bone defect repair
• Bone scaffold

Co–Cr–Mo alloy
[47,82] 230 200–823 430–1028 Little biological toxicity, excellent

corrosion and wear resistance Non-degradable

• Joint replacement
• Dental implant
• Bone scaffold

316L stainless steel
[47,49] 193 290 579

Acceptable biocompatibility and
good corrosion resistance, bio-inert

materials
Non-degradable

• Joint replacement
• Bone defect repair
• Dental implant

Tantalum metal
[54,56] 186 138–345 207–517

Non-toxic, excellent
biocompatibility, relatively inert,

stable characteristic
Non-degradable • Joint replacement

Gold [30,58] 80 25 130
Excellent biocompatibility,

superior corrosion resistance, and
completely unreactive

Non-degradable • Dental implant

Platinum metal
[30,83] 147 150 240

Excellent biocompatibility,
superior corrosion resistance, and

strong chemic inertia
Non-degradable

• Dental implant
• Stent

Palladium metal
[30,84] 112 50 190

Excellent biocompatibility,
superior corrosion resistance, and

strong chemic inertia
Non-degradable • Dental implant

Silver [30,63] 76 28 150
Good biocompatibility, good

corrosion resistance, and relative
chemic inertia

Non-degradable • Dental implant
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Table 1. Cont.

Materials
Mechanical Property

Physicochemical Property Material
Degradability

Main ApplicationYoung Modulus
(GPa) Yield Strength (MPa) Tensile Strength

(MPa)

Magnesium metal
[71,85] 44.2 162 250

Outstanding biocompatibility,
promoting bone tissue

regeneration. Active nature,
corrosive in a weak alkaline

environment, and the corrosion
product is non-toxic

Degradable, fast
degradation rate

• Bone scaffold

Iron metal [73] 200 50 540
Appropriate biocompatibility, less

active properties, and slower
corrosion dissolution

Degradable, slow
degradation rate

• Bone scaffold

Zinc metal [77,86] 96.5 30 37

Good biocompatibility, active
nature, and corrosive dissolved
substances in the body are not

poisonous

Degradable, moderate
degradation rate

• Bone scaffold

Cortical bone [36] 15–30 30–70 70–150 null
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3. Design Customized Implants to Match the Bone

A reasonable customized orthopedic implant should match the bone defect and stimulate bone
tissue regeneration. Generally, the design process of implants is shown in Figure 5 below. The
requirements of the implant and the computed tomography (CT) imaging data, which contains the
outer contour of the defect area [87], should be acquired beforehand. Because the implant structure
directly determines the final performance of the implant, it was first designed by computer-aided
design (CAD). When getting the CAD models, finite element simulation is carried out to check the
structure. The simulation can make some adjustment until the structure satisfies the need. Then,
the implant is manufactured using additive manufacturing. After that, the surface of the implant
is modified to improve the bio-function of the implant. In the end, the performance of the implant
was verified by a series of experiments and fed back into the CAD design. The entire implant design
process contains a lot of content, among which the topology is related to the mechanical properties
of the implant, and the surface treatment affects the biological properties of the implant. Therefore,
numerous researchers focus on these two points, they mainly explored the adaptability of different
porous structures and biofunctionality of surfaces with different treatments.
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3.1. Topology Structure Design

As can be known from Figure 6, the internal structure of the bone is loose and porous. Therefore,
a reasonable implant structure should be porous to promote the transport of nutrients, oxygen, etc.
Moreover, the porous structure has a large specific surface area, which facilitates cell adhesion and
promotes vascularization [88]. For the high elastic modulus of the metal, the porous structure also
reduces its modulus to fit the modulus of the bone. In other words, porous implants are suitable for a
bone defect in morphological and physicochemical properties. As the key parameters of the porous
structure, pore size, pore geometry, and porosity directly affect the regeneration of bone tissue [89],
which are the main research topics of current implant structure.
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On the one hand, the implant should have reasonable pore size. It is generally recommended
that the pore size is greater than 300 µm [90]. However, a large pore size often leads to cell adhesion
difficulty, which goes against bone tissue regeneration and reduces the mechanical properties of the
implant. Studies have shown that the pore size should range from 300 µm to 800 µm to satisfy the
biofunctional requirements of the implants [8].
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Apart from the pore size, the mechanical loading of the bone deeply affects bone regeneration [91].
In practice, the mechanical load of the defective bone is transferred to the bone substitute and the
fixed plate, and the amount of the share depends on the stiffness of the implant [23]. Adjusting the
porosity and microstructure can change the elastic modulus of the implant, which also affects bone
regeneration [92,93]. The common method of changing the porosity is to adjust the thickness of the rod
and the diameter of the rod. In the porous structure, the thick rod leads to a decrease in porosity, and
the relative density of the structure becomes larger. According to the Gibson-Ashby model [94], the
modulus is larger under the same topology, which means higher strength and better carrying capacity.
Moreover, the cross-sectional shape of the rod also affects mechanical properties. Studies have shown
that under the same load, the bone scaffold of the square section rod has a higher bearing capacity than
the circular section [95].

Moreover, during the design process, it is critical to consider the limitations of the processing
system, which often has the minimum processing strut diameter [96], and the error of the additive
manufacturing sample with smaller rod diameter is larger, and the samples with larger rod diameter
have less error [97]. Thus, selecting a rod diameter suitable for AM processing can further ensure
the effectiveness of the design. Generally speaking, porosity correlates with the pore size and the
strut diameter, which can be varied by adjusting either parameter. In contrast, different topology
configurations of the structure are more attractive for the researches. If the internal topology structure
is rationally designed, the implant′s ability to promote bone regeneration can be enhanced.

3.1.1. Lattice Structure Design

The lattice structure is arranged periodically by unit cells and has a high regularity. Furthermore,
the homogenization theory can extend the analysis of unit cells to the performance analysis of the
overall structure. That will greatly improve the accuracy of the structure performance prediction.
Because of the easy manufacturability and the open-pore structure of the lattice structure, it can
realize the porous characteristics of the implant. As a result, many lattice structures have already been
applied to the design of implant structures, and even a design scheme based on the lattice library
has been formed [98,99]. Common lattice structures that are successfully applied in implants include
polyhedral models based on CAD, models based on implicit surfaces, and models based on topological
optimization, etc., as shown in Figure 7.

For lattice structures that are applied to orthopedic implants, many researchers study the
mechanical properties of these different configurations of lattice structures, and the influencing factors
of their mechanical properties on implants are gradually explored. It is recognized that the most
important mechanical properties are the quasi-static mechanical response and fatigue characteristics.
Herein, the review of the lattice structure is classified based on the above classification rules. The
corresponding laws are summarized, thereby guiding the design of new lattice structure implants.

(1) Lattice structure based on the polyhedral structure

The polyhedral lattice structure is based on the geometric polyhedron configuration, which has many
types. Based on the traditional beam element model for theoretical derivation, the relationship between
its structural mechanical properties and dimensional parameters can be established [100–102]. That
makes the prediction of the mechanical properties of the polyhedral structure more accurate, and the
design of the lattice structure is less difficult. Therefore, the polyhedral lattice structure becomes the
most widely used structure in the implant. Rodríguez-Montaño et al. [95] designed four kinds of lattice
structures, namely the truncated cuboctahedron, the truncated cube, the rhombic dodecahedron, and
the diamond. The cross section of the rods in these lattices structures is all circular. Additionally, the
mechanical properties of the different structures are discussed, finding that the hexahedron structure is
most favorable the formation of bone, which offers a better choice of the implant structure.

Furthermore, Ahmadi et al. [7] studied the differences in mechanical properties caused by the
shape configuration of beam elements on a larger scale, and established six lattice structures of the
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cubic, the diamond, the truncated cube, the truncated cuboctahedron, the rhombic dodecahedron,
and the rhombicuboctahedron, the rods of which are all square. And the possibility of these lattice
structures as implant structures was fully verified via extensive experimental data. Moreover, Wang
et al. [103] successfully applied the tetrahedral lattice structure to the implant. Other researchers
have also studied the polyhedral lattice structures [6,104,105], which further broaden the choice of
implant structure.

Among them, the diamond structure is similar to the cancellous bone in that the close angle
between inter-rod angle and the inter-trabecular angle [106]; thus, it has inherent advantages of similar
microstructures. Jett et al. applied the diamond lattice structure to the filling of the femoral stem [107],
which realized better mechanical properties that match with the bone. Because the transition of the
diamond structure joint influences the permeability and mechanical properties of the structure, the
surface stress concentration can be reduced by smoothing the surface, thereby generating the optimized
diamond lattice structure [108]. Experiments show that the structure has better mechanical properties
and can meet the mechanical performance requirements of the implant.

(2) Lattice structure based on the implicit function surface

This kind of lattice structure is usually designed by the triply periodic minimal surfaces (TPMS), which
have many advantages such as unique topological shape, smooth surface, high specific surface area,
low stiffness and high strength of the structure, high permeability, and is similar to the microstructure
of the trabecular bone. Thus, it is introduced as an attractive candidate for the topology configuration
of orthopedic implants [109–111]. Yoo et al. [112] successfully filled minimal surface structures into
clinical implants, but it was limited to structural design, without further exploration of its biological
functionality. Bobbert et al. [8] used the K3D surf and CAD modeling software to establish four
minimum surface lattice structures; namely, the Schwartz primitive, the I-WP, the Schoen′s gyroid,
and the Schwartz diamond. The mechanical properties and permeability of the SLM manufactured
corresponding samples were verified, and the results indicate that the minimal surface structure has a
good application prospect in the orthopedic implant structure.

Moreover, Al-Ketan et al. [113] used Boolean operations to transform the minimal surface into
two types of structures, the solid structure and the sheet structure, which is expounded in detail in the
literature [114]. These works extend the minimal surface structure from modeling. The 64% porosity
Ti–6Al–4V primitive lattice structures manufactured by SLM has similar mechanical properties to the
cortical bone [110]. Other related researches have focused on exploring the mechanical response of the
minimal structure with different porosity, especially for gyroid surfaces [110,111,115].

(3) Lattice structure based on topology optimization design

Topology optimization has been used as a common method for designing a structure and has achieved
abundant achievements in other fields [116–118]. This method can also obtain the microstructure that
matches the implant structure well. For example, the bidirectional evolutionary structural optimization
(BESO) method, proposed by Xie [119], is a very effective continuous structure optimization method
that can control the total volume by reducing or increasing the material in the optimization process
via iteration. Using this method, based on volume constraints and modulus requirements, they
obtained better bone morphology bionic microstructure [120]. Moreover, another optimization method,
multi-phase topology optimization (MPTO), proposed by Burblies to achieve the minimum structural
strain energy, the optimized structure based on which also has favorable structural characteristics [121].
These topologically optimized structures all have smooth surfaces and high strength, and they are very
similar to natural bone structure, which has great potential to realize the implant structures.



Metals 2019, 9, 1004 12 of 26

Metals 2019, 9, 1004 11 of 25 

 

Topology optimization has been used as a common method for designing a structure and has 
achieved abundant achievements in other fields [116–118]. This method can also obtain the 
microstructure that matches the implant structure well. For example, the bidirectional evolutionary 
structural optimization (BESO) method, proposed by Xie [119], is a very effective continuous 
structure optimization method that can control the total volume by reducing or increasing the 
material in the optimization process via iteration. Using this method, based on volume constraints 
and modulus requirements, they obtained better bone morphology bionic microstructure [120]. 
Moreover, another optimization method, multi-phase topology optimization (MPTO), proposed by 
Burblies to achieve the minimum structural strain energy, the optimized structure based on which 
also has favorable structural characteristics [121]. These topologically optimized structures all have 
smooth surfaces and high strength, and they are very similar to natural bone structure, which has 
great potential to realize the implant structures. 

 

Figure 7. Common lattice structure design: (a) Polyhedral model (circular), reproduced from [95], 
with copyright permission from Elsevier, 2018, from left to right: Truncated cuboctahedron, 
Truncated cube, Rhombic dodecahedron, and Diamond; (b) polyhedral model (square), reproduced 
from [7], with copyright permission from authors, 2015, according to the serial number: Cubic, 
Diamond, Truncated cube, Truncated cuboctahedron, Rhombic dodecahedron, and 
Rhombicuboctahedron; (c) topology configuration based on BESO, reproduced from [120], with 
copyright permission from Elsevier, 2011, the topological unit cell and the overall structure obtained 
according to the volume fraction is 40%, 30%, 20%, 10% in order; (d) common four triply periodic 
minimal surfaces (TPMS) structures, reproduced from [8], with copyright permission from Elsevier, 
2017, Prime, I-WP, Gyroid, and Diamond in order; (e). Three-dimensional porous structure based on 
the multi-phase topology optimization (MPTO) method reproduced from [121], with copyright 
permission from AIP Publishing, 2008, unit cell and overall structure. 

3.1.2. Gradient Structure Design 

The internal structure of human bones is complex, and the bone structure varies in different 
regions. Although the periodic lattice material can be adopted as the implant structure due to its 
porous characteristics, the structural topography only has one single structure, which is quite 
different from the actual topological morphology of the bone. Using these lattice structures as 
long-term implants will probably cause inflammation, rejection, and other reactions of surrounding 
tissues. Recently, functionally graded materials (FGM) gradually become the focus of the implant 
structure research, which can provide a new approach for the implant structure design, as it has 
excellent performance, adaptive variable porosity, and many other advantages. This way, an 
implant with a porous gradient structure to replicate the natural characteristics of the bone can be 
designed [122], which will greatly enhance the compatibility of the implant with bone tissue. 

Currently, structural gradient design strategies mainly include: 

Figure 7. Common lattice structure design: (a) Polyhedral model (circular), reproduced from [95],
with copyright permission from Elsevier, 2018, from left to right: Truncated cuboctahedron, Truncated
cube, Rhombic dodecahedron, and Diamond; (b) polyhedral model (square), reproduced from [7], with
copyright permission from authors, 2015, according to the serial number: Cubic, Diamond, Truncated
cube, Truncated cuboctahedron, Rhombic dodecahedron, and Rhombicuboctahedron; (c) topology
configuration based on BESO, reproduced from [120], with copyright permission from Elsevier, 2011,
the topological unit cell and the overall structure obtained according to the volume fraction is 40%, 30%,
20%, 10% in order; (d) common four triply periodic minimal surfaces (TPMS) structures, reproduced
from [8], with copyright permission from Elsevier, 2017, Prime, I-WP, Gyroid, and Diamond in order;
(e). Three-dimensional porous structure based on the multi-phase topology optimization (MPTO)
method reproduced from [121], with copyright permission from AIP Publishing, 2008, unit cell and
overall structure.

3.1.2. Gradient Structure Design

The internal structure of human bones is complex, and the bone structure varies in different
regions. Although the periodic lattice material can be adopted as the implant structure due to its porous
characteristics, the structural topography only has one single structure, which is quite different from
the actual topological morphology of the bone. Using these lattice structures as long-term implants
will probably cause inflammation, rejection, and other reactions of surrounding tissues. Recently,
functionally graded materials (FGM) gradually become the focus of the implant structure research,
which can provide a new approach for the implant structure design, as it has excellent performance,
adaptive variable porosity, and many other advantages. This way, an implant with a porous gradient
structure to replicate the natural characteristics of the bone can be designed [122], which will greatly
enhance the compatibility of the implant with bone tissue.

Currently, structural gradient design strategies mainly include:

(1) Unit cell changes in rod diameter [123]. For a polyhedral structure, it can be viewed as a myriad
of rods connecting each other. Thus, altering the rod diameter can achieve a density gradient
of the overall structure. When modeling, the structure is sliced into multiple layers. The rod
diameters of each layer vary, thereby changing the overall density of the lattice structure.

(2) Unit cell changes in size [124]. The implant is composed of a plurality of unit cells. By adjusting
the cell size in different regions, the gradient of the implant structure can be realized while the
rod diameter and the pore diameter are ensured.

(3) Unit cell changes in type [125]. Due to the change of bone structure, the unit cells in different
regions will theoretically have certain variability. The implants containing multiple isomers can
realize the gradient of the structure via different unit cells.
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(4) Material composition changes [126]. The change of the material composition can also achieve the
structural gradient. The most common method is to change the content of the other materials
within one matrix material to realize the functional gradient of the structure.

Figure 8 shows some examples of the different types of gradient structures.
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reproduced from [123], with copyright permission from Elsevier, 2017; (b) gradient structure formed by
unit cell size change, reproduced from [124], with copyright permission from Elsevier, 2018; (c) gradient
structure formed by three different unit cell structures: 1. two types of composition unit cell; 2. top
view of the overall structure; 3 overall three-dimensional structure schematic, reproduced from [125],
with copyright permission from John Wiley and Sons, 2015. (d) The gradient structure of the rotator
cuff formed by different material components, reproduced from [126], with copyright permission from
Elsevier, 2008.

A series of gradient implant structures can be obtained by applying the common gradient lattice
structure, such as the polyhedral gradient structures and the gradient minimal surface structures.
The polyhedral structure has a simple topology, and its gradient strategy is easier than the surface
structure. Therefore, a relatively large number of gradient structures are formed, including the gradient
cubic lattice, the gradient honeycomb structure, the gradient body-centered cubic (BCC) lattice, and
the gradient diamond lattice. For example, Choy et al. [123] proposed two cubic and honeycomb
gradient lattice structures by using the rod diameter variation strategy. Onal et al. [9] designed two
BCC structures with density gradient changes by varying the rod diameter; the structures are beneficial
to cell diffusion and proliferation and can maximize the mechanical and biological properties of the
implant. Moreover, for the diamond lattice structure, Dumas et al. [127] successfully applied its gradient
structure to a partially porous femoral stem. Experiments showed the graded diamond structures are
suitable for biomedical application. However, this work only considers the mechanical properties of
the implant. Furthermore, Zhang et al. [128,129] explored a more complex diamond lattice gradient
strategy, achieving a gradient structure implant with rational permeability and mechanical properties.

To design the gradient triply periodic minimal surfaces structure, Maskery et al. [130] used two
strategies, changing the rod diameter and hybridizing different unit cell types, which create a gradient
of minimal surface structure. Similarly, Vijayavenkataraman et al. [131] applied gradient strategies
(changing rod diameter, cell size, and unit cell type) to three TPMSs (P, G, and D surface) to achieve
the design of the biomimetic implants, which are satisfied with multiple requirements like porosity,
modulus and pore size etc. In addition, other researchers have established gradient minimal surface
structures for implants [124,132–134]. However, the gradient direction of all the above implants is
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consistent with the loading direction, which is the longitudinal direction. For the real bone structure,
it also has a large change in the radial direction. Therefore, from the perspective of bone bionics,
designing the radial gradient structure is another approach. Afshar et al. [135] studied the compression
characteristics of several radial gradient minimal surface structures (I-WP, P, and D) using experiments
and finite element simulations. Furthermore, Feng et al. [136] used solid T-splines to achieve a more
complex gradient design, which effectively confirms the advantages of gradient minimal surface
structure in the implants.

The above strategy will make modeling very cumbersome, especially when implementing
large-scale structural gradients. Thus, Sudarmadji et al. [137] designed a new polyhedral lattice via
combining different polyhedral to realize the stiffness combinations, which makes the structure match
with the bone. This design method does not require the operator skilled in using CAD modeling
software, and it can reduce the design difficulty and improve design efficiency. Moreover, the poor
interface between the different unit cell configurations is still to be solved. Based on the structural
gradient design via changes in material compositions, Torres et al. [138] used NaCl as a support
structure to mix with the titanium powder. When the NaCl was dissolved in water, the porous titanium
structure can be formed. The change in the structural porosity of this lattice structure can be easily
modified by adjusting the NaCl content, which provides a new approach for the implant gradient
structure design. All implant structure design methods are shown in Table 2.

Table 2. Summary of implant structure design.

Structure Types Structure Characteristics Materials/Methods Process Attributes

Lattice structure
Polyhedron Based on polyhedral geometry,

CAD modeling, simple
structure, and predictable
mechanical properties, most
widely used.

Ti-6Al-7Nb/SLM [44]
Ti-6Al-4V/SLM
[103,104,107,108] 316L
SS/SLM [100]

High resolution; good
implant porosity; high
strength, low ductility;
good osteointegration.

Minimal surface Based on implicit function,
complex structure, high
specific surface area, and high
permeability, similar to
trabecular bone.

Ti-6Al-4V/SLM
[109,115]
Ti-6Al-4V/EBM [110]
Pure Ti/SLM [111]
Ti-6Al-4V/SLS [114]

Fine molding quality; high
porosity; good
biocompatibility; excellent
mechanical properties.

Topology
optimization

design

Based on boundary conditions
and optimization algorithms,
smooth surface, and high
strength, similar to natural
bone structure.

Ti-6Al-4V/SLM [116]
Pure Ti/SLM [121]

Fine molding quality;
lightweight design; stable
structure.

Gradient structure

Vary in rod
diameter

Varied the rod diameter, the
transition of the longitudinal
gradient is smooth, but the
radial transition is abrupt.
Relative density varies widely.

Ti-6Al-4V/SLM
[127–129]

Obvious anisotropy;
excellent energy
absorption; appropriate
modulus; good
permeability.

Vary in cell size Varied in cell size;
non-stationary transitions
between different layers.

Ti-6Al-4V/EBM [123]
Ti-6Al-4V/SLM [124]

Fine molding quality;
appropriate modulus; high
energy absorption.

Vary in cell types
[130,131,137]

Varied in unit cell type,
different areas have different
topologies; non-stationary
transitions between different
layers.

Ti-6Al-4V/EBM [125] High energy absorption;
appropriate modulus;
biomimetic bone structure.

Vary in materials
components

[126,138]

Varied material components,
different areas only show
material changes, relatively
stable structure, and
significant compatibility
between different layers.

PA 11/SLS [126] Biomimetic graded
porosity; appropriate
modulus; stable
microstructure.

3.2. Surface Modification

The surface quality of the implant directly affects its biological performance, such as the
biocompatibility and the osteogenesis of the implant [139]. Thus, it is necessary to modify the
surface to enhance the biological function of the implant. In recent years, many surface modification
methods are used to accelerate and enhance bone regeneration further. These mainly include:
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(1) Chemically roughening the surface

Chemical modification of the implant surface to obtain a rough surface can effectively improve
the biological function of the implant. It expands the contact area with the surrounding bone tissue
and facilitates the attachment of bone cells, which is conducive to the formation of the mechanical
interlocking fixation.

Heinl et al. [140] used HCl and NaOH to modify on the surface of porous titanium alloy (Ti–6Al–4V)
implants, which induced the formation of the surface apatite and promoted the osteogenesis of the
implant. This implant can better fit the bone tissue, thereby improving the stability of the implant
for long-term use. Korobkova et al. [141] performed an alkali-heat treatment on the surface of a
superelastic titanium alloy (Ti–22Nb–6Zr) to enable the surface to form a hydroxyapatite structure of a
bone-like structure. More modifications are discussed in the literature [142], i.e., acid-alkali (AcAl),
alkali-acid-heat (AlAcH), and anodizing-heat (AnH). Through the apatite-forming ability test, the
cell experiments, and the animal experiments, the biological functions such as osteogenic ability, cell
proliferation, and differentiation characteristics were systematically evaluated. Structural biological
functions obtained by different surface modifications were found different. Bio-characteristics will not
reach as expected when osteogenic capacity is enhanced, indicating that the ability to individually
verify bone formation is not very accurate for the overall biofunctional assessment of the implant.
Other chemical modifications such as hydrogen peroxide treatment, electrochemical reaction, and
hydrothermal treatments, etc. improve the biocompatibility of the implant as well [143–145].

(2) Directly filling the coating

The surface of the implant can be coated with a bioactive material to facilitate bone tissue regeneration.
As mentioned above, the surface is roughened by chemical surface modification, which is beneficial
to the formation of the hydroxyapatite structure of a bone-like structure, thereby improving the
osteogenesis ability of the implant. The same mechanism, the hydroxyapatite coating, directly modified
the surface of the metal implant by plasma spraying method [146]. It can improve the biological
function of the implant and promote the anchoring and healing performance of the bone tissue.

In addition to the surface-coated hydroxyapatite, bioactive materials coatings are also a replaceable
choice. Stuebinger et al. [147] used the phosphoryl serine tethered dendrons as the surface coating for
the implants. Animal experiments showed that the surface modification could promote osseointegration
of the implant and increase the stability of the implant. Douglas et al. [148] coated pectin on the
surface of titanium alloy bone scaffolds to promote the differentiation of bone marrow mesenchymal
stem cells, thereby facilitating the cell growth and increasing the formation of hydroxyapatite, which
can effectively reduce the local inflammation caused by the surface microbial growth. Moreover,
studies have shown that 45S5 bioglass can also be used for bio-coating [149]. Meanwhile, using
polycrystalline diamond as a coating on the surface of the implant is also an efficient method to improve
the biocompatibility of the implant. Rifai et al. [150] first applied chemical vapor deposition to apply
the crystal diamond coating into the titanium alloy, which enriched the Ti–6Al–4V SLM biomedical
implants application.

(3) Using mechanical methods

Metal implants manufactured by additive manufacturing, especially those obtained by the powder
bed processing, have low surface quality and large surface porosity due to surface powder residue,
which is not conducive to cell adhesion. What is worse, after the implantation, the powder shedding
will adversely affect the human body. Therefore, it is necessary to ensure the surface quality of the
implant by dealing with the surface powder remaining after processing [24].

Using mechanical methods like shot peening, ultrasonic, etc. can improve the surface quality of the
implant. For example, Zebrowski et al. [151] used the shot peening method to modify the surface of the
implant and explored the modification effect of different shots under different working pressures. The
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experimental results show that the appropriate process conditions can improve the surface quality of the
implant and improve its microhardness and corrosion resistance. Furthermore, Bagherifard et al. [152]
carried out surface characterization experiments, cell experiments and antibacterial experiments to
systematically evaluate the effect of shot peening on the surface of implants from the characteristics
of mechanical properties, cell function, and surface antibacterial properties. It has been found that
blasting the implant surface promotes osseointegration, reducing the risk of bacterial infection and
the resulting surgical complications. Moreover, as a novel surface modification technique, ultrasonic
nano-crystal surface modification (UNSM) is safe, simple, and effective. It can improve the surface
quality and decrease surface porosity without contact [153]. Hou et al. [154] applied UNSM to the
surface modification of the implant and found that UNSM can improve the mechanical properties
of the implant without affecting its biological function, which indicates the UNSM has a promising
application on the implant.

Apart from the above methods, from the perspective of structural design, designing the surface
microstructure for surface modification can enhance the bio-functionality of the implant surface.
The microtopology designed on the surface of the implant can effectively reduce the adhesion of
macrophages and fibroblasts, thus avoiding the inflammatory reaction when placed the implant into
the human body [155]. Han et al. [156] studied the anti-cell adhesion properties of several different
micro topologies. It was found that surface nanotexture technology improved the anti-cell viscosity of
the implant surface and provided a new design for the surface modification of implants. Moreover,
based on the mesoscale topological design, Weißmann et al. [157] proposed an open-cell structure on
the surface of the acetabular cup. Pull-out and lever-out tests results showed that the surface-modified
implant has better stability, which reveals that proper surface topology helps to improve the stability
of the implant.

4. Discussion and Future Development of AM Metallic Implants

4.1. Discussion

The metallic additive manufacturing technology has developed rapidly. It is possible to obtain an
implant whose outer contour is well matched to the bone defect region, and the implant can have the
desired mechanical properties and physicochemical properties by adjusting the processing parameters
during the manufacturing process. However, a series of problems, such as manufacturing time, cost,
and precision, still need to be solved. For example, the minimum rod diameter the SLM can provide is
around 0.2 mm. This diameter compared with the actual internal fine structure of the human skeleton
makes it quite difficult to restore a fractured bone using SLM. Moreover, various processing parameters,
such as the scanning speed, the sintering energy density, etc., directly affect the final manufacturing
effect. However, numerous processing research is still stuck in the study of the prototype. For a
structurally variable implant, there is still not much attention. Therefore, it is necessary to explore the
impact of processing methods on implants further and ensure the performance of the implant from a
manufacturing perspective.

Using AM to process precious metals can effectively reduce errors, shorten preparation time,
achieve the personalized design of products, and avoid manual errors. However, the current dental
noble metal alloys processing in clinical application is mainly by casting. For new noble metal alloys,
the casting precision cannot be promised, and the subsequent processing difficulty is increased, but the
AM can effectively solve these problems. Nowadays, the processing of gold alloys, platinum alloys,
and silver by AM has been realized in jewelry. Although there is no report on the AM of precious
metal alloys in medicine, jewelry processing can be used for reference. Thus, the AM of noble metal
alloys should be studied. Not only the preparation of various new precious metal alloy powders is
required, but it is also critical to explore the process of the AM.

Moreover, applying various implant design methodologies to clinical application is still a
challenge. In the past few decades, based on the defect bone anatomy data obtained by micro
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computed tomography (Micro-CT) or magnetic resonance imaging (MRI) technology, the porous
structure designed to match the bone, especially the porous metal structure, has been successfully
filled into the implant. Although good bone repair effect has been achieved, the complex internal
tissue environment is often neglected in the theoretical design. As a result, the designed implant
will encounter various uncertain factors during the operation. Additionally, additive manufacturing
technology has not appeared for a long time, and the application of the design and fabrication of the
implant is time-sensitive. There is a lack of long-term disease observation data to confirm the favorable
therapeutic effect of the additive manufacturing of a metal implant. More practical clinical applications
are needed to demonstrate the safety and clinical effect of metal implants.

4.2. Future Development

The implant undergoes a transition from a solid structure to a porous structure, and the porous
implant also evolves from a periodic lattice structure to a biomimetic gradient structure. For bionic
implants, the researchers carried out works in the aspects of material selection, structural design, and
surface modification to restore the characteristics of natural bones, and obtained a series of biomimetic
implants that meet the performance requirements of implants. However, limited by biomaterials,
manufacturing factors, and structural characteristics, the performance of metal implants is still lacking.
There is still a gap between the ideal implant and the current implant. Herein, we further discuss and
conclude the development of metal implants in the future.

(1) New metallic biomaterials can improve the implant performance

In terms of material selection, bio-metal materials generally satisfy the biocompatibility of implants.
Novel metal materials such as porous tantalum, shape memory alloys, and degradable metals are
more similar to bones and are better implant materials. Among them, to make the implant have
better toughness, the Ni-Ti alloy can be used; however, the Ni ion contained therein may cause toxic
effects on cells. Thus, referring to the idea of alloying to produce alloys, the powder bed processing
technology is used to sinter the powders mixtures of different metals and obtain new implant materials,
thereby eliminating the negative effects of toxic ions. Furthermore, to achieve the degradability of
the implant, combining bioactive degradable metals (magnesium, zinc, etc.) with other metals with
superior mechanical properties may bring more surprises.

Furthermore, with the help of PBF technology, it is possible to combine noble metals with other
elements, which can improve the physicochemical property of noble alloys. For instance, adding some
zinc powder to the gold powder when sintering can promise the machinability, which makes it possible
to fabricate more superior samples. Mixing the iron to noble metals will contribute to the satisfactory
mechanical properties, like the hardness and yield strength. Even some high-melting metals (iridium
and rhodium) melt into gold to refine their microscopic crystals, which may form the alloy that has
better adhesion with ceramics.

(2) Biomimetic gradient structure can restore the characteristics of natural bone

In terms of structural design, existing biomimetic implants achieve gradient changes in porosity and
structural topology, but the internal structure of the bone is extremely complex, and the important
porosity change law cannot be well restored. Moreover, the existing gradient structure cannot solve
the problem of contact weakening between different layers. Therefore, we can select representative
long bones, study the characteristics of natural bones, and then use the new modeling algorithm to
design the biomimetic implant structure, which can better follow the changes in the porosity and
topology of natural bone. Meanwhile, to realize the stable connection of different layers of the gradient
structure, some connection strategies need to be studied. For example, the intermediate transition
layer or the deformed existing structure topology can be established to accommodate the deviations of
different layers.
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(3) The surface modification further enhances the biocompatibility of the implant

In terms of surface modification, different surface modification methods can form microstructures
on the surface of the implant to promote bone cell growth or hydroxyapatite formation, but existing
surface modification methods have little effect on the internal structure of the implant, and problems
such as toxic ion release and bacterial infection cannot be properly solved. Therefore, novel surface
modification techniques may be studied, for example, coating the surface of the implant with a new
material (bioactive material encapsulating antibacterial particles). Additionally, further research on the
antibacterial properties of the implant is needed to create an implant surface with biofunctionality
and immunity.

5. Conclusions

Additive manufacturing technology provides the possibility for customized implants with complex
structures to achieve personalized treatment of patients. This paper outlines the design and preparation
process of metal implants, details the design method of implants, provides a broad examination of
existing metal orthopedic implant, and describes further development trends in the future. In particular,
the PBF technology enables the metal to be processed into a complicated structure, which enriches
more degrees of freedom for designing a metal implant, thereby providing excellent properties for
hard tissue replacement. Moreover, as the key technologies of the customized implant, the structural
bionics and surface bio-functionalization will need to be further studied in the future. As a result, the
clinical application of customized implants will be more extensive.
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