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Abstract: This study compared the mechanical properties of the NAB (Ni-Al-bronze) material
fabricated using wire arc additive manufacturing (WAAM) technology with those of the cast NAB.
Using a CMT (cold metal transfer) welding process, this study analyzed the bead shape for six welding
conditions, determined an appropriate bead shape, and fabricated a square bulk NAB material using
the bead shape. For a mechanical properties comparison, the study obtained two test specimens per
welding direction from the fabricated bulk NAB material, and compared those with the cast NAB
materials. In the tensile test, the deposited NAB material showed significantly better results than
the cast NAB; furthermore, the deposited NAB material showed better performance than the cast
NAB material in the Vickers hardness test, impact test and wear test. In addition, the deposited NAB
showed anisotropy depending on the welding direction, and showed high tensile strength, hardness
and shock absorption in the longitudinal direction of the welding line.
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1. Introduction

WAAM (wire arc additive manufacturing) is one of the three-dimensional metal printing
technologies that uses arc heat sources to melt metal wires in making shapes [1]. The American
Society for Testing and Materials (ASTM) classifies three-dimensional deposition methods into seven
types, regardless of the material [2]. Of these, dual metal based additive manufacturing technology is
categorized into four types according to the heat source, processing method, etc. The most dominant
technologies are the powder bed fusion (PBF) method that shoots a laser on metal powder, and direct
energy deposition (DED) that supplies materials to a direct heat source. WAAM technology falls
under the DED category as classified by ASTM, and employs gas metal arc welding (GMAW) and gas
tungsten arc welding (GTAW) processes that use arc heat sources. This added the deposition technique
to the existing welding process, and was also called a metal rapid porotype or metal cladding process.
It appeared with the name of WAAM as the 3D metal deposition industry market expanded.

In powder-type metal deposition, which has been studied a significant amount to date, the surface
shape is very smooth because the fine powders of 50 µm~150 µm are deposited through a laser heat
source, but the amount of metal deposited is 5 g/min~10 g/min, making it difficult to fabricate large
parts [3]. Meanwhile, WAAM uses off-the-shelf 1.2 Ø~2.4 Ø welding wires and supplies the wire at a
rate of about 5 m/min for deposition, so it has the advantage of being able to deposit large parts in a
short time. In addition, although the precision of parts is low, it uses a wire that costs only 1/2~1/3
the cost of the metal powder for DED, and does not require the use of expensive laser power sources.
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WAAM technology is advantageous for fabricating large parts with complex shapes that are difficult
to fabricate using conventional metal powder deposition technology, and has been recognized as an
alternative to the general casting method or methods that have a large material loss caused by cutting.
In recent years, WAAM technology has been becoming popular at industrial sites, and studies on metal
deposition using existing commercial welding technology have been ongoing [4–9].

In WAAM technology, the deposition wires are mostly based on welding wires. There have been
studies on the deposition of parts using commercial welding wire. In addition, because WAAM is used
to minimize the bulk material loss caused by commercial cutting technologies, there have been studies
on high cost materials such as Ti alloy [10–13], high-nickel alloy [14,15], magnesium alloy [16,17],
managing steel [18], etc. rather than the low-cost steels.

Recently, the materials for WAAM have been expanded to include bronze alloys, brass alloys, etc.
The Ni-Al-bronze (NAB) alloy has a low corrosion rate and high cavitation resistance in a seawater
environment, so it is often used as a material to fabricate marine propellers, seawater pump impellers,
valves, and underwater fasteners [19]. Ni-Al-bronze (NAB) alloy is a material that is used to fabricate
marine impellers because of its excellent yield strength, tensile strength, and endurance in seawater
compared to the manganese bronze alloys that have been commonly used [20]. Lv et al. [21] stretched
the cast NAB alloy to observe the corrosion state and residual stress in a seawater environment, and
reported that the stress generated in the seawater environment improved the resistance to the corrosion
environment. Ship propellers have a very complex shape and are made by assembling separately
fabricated shafts and blades with a diameter of more than 10 m, or by investing a lot of time and cost
through sand casting [22]. If a complex part is fabricated by casting, differences in casting structure
may occur depending on thickness and location. Hazra et al. [23] reported that damage to the NAB
impeller fabricated by casting may be caused by the difference in compound composition and cooling
speed in the casting environment. Zhao et al. [24] explained, through a histological analysis, that
differences in mechanical properties occur depending on the location of the NAB material fabricated by
casting due to processing hardening and grain refinement after machining. Attempts have been made
to fabricate parts by applying WAAM technology to overcome the non-uniformity and productivity,
etc. of the physical properties of NAB materials fabricated by casting.

Li et al. [25] evaluated the corrosion properties by reinforcing the surface of cast NAB material using
a FSW (friction stir welding) process, and reported that the corrosion performance was improved by 41%
compared to the cast NAB. Dharmendra et al. [26,27] attempted to identify interfacial characterization,
prospects and problems by laminating NAB material on STS 316L substrate, and explained the cause
of liquation cracking in the HAZ (heat affect zone) section. Chen Shen [28] used GMAW to fabricate
parts used in the actual marine industry and reported metallurgical differences according to post-heat
treatment conditions. A range of studies have been conducted, and it is necessary to compare the
mechanical properties of the cast NAB material and the NAB material fabricated by WAAM to expand
the applicability of NAB alloy to WAAM.

This study conducted an ASTM B 150 (NAB) alloy deposition experiment using WAAM, and
analyzed the shape of a single bead according to welding conditions and the mechanical properties
(tensile, yield, elongation, hardness, impact, wear) of the cast NAB material and the NAB material
fabricated by WAAM.

2. Experiment Method

2.1. Experiment Preparation

In general, the WAAM system uses a robotic system to maximize the degrees of freedom in part
shape. The combination of the robot system, CAD (computer aided design) and CAM (computer aided
manufacturing) allows the optimization of stacking order and deposition path. Figure 1 shows the
combination of the robot system and MIG (metal inert gas) welding machine used in the welding
experiment. A Fronius CMT (cold metal transfer) welding machine was used and a Motorman HP20D
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six-axis robot (Yaskawa, Kitakyushu, Japan) was employed as the motion provisioning unit. The
accuracy of the motion system was 0.06 mm.
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Figure 1. Wire arc additive manufacturing (WAAM) system configuration adopted in the experiment.

The jig used in the welding experiment was designed to clamp at 8 points to minimize the
deformation of the substrate (cast NAB alloy). When fabricating a part using WAAM, the deformation
of the substrate is severe due to the long welding time and continuous heat input. For this reason, a
jig that can suppress deformation is essential because the deformation may cause deviation from the
deposition path. The substrate was made of cast NAB (CAC703C) round rod material of 250 mm (D) ×
25 mm (T), and America welding society (AWS) 5.1 certified 1.2 mm diameter ERCuNiAl solid wire
was used for the deposition experiment.

2.2. Substrate and Deposition Material

The substrate is made of C63000 material as defined in ASTM B 150. C63000 material is one of the
most frequently used materials in industrial sites, in areas such as general aerospace, construction,
marine (defense industry), shipbuilding, desalination (salt environment), and machinery (oil room,
piston, etc.). C63000 is one of the copper alloys, and is fabricated by continuous casting. Its compositions
are shown in Table 1. It is a Ni-Al-bronze alloy containing 4.28% nickel, 9.11% aluminum, and 3.3% iron.
The solid wire used in this experiment is ERCuNiAl with AWS (America welding society) 5.1 approval,
and contains 5.2% nickel, 8.8% aluminum, and 3.3% iron, which is almost the same as the substrate.

Table 1. Compositions of the Ni-Al-bronze (NAB) substrate and deposition wire (wt %).

Cu Al Ni Fe Mn Si Zn Sn Pb

Substrate
(C63000) Bal. 9.11 4.28 3.3 0.9 0.01 0.02 0.01 0.04

Wire (ERCuNiAl) Bal. 8.8 5.2 3.3 0.8 0.002 0.003 0.002 0.002
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2.3. Deposition Parameters of the WAAM Process

This study performed two experiments. One is a pre-experiment (single layer) to observe the
bead shape, and the other is a main experiment to evaluate the mechanical properties. Table 2 is a
pre-experiment condition table for bead shape observation. The pre-experiment used six welding
conditions according to the wire feed rate for BOP (bead-on-plate) experiments. In the CMT welding
process, the magnitude of the current and voltage is determined according to the feed amount of wire.
In addition, the magnitude of voltage can be adjusted by finely adjusting the arc length. The process
conditions of WAAM based on GAMW are the same as general welding conditions. The difference
between general welding conditions and WAAM process conditions is that the distance between beads
is added for multi-pass deposition, and a path must be considered to implement the part shape.

In the main experiment (multi-layer), a bulk material was made to obtain a specimen coupon that
will be used for the mechanical properties test using one condition of a pre-experiment. As shown in
Table 3, there are two experiments according to the deposition path, and one condition was used to
make a wear test specimen. In both the pre-experiment and the main experiment, a contact tip to walk
distance (CTWD) of 15 mm, an Ar 100% shielding gas of 15 L/min and a deposition speed of 30 cpm
were used.

Table 2. Deposition parameters of the single layer (single bead) experiment.

Weld
ID. No.

Current
(A)

Voltage
(V)

Travel Speed
(cm/min)

Wire Feed Rate
(m/min)

Heat
Input (kJ)

Wire Feed Rate Per
Heat Input Rate

(kJ·s/cm2)

1 118 11.5 30 5 2.714 0.54
2 147 11.8 30 6 3.4692 0.57
3 163 11.7 30 7 3.8142 0.54
4 184 11.8 30 8 4.3424 0.54
5 197 12.9 30 9 5.0826 0.56
6 214 14.4 30 10 6.1632 0.61

Fixed Parameters for GMAW (gas metal arc welding) process
CTWD (contact tip to walk distance) (mm) Shielding gas (L/min)

15 15

Table 3. Deposition parameters of the multi-layer experiment.

Process Parameter Type 1 Type 2 Type 3 (for Wear Test)

Current (A) 163~165
Voltage (V) 11.8~12.0

Travel Speed (cm/min) 30
CTWD (mm) 15~15.5

Wire Feed Rate (m/min) 7
Shielding Gas (l/min) 15 (Ar 100%)
Overlap Pitch (mm) 4~4.5
Deposition Bulk Size 150 mm (L) × 60 mm (W) × 25 nm (H) 60 mm (D) × 25 nm (H)

Deposition Path Type
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2.4. Material Assessment

A total of four mechanical properties tests (tensile strength evaluation, hardness evaluation,
impact evaluation, wear evaluation) were performed. The mechanical properties test was performed
to compare the NAB materials fabricated by cast NAB and WAAM. For the tensile strength test, a
sub-size specimen of ASTM E8 standard was used and a 100-ton class KDMT100 model was used.

ASTM E92 was used to compare the hardness of the NAB materials fabricated by cast NAB and
WAAM. The hardness tests were performed using HMV-G (Shimadzu scientific Korea corp., Seoul,
Korea). The experiment was performed by applying an indentation load of 980.7 mN (HV0.1) and an
indentation time of 10 s.

The impact tests were performed using TO-700CD (Testone, Seoul, Korea); load: 300 J (30 kgf).
The standard applied to the experiment was ASTM E23. The maximum impact speed was 5.47 m/s
and a V-notch standardized test specimen was used.

The wear tests were performed using MTF-5000 (Rudolph Technologies, Inc., Budd Lake, NJ,
USA). The test load was 100 N and the disk rotation speed was 100 rpm (0.15 m/s (clockwise)). The
sliding distance was 500 m and the abrasion ball was an alumina oxide ball (diameter: 7.14 mm). The
standard applied to the abrasion test was ASTM G-115-10.

All mechanical properties experiments were performed at room temperature (26 ◦C), and they
were performed to relatively compare the mechanical properties of NAB materials fabricated by cast
NAB and WAAM. The specimen coupons for each test were collected from the deposition layer as
shown in Figure 2. There are three types of test specimens. These were classified into type 1 and type 2
according to the deposition path, and the substrate was classified as the casting material.

Wear test specimens were divided into the deposited material and the casting material because
they were deposited in a columnar shape, as shown in Table 3.
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3. Results and Discussion

Figure 3 shows the NAB material deposited using WAAM. In all the experiments, the cast NAB
was used as a substrate. In Figure 3a, a single bead of about 160 mm was deposited on a round
substrate. A total of six conditions were used, and each single bead was tested when the substrate
temperature was 26~27 to prevent the base material from preheating. Figure 3b shows a block-type
NAB alloy of 150 mm (L) × 60 mm (W) × 25 nm (H) after deposition. The two blocks of the same size
have different stacking paths. Welding or deposition by melting a metal causes anisotropy of the metal.
When a molten metal is solidified, strong dendrites are formed around a small nucleus, which leads
to metal anisotropy [29]. The dendrite direction is determined by the welding direction [30]. Wang
modeled the laser heat source and studied the orientation of dendrite around the moving heat source,
and Wei [31] reported that in the lamination process using arc welding, the dendrite is determined
by the lamination direction. In Figure 3b, type 1 and 2 are deposited in different welding directions;
that is, the dendrite direction is different. Figure 3c is a test specimen made by applying a circular
deposition path to fabricate a standardized wear test specimen.

Metals 2020, 10, x FOR PEER REVIEW 6 of 15 

 

substrate. A total of six conditions were used, and each single bead was tested when the substrate 
temperature was 26~27 to prevent the base material from preheating. Figure 3b shows a block-type 
NAB alloy of 150 mm (L) × 60 mm (W) × 25 nm (H) after deposition. The two blocks of the same size 
have different stacking paths. Welding or deposition by melting a metal causes anisotropy of the 
metal. When a molten metal is solidified, strong dendrites are formed around a small nucleus, which 
leads to metal anisotropy [29]. The dendrite direction is determined by the welding direction [30]. 
Wang modeled the laser heat source and studied the orientation of dendrite around the moving heat 
source, and Wei [31] reported that in the lamination process using arc welding, the dendrite is 
determined by the lamination direction. In Figure 3b, type 1 and 2 are deposited in different welding 
directions; that is, the dendrite direction is different. Figure 3c is a test specimen made by applying a 
circular deposition path to fabricate a standardized wear test specimen. 

 
Figure 3. Three types of test specimens fabricated using WAAM. (a) Bead-on-plate (BOP) test 
specimens to compare six welding conditions; (b) Two types of test specimen per deposition path; (c) 
Round test specimen for the wear test. 

3.1. Effect of Wire Feed Rate for Single Bead 

In the CMT welding process, the wire feed amount is a very critical variable, and its welding 
conditions are changed according to the wire feed rate. In the CMT welding process, the current and 
voltage values are determined by wire feed rate through the optimized database. The relationship 
between the wire feed rate and the current is that a current (A) of 22.50 times that of the wire feed 
rate (m/min) is supplied. The current amount depends on the welding material type. The average 
heat input (kJ) per wire feed amount (m/min) is 0.564 kJ·s/cm2, and the standard error is 0.02645 
kJ·s/cm2. In addition, a minimum heat input amount of 0.564 kJ·s/cm2 is required to stably melt the 
wire. 

Figure 4 shows the cross-section of a single bead deposited by WAAM for six different wire 
feed rates. As shown in Figure 4, the bead shape varies depending on wire feeding speed. In Figure 
4a,c,d, the wire feed rate per heat input is the same as 0.54 kJ·s/cm2, but the bead shape is different. In 
Figure 4f, the wire feed rate per heat input rate is larger than the average wire feed rate per heat 
input rate of 5.6 kJ·s/cm2 by 0.51 kJ·s/cm2. An excessive heat input weakens the surface tension of a 
bead, and this weakened surface tension causes a non-uniform bead shape. 
  

Figure 3. Three types of test specimens fabricated using WAAM. (a) Bead-on-plate (BOP) test specimens
to compare six welding conditions; (b) Two types of test specimen per deposition path; (c) Round test
specimen for the wear test.

3.1. Effect of Wire Feed Rate for Single Bead

In the CMT welding process, the wire feed amount is a very critical variable, and its welding
conditions are changed according to the wire feed rate. In the CMT welding process, the current and
voltage values are determined by wire feed rate through the optimized database. The relationship
between the wire feed rate and the current is that a current (A) of 22.50 times that of the wire feed rate
(m/min) is supplied. The current amount depends on the welding material type. The average heat
input (kJ) per wire feed amount (m/min) is 0.564 kJ·s/cm2, and the standard error is 0.02645 kJ·s/cm2.
In addition, a minimum heat input amount of 0.564 kJ·s/cm2 is required to stably melt the wire.

Figure 4 shows the cross-section of a single bead deposited by WAAM for six different wire feed
rates. As shown in Figure 4, the bead shape varies depending on wire feeding speed. In Figure 4a,c,d,
the wire feed rate per heat input is the same as 0.54 kJ·s/cm2, but the bead shape is different. In Figure 4f,
the wire feed rate per heat input rate is larger than the average wire feed rate per heat input rate of
5.6 kJ·s/cm2 by 0.51 kJ·s/cm2. An excessive heat input weakens the surface tension of a bead, and this
weakened surface tension causes a non-uniform bead shape.
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In this study, bead width (mm), bead height (mm), and contact angle (◦) were measured as shown
in Figure 5 to analyze the effects of welding conditions on the shape of a single bead. The bead width
and bead height are very important factors in metal lamination. The width and height of a bead are
related to stacking efficiency. Width is a factor that is used to determine the overlap amount of each
bead during continuous stacking. Bead height is a factor that determines the number of layers when
making a part using WAAM.
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To analyze the effect of conditions on the shape of a single bead, bead width (mm), bead height
(mm), and contact angle (◦) were measured, as shown in Figure 5. Bead width and bead height are
very critical factors in metal deposition, and are both related to deposition efficiency. The width is a
reference factor in determining the overlap amount of each bead during continuous deposition. The
bead height is a factor that determines the number of layers when making a part using WAAM.

Figure 6 shows the quantitatively measured bead width and contact angle. The bead width
increases as the wire feed rate increases; however, the bead height decreases. In addition, as the
wire feed rate increases, the contact angle increases. The height and width of a bead are inversely
proportional, while the height and contact angle are proportional. The contact angle is an important
factor in brazing and cladding [32]. When the contact angle is too large, the individual beads are
deposited continuously. As the width of the overlap between the beads increases when the beads
are deposited continuously, there is a high possibility that non-uniform beads will be formed [33]. In
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addition, when the deposition path is bent at 90◦ or the deposition path is changed, the width of the
overlap of beads increases toward the inner diameter direction, which may lead to asymmetry. To
minimize the non-uniformity and asymmetry of beads, the contact angle should be close to 90◦. Of the
six conditions, the contact angle was close to 90◦ when the wire feed rate is 7 m/min. This study used a
wire feed rate of 7 m/min, which supports a contact angle close to 90◦ for continuous deposition of a
single bead.
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3.2. Tensile Strength Results

Figure 7 shows the tension testing results. Three specimens were collected from each deposited
area as shown in Figure 7b to perform tension testing. In terms of yield strength, tensile strength
and elongation, the laminated NAB alloy showed excellent properties. For the cast NAB (substrate),
the average tensile strength was 597 MPa, the average yield strength was 267 MPa, and the average
elongation was 16.4%. For the deposited NAB, the average tensile strength was 727 MPa, the average
yield strength was 408 MPa, and the average elongation was 26.4% regardless of the type. The
deposited NAB showed a tensile strength that was increased by 50%, an average yield strength that
was increased by 20% and an average elongation that was increased by 60% compared to the cast NAB
(substrate) material. In addition, the deposited NAB material is anisotropic. The tensile testing of the
deposited NAB materials was performed in two directions. These two directions are divided into type
1 and type 2, where type 1 represents the horizontal direction (transverse) of the welding line and type
2 represents the longitudinal direction of the welding line (longitudinal). The stress differed depending
on the tensile direction of the laminated area. Type 1 (transverse direction) showed an average tensile
strength of 718 MPa, an average yield strength of 391 MPa and an average elongation of 25.1%. Type 2
(transverse direction) showed an average tensile strength of 735 MPa, an average yield strength of 425
MPa, and an average elongation of 27.7%. The mechanical strength of type 2 showed overall high
numbers in the test. The cast alloy has no directionality and has overall uniform strength, ductility and
toughness. Stable materials, such as non-directional cast alloys, give us confidence in safety when
designing parts. The fact that the deposited NAB material has anisotropy and its mechanical properties
differ according to the stacking direction is an important factor to be considered in an actual structural
design. It is necessary to design a part by considering material anisotropy after carefully checking the
directions of the internal and external forces that the part should withstand.



Metals 2020, 10, 1164 9 of 15

Metals 2020, 10, x FOR PEER REVIEW 9 of 15 

 

material anisotropy after carefully checking the directions of the internal and external forces that the 
part should withstand. 

 
(a) (b) 

Figure 7. Comparison of tensile properties in the WAAM-fabricated NAB and the cast NAB 
(substrate). (a) Results of tensile properties; (b) Specimen after test. 

3.3. Hardness 

Figure 8 shows four types of specimens for the Vickers hardness test. Figure 8A shows three 
types of test specimens fabricated to compare the hardness of the deposited NAB material and the 
cast NAB (substrate) material, while Figure 8B shows a test specimen fabricated to check the 
hardness distribution of a single bead. The specimens were fabricated through mounting and 
polishing after sampling. 

 
Figure 8. Test specimens for hardness measurement. (A) The deposited NAB and the casting material 
(substrate); (B) Single bead cross-sectional specimen. 

Figure 9 shows the hardness measurement result for a single bead. The hardness was 
continuously measured from the top of the bead to the bottom of the substrate at 0.5 mm intervals. 
As shown in Figure 9, the hardness of the deposited material is higher than that of the substrate. The 
hardness of the HAZ area is similar to or slightly higher than that of the deposited material. 

Figure 7. Comparison of tensile properties in the WAAM-fabricated NAB and the cast NAB (substrate).
(a) Results of tensile properties; (b) Specimen after test.

3.3. Hardness

Figure 8 shows four types of specimens for the Vickers hardness test. Figure 8A shows three types
of test specimens fabricated to compare the hardness of the deposited NAB material and the cast NAB
(substrate) material, while Figure 8B shows a test specimen fabricated to check the hardness distribution
of a single bead. The specimens were fabricated through mounting and polishing after sampling.
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Figure 8. Test specimens for hardness measurement. (A) The deposited NAB and the casting material
(substrate); (B) Single bead cross-sectional specimen.

Figure 9 shows the hardness measurement result for a single bead. The hardness was continuously
measured from the top of the bead to the bottom of the substrate at 0.5 mm intervals. As shown in
Figure 9, the hardness of the deposited material is higher than that of the substrate. The hardness of
the HAZ area is similar to or slightly higher than that of the deposited material.
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Figure 9. Hardness of the additively fabricated single bead on the cast NAB alloy.

Figure 10 compares the hardness of the deposited NAB material according to stacking direction
and the hardness of the casting material. Regarding the hardness test results, type 2 (longitudinal)
showed higher numbers, such as the tensile strength test. The average hardness of type 1 (transverse)
was 196.8 HV and the average hardness of type 2 (longitudinal) was 218.4 HV. The average hardness of
the casting material (substrate) was 170.8 HV. The hardness of type 2 (longitudinal) was improved by
10% compared to type 1 (transverse), and was about 28% improved compared to the casting material
(substrate).
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Figure 10. Comparison of hardness in the WAAM-fabricated NAB (two deposition types) and the
cast NAB.

3.4. Impact Test Results

Figure 11 shows the impact test to evaluate the impact strength of the deposited material. The
average absorbed energy (J) of the deposited material is about 41.61 J. The average absorbed energy (J)
of the deposited material is significantly higher than that (24.3 J) of the casting material. In addition, the
impact strength of the deposited NAB material showed differences depending on the impact direction
(stacking direction). The average absorbed energy (J) of type 1 (transverse) is 39.32 J, and the average
hardness of type 2 (longitudinal) is 43.86 J, which is about an 11.6% improvement.
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3.5. Wear Test Results

The NAB alloy is commonly used in abrasion environments, such as impellers for seawater
pumps, propellers for ships, oil chambers, and landing gear and wing flap bearings of aircraft. This
study compared the abrasion performance of the deposited NAB material and the casting material.
Figure 12 shows a test specimen that has gone through a ball-on-disk wear test. Figure 12A displays
the NAB material fabricated by casting, and Figure 12B displays the deposited NAB material fabricated
by WAAM. Both specimens were tested in the same environment to evaluate friction coefficient, wear
depth, and weight loss. Figure 13 shows the friction coefficient of the two materials. The friction
coefficient was measured as 0.2258 for the deposited material and 0.2674 for the cast NAB. The friction
coefficient is a coefficient of physical friction between the alumina oxide ball and the NAB material.
The deposited material showed better performance that the cast NAB material in terms of the wear
loss and frictional heat resistance that can occur due to friction.
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Figure 13. Comparison of the friction coefficient in the WAAM-fabricated NAB and the cast NAB
(substrate).

Figure 14a shows the measured wear depth of the deposited NAB and the cast NAB. When
friction occurs for 500 m under the pressure of final 100 N force, the deposited NAB material showed
an indentation mark of 200 µm. However, the cast NAB showed an indentation of 800 µm. In addition,
although the indentation depth continuously increased as time passed for the cast NAB material, the
indentation depth of the deposited NAB material was stable after 2000 s. As shown in Figure 14b,
the difference in weight loss occurred as much as the difference in the indentation amount, and the
deposited NAB material showed a weight loss of 0.0325 g. The weight loss of the cast NAB was 0.0381
g, which is a relatively large amount compared to the deposited NAB material.
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4. Conclusions

This study fabricated a block bulk material to evaluate the shape of a single bead and mechanical
properties by depositing the Ni-Al-bronze alloy using WAAM (wire arc additive manufacturing)
technology, analyzed the cross-section of a single bead, and performed mechanical and physical
properties tests. The study obtained the following conclusions:
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1. The study analyzed the shape of an NAB single bead using the CMT process and found that the
wire feed rate per heat input needs a minimum heat input of 0.54 kJ·s/cm2, and that the contact
angle becomes closer to 90◦ when the wire feed rate is about 7 m/min. A contact angle close to
90◦ is required to make a single bead shape suitable for the deposition process.

2. Regarding the tensile strength results, the deposited NAB showed 50% higher tensile strength,
20% higher average yield strength, and 60% higher average elongation compared to the cast
NAB (substrate). The NAB material fabricated by WAAM has anisotropy, and the stress results
differed depending on the tensile direction of laminated part. The average tensile strength was
718 MPa, the average yield strength was 391 MPa, and the average elongation was 25.1% for type
1 (transverse direction). For type 2 (transverse direction), the average tensile strength was 735
MPa, the average yield strength was 425 MPa, and the average elongation was 27.7%.

3. Regarding the Vickers hardness measurement results, type 2 (longitudinal) showed higher
hardness, which is similar to the tensile strength test results. The average hardness of type
1 (transverse) was 196.8 HV, and the average hardness of type 2 (longitudinal) was 218.4 HV.
The average hardness of the casting material (substrate) was 170.8 HV. The hardness of type 2
(longitudinal) was improved by 10% compared to type 1 (transverse), and by about 28% compared
to the casting material (substrate).

4. Regarding the wear test results, the abrasion resistance of the deposited NAB material showed
better performance than that of the casting material (substrate) in terms of indentation depth and
weight loss. In addition, the friction coefficient of the deposited NAB was smaller than that of the
casting material (substrate), so there is less part damage caused by friction.

In a general welding process, the deposited NAB’s mechanical properties were better than those of
the casting material (substrate), and the deposited NAB showed anisotropy. Although the mechanical
properties are excellent, it is necessary to consider anisotropy when designing a part.
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