Effects of Incorporating B-Tricalcium Phosphate with Reaction Sintering into Mg-Based Composites on Degradation and Mechanical Integrity

Kai Narita 1,*,†, Sachiko Hiromoto 2, Equo Kobayashi 1 and Tatsuo Sato 3

1 Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan; equo@mtl.titech.ac.jp
2 Corrosion Property Group, Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan; hiromoto.sachiko@nims.go.jp
3 Tokyo Institute of Technology, Tokyo 152–8552, Japan; sato.tatsuo8@gmail.com
* Correspondence: kai.y.narita@gmail.com
† Current address: Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA 91125, USA.

Figure S1. Optical microscopic image of Mg particles. L shows the length of the longest distance of a Mg particle contour.

Figure S2. Histogram of Mg particle size measured from optical microscope images
Table S1. Impurity of magnesium powder.

<table>
<thead>
<tr>
<th>Element</th>
<th>Al</th>
<th>Ca</th>
<th>Cu</th>
<th>Fe</th>
<th>Mn</th>
<th>Pb</th>
<th>Si</th>
<th>Zn</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>0.03</td>
<td>0.008</td>
<td>ND</td>
<td>0.009</td>
<td>0.01</td>
<td>ND</td>
<td>0.02</td>
<td>0.006</td>
<td>0.083</td>
</tr>
</tbody>
</table>

*ND: Not Detected.

Figure S3. The boundary of sintered Mg particles obtained by Auger electron microscopy. (a) secondary electron image, (b) elemental mapping of Mg, and (c) elemental mapping of O.

Figure S4. Ultimate compressive strength of Mg/bredigite [1], Mg-3Zn/5wt.%HA [2], Mg-2.5Zn-0.5Si/1wt.%HA [3], and Mg/β-TCP (our work).

Reference