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Abstract: In the present study, the influence of the initial heat-treatment conditions on the artificial
aging behavior after conventional linear extrusion at room temperature was investigated for the
precipitation hardening of a 6056 aluminum alloy. A solution-annealed condition was systematically
compared to naturally-aged and pre-aged conditions. Differential scanning calorimetry was used for
analyzing the precipitation sequence and its dependence on the initial heat treatment. The natural
aging behavior prior to extrusion and the artificial aging behavior after extrusion were determined
by microhardness measurements as a function of the aging time. Furthermore, the microstructure,
dependent on the induced strain, was investigated using optical microscopy and transmission
electron microscopy. As a result of pre-aging, following a solid-solution treatment, the formation
of stable room-temperature clusters was suppressed and natural aging was inhibited. The artificial
aging response after extrusion was significantly enhanced by pre-aging, and the achieved hardness
and strength were significantly higher when compared with the equally processed solution-annealed
or naturally-aged conditions.

Keywords: aluminum alloy; thermomechanical treatment; pre-aging; aging behavior; differential
scanning calorimetry; hardness

1. Introduction

Aluminum alloys of the 6xxx series are of major technological importance and have
been studied extensively. Because of their good formability combined with their precipita-
tion hardening ability, they are attractive to the automotive and aircraft industries. The
chemical composition of these alloys directly influences the complex precipitation sequence
and thus the hardening response during aging. The primary strengthening of Al-Mg-Si
alloys is attributed to the ternary needle-shaped phase β” [1–4]. With the addition of Cu,
the quaternary lath-shaped phase Q’ further contributes to the strengthening [4,5]. These
metastable phases are precursors for the stable phases of β (Mg2Si) and Q (Al5Cu2Mg8Si6),
respectively [4], and the precipitation sequence is generally accepted as follows [4–8]:

At room temperature, Mg-Si co-clusters evolve from a super-saturated solution. At
higher temperatures, nanoscale precipitates with an ordered arrangement of Mg-, Si- and
Cu-atoms are formed, which are referred to as Guinier–Preston (GP) zones [9].

Depending on their composition, Al-Mg-Si alloys containing Cu show a pronounced
tendency towards natural aging, which has a detrimental effect on the further hardening
response during the subsequent artificial aging [10,11]. The clusters of the solute Mg and
Si atoms formed by natural aging inhibit the nucleation of the strengthening phase β” [12].

Metals 2021, 11, 385. https://doi.org/10.3390/met11030385 https://www.mdpi.com/journal/metals

https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0002-3353-9075
https://orcid.org/0000-0002-0120-2478
https://orcid.org/0000-0002-2390-9159
https://doi.org/10.3390/met11030385
https://doi.org/10.3390/met11030385
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/met11030385
https://www.mdpi.com/journal/metals
https://www.mdpi.com/2075-4701/11/3/385?type=check_update&version=1


Metals 2021, 11, 385 2 of 13

In industrial production, interim storage periods between single processing steps cannot
often be avoided because of cost efficient manufacturing and different production locations.
Pre-aging at low artificial aging temperatures subsequent to the solid-solution treatment is
a common strategy to prevent natural aging and increase room temperature stability [13,14].
By pre-aging, the clustering of solute atoms is suppressed and the alternatively formed GP
zones enhance the nucleation of β” and further enhance the hardening response [13].

α/super-saturated solution→ cluster→metastable β”/GP-zones→metastable β’ + Q’→ stable β + Q + Si

Regarding the mechanical properties, for precipitation hardening aluminum alloys,
an effective strategy to achieve a high strength and good ductility was developed by Kim
et al. [15]. Solid-solution treatment followed by severe cold plastic deformation and artificial
aging significantly increases strength through the induced strain hardening. Furthermore,
the accelerated precipitation kinetics due to the induced strain lead to the rapid formation
of fine precipitates during artificial aging. Simultaneously, the ductility, which is decreased
by strain hardening, is regained through thermal recovery processes. The induced strain,
as well as the artificial aging temperature and time, are major influencing factors on the
achieved mechanical properties [7,16]. The best combination of strength and ductility is
realized through low artificial aging temperatures with short aging times [7,17]. Despite the
attractive mechanical properties that are able to be achieved, the transfer of this processing
strategy into industrial manufacturing is impeded because of the costly implementation of
the subsequent plastic deformation after solid-solution treatment.

Thus, the main focus of the present study was the influence of the initial heat treat-
ments prior to cold plastic deformation followed by artificial aging on the hardening
response. For the initial heat treatments, a solution-annealed condition was compared with
naturally-aged and pre-aged conditions. A 6056 aluminum alloy was investigated because
of its pronounced hardening during natural and artificial aging and its broad industrial
application. Furthermore, conventional linear extrusion for cold plastic deformation was
chosen. Artificial aging was conducted at a relatively low temperature, because of its
beneficial effect on the achievable peak hardness [18], as well as to prevent over-aging and
pronounced softening effects.

2. Materials and Methods
2.1. Material and Heat Treatment

For this study, the precipitation hardening of a 6056 aluminum alloy (AlSi1MgCuMn)
was examined. The chemical composition and the initial mechanical properties of the
aluminum wire of a commercial purity, provided by EJOT GmbH and Co. KG (Bad
Berleburg, Germany), are given in Tables 1 and 2, respectively.

Table 1. Chemical composition of the 6056 aluminum alloy wire (AlSi1MgCuMn).

Element Si Mg Cu Mn Zn Fe Zr Ti Cr Al

wt.% 1.06 0.89 0.78 0.59 0.19 0.16 0.13 0.04 0.01 balance

Table 2. Geometrical and mechanical properties of the 6056 aluminum alloy wire in the as-received
condition. The deviation is given in absolute values.

Wire Diameter
d in mm

Yield Strength
Rp0.2 in MPa

Ultimate Tensile Strength
Rm in MPa

Elongation
A100mm in %

5.26 173 ± 1 188 ± 2 6.3 ± 1.3

Three different initial heat-treatment conditions were compared, namely: solution-
annealed, pre-aged and naturally-aged conditions. All conditions were solution annealed
for 1 h at 530 ◦C, and were quenched in water at room temperature. After the solid-solution
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treatment, the solution-annealed condition was directly processed. Subsequent to the
solid-solution treatment, the alloy was annealed for 5 h at 80 ◦C to obtain the pre-aged
condition, or was naturally aged for 7 d at room temperature.

The three heat treatment conditions were linearly extruded at room temperature by
EJOT GmbH and Co. KG (Bad Berleburg, Germany). Two different strains were introduced,
namely ϕ = 0.8 and ϕ = 1.2, which were defined by the diameter reduction of the aluminum
wire in the as-received condition. Strain ϕ was calculated from the ratio of the wire’s
cross-sectional before extrusion (A0) and after extrusion (A1), as follows:

ϕ = ln
A0

A1
(1)

To examine the influence of the initial heat treatment and the further plastic deforma-
tion on the artificial aging behavior, the conditions investigated were artificially aged at
120 ◦C for up to 10 h after extrusion processing.

To prevent undesired natural aging between the initial heat treatment, linear extrusion
and artificial aging, the wire specimens were either produced in a continuous route or the
specimens were stored at −20 ◦C in a freezer between the processing steps.

2.2. Differential Scanning Calorimetry

The precipitation behavior of the aluminum alloy and the influence of pre-aging were
studied by differential scanning calorimetry (DSC) measurements using a DSC 1 System
(Mettler Toledo AG, Gießen, Switzerland). Relatively large masses are required for the
investigation of precipitation kinetics in aluminum 6xxx alloys when using DSC at low
heating rates [19]. Therefore, cylindrical specimens with a diameter of 5 mm and a height of
5 mm were machined from the investigated alloy. The weight of each specimen tested was
approximately 256 mg. For reference, a high-purity Al5N aluminum sample with a weight
of 256 mg was used. Both specimens were put into aluminum pans, the measurements
were performed in a nitrogen atmosphere and the contact area between the pan and the
sample was additionally polished for better thermal conductivity. The thermal cycling
first contained an initial isothermal step at 10 ◦C for 10 min in order to achieve a settled
condition. Subsequently, heating to 380 ◦C was conducted, followed by isothermal holding
for 10 min and cooling to 10 ◦C. A rerun of this complete cycle was performed for control
and baseline correction. The solution-annealed and the pre-aged conditions were compared
at three different heating rates (5, 10 and 20 K/min).

2.3. Hardness Measurement

To study the natural aging behavior, the undeformed aluminum wires in solution-
annealed and pre-aged conditions were measured using a KB250BVRZ automatic hardness
tester (KB Prüftechnik GmbH, Hochdorf-Assenheim, Germany) with a microhardness of
HV0.5. Samples of both initial heat-treatment conditions were subjected to natural aging
for four weeks at room temperature, and the microhardness was continuously measured
during this time. Furthermore, the artificial aging behaviors after linear extrusion of
the solution-annealed, pre-aged and naturally-aged conditions were investigated using a
DuraScan 70 G5 automatic hardness tester (EMCO-TEST Prüfmaschinen GmbH, Kuchl,
Austria) with a microhardness of HV0.1. These measurements were done by EJOT GmbH
and Co. KG (Bad Berleburg, Germany) directly after processing.

For all material conditions, 20 microhardness measurements were conducted on the
cross sections of each of the wire specimens, from the edge to core.

2.4. Tensile Testing

Tensile tests were conducted in quasistatic conditions (strain rate of 10−3 s−1). The
ultimate tensile strength after artificial aging, dependent on the aging time, was determined
for the three initial heat-treatment conditions after linear extrusion with ϕ = 1.2. The tensile
testing was done by EJOT GmbH and Co. KG (Bad Berleburg, Germany), and the wire



Metals 2021, 11, 385 4 of 13

specimens for each of the heat-treatment conditions and aging times were tested using a
Lloyd Instruments EZ 50 materials testing machine (Ametek GmbH, Meerbusch, Germany).

2.5. Microstructural Characterization

Microstructural analyses were performed on polished samples taken parallel to the
extrusion direction. The influence of the induced strain by extrusion on the microstructure
was analyzed through optical microscopy with an Olympus GX51 (Olympus Deutschland
GmbH, Hamburg, Germany).

To determine the influence of the initial heat-treatment conditions on the microstruc-
ture at the beginning of the artificial aging after extrusion, a transmission electron mi-
croscopy (TEM) was performed using a Hitachi H8100 microscope (Hitachi High-Tech
Europe GmbH, Krefeld, Germany) operating with an acceleration voltage of 200 kV. The
samples were extracted parallel to the extrusion direction, and were electrolytically thinned
and ion polished.

3. Results
3.1. Precipitation Sequence

The DSC thermograms obtained for the solution-annealed, naturally-aged and pre-
aged conditions are shown in Figure 1. In accordance with the literature, the peaks
shifted towards higher temperatures, and their height increased along with the increase
in the heating rate. Hereinafter, the peak temperatures are discussed for a heating rate
of 5 K min−1 (see Figure 1a). Five exothermic formation peaks occurred, and these were
identified based on the literature [4,5,11,20,21], as follows:

• peak I at 80 ◦C: separate Mg- and Si-clusters, as well as Mg-Si co-clusters;
• peak II at 160 ◦C: GP-zones;
• peak III at 230 ◦C: β”-precipitates;
• peak IV at 270 ◦C: β’-precipitates;
• peak V at 320 ◦C: Q-precipitates.

The DSC curves and the temperatures of the formation peaks were similar for the
solution-annealed and pre-aged conditions. However, the significant difference between
these two conditions was the absence of peak I for the pre-aged condition. After pre-aging
at 80 ◦C, the formation of stable Mg-Si co-clusters was not observed in the thermograms. In-
stead, the formation of GP zones in peak II was the first visible deviation from baseline. The
further precipitation sequence is unchanged when compared to the solution-annealed con-
dition. In contrast to these two material conditions, for the naturally-aged material, peak II
shifted towards lower temperatures. As observed for the pre-aged condition, the formation
of Mg-Si co-clusters, expressed by peak I, was absent. When comparing the solution-
annealed and pre-aged conditions, the most significant difference was the pronounced
endothermic peak at approximately 180–210 ◦C, which corresponded to the dissolution of
the co-clusters [22,23]. Furthermore, peak III showed a higher exothermic reaction and was
shifted towards higher temperatures, as a result of the natural aging time [22,24].

3.2. Aging Behavior

The natural aging responses for the solution-annealed and pre-aged conditions are
shown in Figure 2. The hardness of the solution-annealed condition increased almost
linearly with the increasing aging time, from 68 HV0.5 90 min after quenching to 91 HV0.5
after four weeks. The pre-aged condition exhibited a significantly higher initial hardness
of 80 HV0.5. In contrast to the solution-annealed condition, the hardness remained almost
constant within the first three weeks of natural aging. However, thereafter, the hardness
increased similarly to the solution-annealed condition, even though it remained lower
overall with 86 HV0.5 after four weeks.

In Figure 3, the artificial aging response, dependent on additional plastic defor-
mation prior to the artificial aging, is shown for the three tested initial heat-treatment
conditions. When comparing the non-extruded conditions, the highest peak hardness,
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118 HV0.1, was achieved with an initial solid-solution treatment followed by artificial aging
for 300 min (Figure 3a). The peak hardness results of the naturally-aged and pre-aged
conditions were lower, at approximately 107 HV0.1 for both. However, these hardness
results were already reached after 60–120 min aging time. Linear extrusion prior to artificial
aging significantly increased the hardness of all of the initial heat-treatment conditions
(Figure 3b,c). Furthermore, the pre-aged condition generally exhibited a higher hard-
ness during the entire artificial aging time when compared with the solution-annealed or
naturally-aged conditions. A peak hardness of approximately 162 HV0.1 for the pre-aged
condition after extrusion was achieved after 300 min aging time.
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Figure 1. Differential scanning calorimetry (DSC) thermograms for the 6056 aluminum alloy in
solution-annealed, naturally-aged and pre-aged conditions obtained for the following three heating
rates: (a) 5 K min−1, (b) 10 K min−1 and (c) 20 K min−1. With an increased heating rate, the peaks
shift towards higher temperatures. After pre-aging at 80 ◦C, the formation of Mg-Si co-clusters
(peak I) is not observed in the thermograms. The naturally-aged condition shows a pronounced
endothermic peak, which corresponds to the dissolution of the Mg-Si co-clusters.
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Figure 2. Microhardness of the 6056 aluminum alloy in solution-annealed and pre-aged conditions
as a function of the natural aging time. Depicted are the mean, minimum and maximum values of
the microhardness. The hardness of the solution-annealed sample increases continuously along with
the increasing aging time, whereas for the pre-aged condition, the hardness remains almost constant
during the first weeks.

The induced strain had only a minor influence on the hardness. An acceleration of
the aging kinetics due to an increase in the induced strain was only noticeable for the
solution-annealed condition extruded with ϕ = 1.2. The peak hardness for this condition
at approximately 152 HV0.1 was already reached after 180 min, which was the shortest
peak-aging time for all of the extruded conditions.

3.3. Tensile Properties

In Figure 4, the ultimate tensile strengths as a function of the artificial aging time of
the 6056 aluminum alloy in solution-annealed, pre-aged and naturally-aged conditions
after linear extrusion with ϕ = 1.2 are shown. With an increasing aging time, the strength
of all three heat-treated conditions after extrusion significantly increased. The pre-aged
condition exhibited the highest level of strength during the complete aging time, from
470 MPa after 10 min to 532 MPa after 360 min. When compared with the naturally-aged
condition, the strength of the pre-aged condition was in general approximately 4% higher,
and was even as high as 10% when compared with the solution-annealed condition after
360 min artificial aging time.

3.4. Microstructure

On the example of the naturally aged condition, the microstructure parallel to the
238 processing direction and the differences in the grain aspect ratios respectively grain
elon-239 gation dependent on the induced strain are shown in the optical micrographs in
Figure 5. Linear extrusion primarily led to a change in the aspect ratios of the grains, while
the grain elongation was increased with higher strains. No localized deformation was
visible at ϕ = 1.2, which corresponds to a relatively high induced strain. It has been shown
previously that these strains can lead to localized deformation through the formation
of shear bands in 6000 series aluminum alloys [25], which is clearly visible in optical
micrographs and would influence the results of further investigations by a heterogeneous
microstructures. The grains and grain boundaries of the undeformed aluminum wire
were clearly noticeable (Figure 5a). As a result of the linear extrusion, the microstructure
exhibited elongated grains parallel to the extrusion direction (Figure 5b,c). For the higher
induced strain of ϕ = 1.2, this effect was more pronounced (Figure 5c).
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Figure 3. Microhardness of the 6056 aluminum alloy in solution-annealed, pre-aged and naturally-
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Depicted are the mean, minimum and maximum values of each microhardness. Plastic deformation
and pre-aging increase the hardness during artificial aging.
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deformation and (b,c) after further linear extrusion with induced strains of (b) ϕ = 0.8 and (c) ϕ = 1.2. Because of the linear
extrusion, the grains are highly elongated. This effect is more pronounced for the sample with the higher induced strain.

The micrographs in Figure 6 show the microstructures of the three initial heat-treated
conditions and the same conditions following extrusion with ϕ = 1.2 after 10 min of artificial
aging at 120 ◦C. This short artificial aging time was chosen for the TEM analysis in order
to investigate the potential microstructural differences between the initial heat-treatment
conditions. All of the investigated conditions exhibited a high dislocation density due
to the induced strain from the linear extrusion. Furthermore, regardless of the initial
heat-treatment conditions, initial recovery due to artificial aging along with the formation
of dislocation cells was noticeable (Figure 6). The solution-annealed condition exhibited a
higher dislocation density when compared with the pre-aged and naturally-aged materials.
However, the initial formation of dislocation cells was more pronounced for the pre-aged
material. For the present large, globular intermetallic phases, which were most likely
not dissolved during solid-solution treatment, high Mn and Si contents were detected by
element analysis (Figure 6b,d,f). Regardless of the initial heat-treatment condition, because
of the induced strain and the high dislocation density, fine precipitates, which formed
during 10 min of artificial aging, could not be detected, as the high dislocation density and
the strong contrast of the dislocations covered them up.
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Figure 6. TEM micrographs of the 6056 aluminum alloy in (a,b) solid-solution treated, (c,d) naturally-aged and (e,f) pre-
aged condition after linear extrusion with an induced strain of ϕ = 1.2 and subsequent artificial aging at 120 ◦C for
10 min. Regardless of the initial heat treatment, all conditions exhibit a high dislocation density along with the beginning
arrangement in dislocation cells.

4. Discussion
4.1. Effect of Pre-Aging

The initial heat treatment has a significant influence on the precipitation kinetics
and the aging behavior of the 6056 aluminum alloy. Natural aging after solid-solution
treatment leads to the aggregation of separate Mg and Si clusters and the formation of
Mg-Si co-clusters [6,10,21,26,27]. The nucleation of these low-temperature clusters results
in an almost linear increase in hardness [28]. Based on the results of the DSC measurements,
the formation of the Mg-Si co-clusters is suppressed through pre-aging, and GP zones
are formed instead [5,11,29]. This process is controlled significantly by diffusion and the
concentration of mobile quenched-in vacancies [6,13,30,31]. The presence of these higher-
temperature clusters explains the increased room temperature stability and, therefore,
the hardness remaining almost constant within the first weeks [12,28]. The higher initial
hardness of the pre-aged condition when compared to the solution-annealed condition is
in good accordance with other studies [12,14,32]. With higher pre-aging temperatures, the
initial hardness increases and, furthermore, the period of time during which the hardness
remains constant during natural aging is extended [11,12,32,33].

4.2. Artificial Aging Behavior after Linear Extrusion

The artificial aging behavior and the achieved hardness are primarily determined
by the initial heat-treatment condition and the strain induced by linear extrusion. In
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accordance with the results for the non-extruded material, the solution-annealed condition
exhibits a higher hardening rate and major hardness due to the rapid formation of the
strengthening phase β” [10,24,34]. In contrast, the nucleation and growth of this phase is
reduced for the naturally-aged and pre-aged conditions [24,35].

Additionally, the hardening response is slower [10,36], which is in accordance with
the results. Natural aging prior to artificial aging leads to a strongly reduced amount of
mobile quenched-in vacancies and, therefore, to a decelerated hardening response [6,10].
Zi et al. [32] suggest that after pre-aging, the vacancies are in the thermal equilibrium state,
which diminishes the hardening response. However, the artificial aging temperature has a
significant influence on the formation rate and the density of β”, and the nucleation of this
strengthening phase is accelerated by higher temperatures [10,37]. As the artificial aging
temperature used here is significantly lower when compared with industrial standards, we
assume that the reduced hardening response of the pre-aged condition when compared
with the solution-annealed condition is as a result of the chosen temperatures. Additionally,
we propose that the quite similar hardening responses of the naturally-aged and pre-aged
conditions are a consequence thereof. In the DSC thermograms at 120 ◦C, the naturally-aged
material exhibits a small exothermic peak, which indicates the formation of GP zones [22].
Although this peak is more pronounced for the pre-aged condition, it is shifted to higher
temperatures. This might be the reason for the more rapid hardening of the naturally-aged
condition when compared with the pre-aged material. In other studies [12,32] that report
a higher hardness for the pre-aged condition when compared with the naturally-aged
condition, higher artificial aging temperatures were chosen.

After extrusion, the achieved hardness during artificial aging is significantly increased
for all initial heat-treatment conditions due to the induced strain and increased dislocation
density [7,16,18,38–41]. However, the magnitude of the induced strain only marginally
affects the achieved hardness and the hardening response when comparing the conditions
extruded with ϕ = 0.8 and ϕ = 1.2, respectively.

In contrast to the non-extruded conditions, the artificial aging response of the pre-aged
condition is large when compared with the naturally-aged condition, which is confirmed by
other studies [11,14,34,42]. As the artificial aging temperature is quite low, this effect only
occurs for the extruded conditions due to the induced strain and the resulting enhanced
hardening response. Furthermore, the pre-aging temperature and time are significant
factors for the artificial aging response and achieved hardness [11,32]. However, for the
artificial aging behavior, the most important influence is exerted by the differently formed
clusters during pre-aging and natural aging. The small Mg-Si co-clusters [12,36,43] that are
formed during natural aging are more stable because of their high binding energy [11,36].
Therefore, the direct transformation into β” is impeded, as these clusters have to change
their chemical and structural composition or must first dissolve [6,27,29,34–36]. As a
result, the hardening response of the naturally-aged conditions during subsequent artificial
aging is lower [11]. For the pre-aged condition, the larger-sized GP zones are chemically
and structurally close to the β” phase [27,29,34–36]. Therefore, these GP zones are more
easily transformable and act as nucleation sites for the strengthening phase β” [14,26,27].
Furthermore, the density of β” is enhanced by pre-aging [27], as the number of quenched-in
vacancies, which are necessary for β” formation [6,34], are increased [31]. This explains
the high hardness, which is also reflected in the ultimate tensile strength, of the pre-aged
and extruded conditions during artificial aging, when compared with the corresponding
naturally-aged solution-annealed conditions.

The solution-annealed condition extruded with ϕ = 1.2 shows the most rapid hard-
ening and the fastest achievement of peak hardness. The diffusion is supported by the
high density of quenched-in vacancies after the solid-solution treatment [6], and the high
dislocation density due to the cold plastic deformation [7,15,16] further accelerates the
precipitation kinetics of this condition. The numerous nucleation sites and the increased
nucleation rate of β” results in a rapid hardening response. Nevertheless, the overall
hardness of the solution-annealed and extruded condition is minor when compared to the
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pre-aged and extruded condition, which is potentially a result of the induced strain and
the low artificial aging temperatures. The strengthening effect, which was described in
other studies [7,15,16,18,44], of the strategic application of cold plastic deformation in the
solution-annealed condition followed by artificial aging majorly depends on the dislocation
density. We assume the induced strain or the artificial aging temperature were too low
to achieve a higher tensile strength and hardness when compared with the pre-aged or
naturally-aged conditions.

5. Summary

The influence of the initial heat-treatment conditions on the artificial aging behavior
after conventional linear extrusion at room temperature was investigated for the precip-
itation hardening of a 6056 aluminum alloy. A pre-aged condition was compared with
solution-annealed and naturally-aged conditions. The influence of the pre-aging treat-
ment on the natural aging behavior and on the hardening response during artificial aging
after extrusion was systematically analyzed and compared with both of the other initial
heat-treatment conditions. Solid-solution treatment and subsequent pre-aging at 80 ◦C
for several hours was found to suppress the formation of Mg-Si co-clusters, and, there-
fore, the room temperature stability was increased as the natural aging was inhibited.
Furthermore, the artificial aging response after extrusion was significantly enhanced by
pre-aging. The achieved hardness and ultimate tensile strength were high when compared
with the naturally-aged and solution-annealed conditions that were extruded prior to
artificial aging.

The results demonstrate that pre-aging is not only an effective strategy to prevent
natural aging, but it can also decrease the accompanying aging response during the often-
inevitable interim storage periods between industrial production steps. Furthermore,
the higher achievable mechanical properties after artificial aging following cold plastic
deformation indicate a promising strategy for resource- and cost-efficient manufacturing.
However, further research on the applicability of this thermomechanical treatment for
complex industrial multistage forming processes, where the strain is often introduced
heterogeneously, and its effect on the subsequent manufacturing steps is necessary.
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