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Abstract: Microstructures encountered in the various metal additive manufacturing (AM) processes
are unique because these form under rapid solidification conditions not frequently experienced
elsewhere. Some of these highly nonequilibrium microstructures are subject to self-tempering
or even forced to undergo recrystallisation when extra energy is supplied in the form of heat as
adjacent layers are deposited. Further complexity arises from the fact that the same microstructure
may be attained via more than one route—since many permutations and combinations available
in terms of AM process parameters give rise to multiple phase transformation pathways. There
are additional difficulties in obtaining insights into the underlying phenomena. For instance, the
unstable, rapid and dynamic nature of the powder-based AM processes and the microscopic scale of
the melt pool behaviour make it difficult to gather crucial information through in-situ observations
of the process. Therefore, it is unsurprising that many of the mechanisms responsible for the final
microstructures—including defects—found in AM parts are yet to be fully understood. Fortunately,
however, computational modelling provides a means for recreating these processes in the virtual
domain for testing theories—thereby discovering and rationalising the potential influences of various
process parameters on microstructure formation mechanisms. In what is expected to be fertile ground
for research and development for some time to come, modelling and experimental efforts that go
hand in glove are likely to provide the fastest route to uncovering the unique and complex physical
phenomena that determine metal AM microstructures. In this short Editorial, we summarise the
status quo and identify research opportunities for modelling microstructures in AM. The vital role
that will be played by machine learning (ML) models is also discussed.

Keywords: ICME; CALPHAD; cellular automata; phase field model; kinetic Monte Carlo; computa-
tional fluid dynamics; finite element method; machine learning

1. Introduction

The strategy of depositing metallic material layer by layer to make components
bestows additive manufacturing (AM) with numerous advantages (e.g., [1–3]) but also
creates several challenges (e.g., [4–6]). One of these difficulties is pinpointing the exact
nature of the influences determining microstructure formation in AM parts [7]. This is
not surprising, considering the complex thermal and fluid flow phenomena preceding the
solidification of a highly nonequilibrium nature in a powder bed fusion (PBF) process [8–10]
(Figure 1).

Microstructures resulting from solidification are a function of the heat extraction
rate, alloy chemistry, and nucleation conditions. They determine the properties (e.g.,
mechanical, thermophysical) of the AM part and, ultimately, its fitness for use. Since
solidification rates are influenced by the position of the fusion zones on the part being built,
the AM microstructures are strongly location-specific. Additionally, as the heat source
(e.g., laser beam or electron beam) scans the powder bed in directions perpendicular to
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the build direction, the asymmetry in heat transfer paths is reflected in the microstructural
morphology that results in anisotropy. In addition, microstructures in AM form under rapid
solidification conditions as the microscopic melt pools are quenched by instantaneous heat
loss to the previously fused layer (or the build plate in the case of the first layer). They are
sometimes modified by the heat received from the newly depositing adjacent layers as they
remelt (at least partially) and resolidify [11]. Körner et al. [12] pointed out that grains may
nucleate on segregated microstructure in the remelt zones since, during remelting, some
precipitates or particles that do not fully dissolve may serve as heterogeneous nucleation
sites. An example of the distinctive AM microstructures around the microscopic melt
pools is given in Figure 2 for the AlSi10Mg alloy solidifying in an L-PBF setting. Thijs
et al. [13] explained that the directional solidification in the melt pool caused not only a
morphological texture but also a crystallographic texture.
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Figure 1. A schematic showing the complex thermal and fluid dynamics phenomena that occur in 
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Figure 1. A schematic showing the complex thermal and fluid dynamics phenomena that occur in a
powder bed fusion process. Reproduced from [9] with permission from Elsevier. The heat source can
be a laser beam or an electron beam. In the latter case, the build platform is usually preheated.

Due to the rapid freezing rates and other factors mentioned above, the AM microstruc-
tures significantly differ from those obtained in traditional processes (e.g., casting) in grain
morphology distributions, defect populations and crystallographic texture [14,15]—a com-
parison is provided in Figure 3 for a popular AM alloy, Ti6Al4V. Other alloys are considered
elsewhere, e.g., [16].
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Figure 2. A Scanning Electron Microscope (SEM) image of the melt pool (MP) zone with fine (MP 
fine) and coarse (MP coarse) microstructures and a heat affected zone (HAZ) in the boundary with 
the previously fused layer. Reproduced from [13] with permission from Elsevier. 
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the previously fused layer. Reproduced from [13] with permission from Elsevier.
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Figure 3. Microstructures and room-temperature tensile strengths of AM Ti6Al4V alloy produced us-
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Most innovation in materials science and engineering resides in our ability to un-
derstand and control the intimate relationship between the structure of materials and
their properties [18]. The first step towards achieving such innovation in the sphere of
AM involves understanding the relationship between the process parameters and the
microstructures they create.

In this article, we first explain why computational modelling can play a major role in
advancing the science underpinning microstructure formation in AM. We then provide a
brief overview of the status quo in modelling efforts aimed at AM-related microstructure
and discuss challenges and research gaps. Since excellent comprehensive reviews of the
topic were published recently (e.g., [12,19–21]) and several exceptional texts that address
microstructure formation [21] and methods for modelling [22] exist, we restrict ourselves
to providing updates on recent progress and complementary insights. For completeness, a
summary of the relevant modelling methods is also provided.

2. The Role of Computational Modelling in Advancing the Understanding of Mechanisms

As discussed in the previous section, the AM process comprises complex heat trans-
fer and fluid dynamics phenomena and extreme solidification conditions. Additional
complexity is inherited from the fact that the various AM processes offer multiple phase
transformation routes by allowing numerous combinations of process parameters (e.g.,
laser power, scan velocity, scan sequence, hatch spacing) to be employed to build an
AM part. Gaining insights from observing the AM process in-situ is made difficult by
several factors, including the microscopic nature of the melt pools, the rapid pace of so-
lidification, and the highly dynamic and unpredictable nature of powder-based building
processes. The microscopic size of the melt pools and the rapidity of solidification require
high-resolution/high-frame-rate sensors to record process signatures such as temperature.

Given the large multidimensional space occupied by AM process parameters, the
complex nature of the thermal and fluid dynamics phenomena associated with the PBF
process, the asymmetry in heat input and extraction leading to anisotropy, the uniqueness
and rapidity of solidification conditions, cyclic reheating, and the difficulties in observ-
ing the process in-situ, it is understandable that much of the knowledge concerning AM
microstructure formation is still developing. The AM community readily acknowledges
the need to create an in-depth understanding of microstructure development to fabricate
high-quality products by AM processes—e.g., see [12,21,23–25]. Such exceptional qual-
ity products are demanded by industries that use mission-critical AM parts, e.g., space,
aerospace, automotive, medical and defence [26].

Against this backdrop, physics-based computational modelling is uniquely positioned
to help bridge part of the knowledge gap. For instance, simulations can reconstruct the
physical processes by combining known inputs (e.g., rate of heat input, estimated heat
loss to the ambient) and predict responses (e.g., temperature evolution) of AM systems
by solving the associated governing equations (e.g., Fourier heat conduction). A correctly
reconstructed (i.e., experimentally validated) virtual replica of an AM process allows the
researchers to ‘see’ the actual process by interrogating ‘virtual probes’ for various response
histories (e.g., temperature, displacement). Unlike the limited number of high-end physical
sensors that may be used in the experiments, there can be a multitude of virtual sensors
providing an unparalleled ‘view’ of the process. For example, any node in an FEA analysis
can be used to obtain histories of the field variables. In addition, the analyst can ‘freeze’ the
process at critical junctures for in-depth studies of events leading to an undesirable event.

Importantly, modelling provides a cost-effective scientific method for gaining deep
insights into microstructure development in AM. It allows for the testing of various theories
on the roles played by different phenomena through the comparison of predictions based
on these concepts with laboratory observations (Figure 4). When used in tandem with
well-designed validation experiments, modelling can help accelerate the identification of
causal mechanisms by recognising the most critical influences from the many potential
candidates. Using the well-established ‘design of experiments’ methods for numerical
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simulations as demonstrated elsewhere [27], the number of simulations required to obtain
the understanding may be reduced, further quickening the pace of innovation. Based on the
knowledge gained through such screening, modelling can further assist with manipulating
those key parameters for gain by facilitating ‘what-if’ studies. In the process of creating
models, new theories may also be developed and tested quantitatively by comparing
predictions using these with observed microstructures. Ultimately, robust predictive
models will be able to help practitioners tailor microstructures to obtain desirable location-
dependent properties.
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Figure 4. The nexus between experiments and simulations in advancing the knowledge on microstructure formation in AM
processes. Temperature is widely accepted as a reliable process signature and its history must be measured and compared
with predictions.

3. A Summary of Modelling Methods

Several numerical methods are capable of simulating microstructures in AM at the
required level of resolution, i.e., at the mesoscopic scale (that spans from nanometres to
micrometres) and at the continuum scale. Some examples of these are front-tracking [28],
phase field (PF) [12,19,29–31], level set (LS) [32], lattice Boltzmann (LB) [30,33], Potts kinetic
Monte Carlo (kMC) [12,19,30,34], cellular automata [12,19,29,30] and the Johnson–Mehl–
Avrami–Kolmogorov (JMAK) theory-based phenomenological model [35,36]. These varied
techniques have unique strengths and weaknesses [12,19,30] which means modellers can
select the method best suited to their tasks based on these considerations. For example, by
deliberating the resolution vs. computational load relationship (Figure 5), a decision may
be made on how much accuracy may be sacrificed to obtain a faster solution. Additionally,
some methods (e.g., PF) are better suited to considering fundamental physics and may
thus be the optimum choice for tailoring microstructures. Each technique also has its own
set of unique challenges that modellers need to address—especially when simulating a
highly nonequilibrium process such as AM. The hurdles faced by modellers are considered
later, in Section 6. While we do not consider atomistic or molecular dynamics simulations
here, these may be used to obtain some inputs required for the above methods using
first principles.
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Figure 5. Resolution of microstructures obtained from different techniques vs. computational load
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Temperature histories recorded during AM builds capture the combined influences of
heat sources and sinks and provide crucial information on local solidification rates. Specifi-
cally, they help quantify the local temperature gradient G and the solid–liquid interface
velocity R (i.e., the rate at which the liquidus isotherm moves). The balance between G and
R plays an important role in determining the morphology of the microstructures in AM
processes such as Direct Energy Deposition (DED) [37], Wire Arc Additive Manufactur-
ing (WAAM) [38], Laser Powder Bed Fusion (L-PBF) [23,39], and Electron Beam Powder
Bed [40,41]. One such relationship for an L-PBF process is shown in Figure 6.
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duced from [39] with permission from Elsevier.
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Therefore, it comes as no surprise that all of the microstructure prediction models
need location-specific temperature histories as inputs for their predictions. These are either
measured during experiments or estimated at the continuum scale using computational
fluid dynamics (CFD) or the finite element method (FEM). Recently, the use of lattice
Boltzmann method-based hydrodynamics tools for the purpose was demonstrated [33,42].
These can take into account the random distributions of powder particles by size in a layer,
and the propagation of the laser (or electron beam) that includes multiple reflections, phase
transitions, thermal conductivity, and detailed liquid dynamics of the molten metal. The
influences taken into consideration include evaporation of the metal and recoil pressure. In
the current Special Issue, a similar hydrodynamics-based approach is presented in an article
by Cummins et al. [35] where temperature histories were estimated using Smoothed Particle
Hydrodynamics (SPH) simulations that consider melt pool dynamics (Figure 7). SPH is a
meshless or Lagrangian method in which virtual particles move with the local material
velocity and store all field variables (such as temperature, velocity and microstructure
phases). This means that the heat transfer, phase change and melt flow initiated by the
laser passing over the powder bed are naturally modelled with SPH in a coupled scheme.
While CFD methods consider the detailed fluid flow characteristics of the melt pool when
calculating temperature histories, FEM is frequently used to obtain approximate estimates
within much shorter timeframes—allowing the simulation of large builds. Particle-based
hydrodynamics-based tools are the least productive in terms of computational efficiency,
although they are otherwise ideal for simulating powder-based AM systems.
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Figure 7. Temperature of the powder bed calculated by SPH following a laser scan over Ti-6Al-4V
powder grains for selected times from the start of scan at time = 0 s [35]. Laser power = 114 W and
scan speed = 0.6 m/s. Time steps (ms) extracted here are for: (a) 12, (b) 14, (c) 18 and (d) 22.
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A critical challenge common to all the above methods is the treatment of nucleation of
grains [12]. It is a hurdle that is far from being resolved due to the difficulties surrounding
observing the mechanism and the potentially coupled nature of the numerous causal
factors. To further complicate matters, it has been shown that the several free parameters
that are part of the existing models of nucleation have an overwhelming influence on final
microstructure predictions [25].

4. Modelling of Nonequilibrium Microstructures Encountered in AM: Recent Progress

It is well recognised that understanding microstructural development in AM under
highly nonequilibrium cooling conditions and the consequent effects on mechanical prop-
erties of the final component is critical for accelerating industrial adoption of the metal AM
process [39]. The distinctive mechanisms that influence microstructure formation under
extremely high solidification rates force a rethink of traditional theories or the development
of new ones. In this section, we highlight some recent progress made on this front.

It is known that a certain amount of undercooling (curvature, thermal, constitutional,
pressure or kinetic) is necessary for solidification to occur since there is no driving force
under equilibrium conditions [30]. As the degree of undercooling grows, the velocity of
the solid–liquid interface (which is related to the rate of solidification) increases. This
departure from equilibrium gives rise to a well-defined ‘equilibrium hierarchy’ (Figure 8).
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Figure 8. Hierarchy of equilibrium. (Information for this figure was drawn from [43]).

AM processes operate under the ‘interface nonequilibrium’ conditions where the
equilibrium phase diagram fails, and chemical potentials on either side of the liquid–solid
interface are no longer equal. In these instances, when the solidification velocity exceeds
a certain critical velocity for the multi-component alloy system, the solute is trapped in
the rapidly freezing primary solid phase. This is because the solute atoms are unable to
diffuse ahead of the fast-moving liquid–solid interface, and the concentration exceeds
the solubility limit. Several models have been advanced to describe this experimentally
observed phenomenon [31]. Recently, purely quantitative phase field models have been
developed from fundamental considerations for predicting solute trapping at velocities
relevant to AM, e.g., [31] for the Si-9at.%As system. Similar numerical models are required
for other alloys used in AM to simulate microstructure formation accurately. In many
cases, the experimental data are not yet available—partially due to the considerable effort
involved in collecting all the relevant information, e.g., the extensive range of AM process
parameters that generate alternative phase transformation routes. Therefore, the numerical
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models can help limit the number of physical experiments needed to determine the solute
trapping behaviour.

For predictions involving multi-component alloy systems, phase field models use
thermodynamic data obtained from the phenomenological CALPHAD (calculation of
phase diagrams) method. The information is used to evaluate alloy phase constitution, the
solidification path, basic alloy properties such as partition coefficients (for calculating solute
trapping), slopes of liquidus, and solidus phase boundaries. Since the CALPHAD data are
typically developed for equilibrium scenarios, they are modified for simulating nonequilib-
rium processes by using empirically derived models (e.g., Scheil–Gulliver). However, the
approaches used so far have limitations [44] and can be improved to support more realistic
predictions of microstructures in an AM process simulated at the continuum (or engineer-
ing) scale. Some recent efforts (e.g., [44,45]) have improved the quality of microstructure
predictions for AM builds. For instance, in an article that is part of the current Special
Issue, Sargent et al. [44] have combined continuum scale thermal simulations of the L-PBF
process of stainless steel SS316L with a phenomenological microstructure model. Solute re-
distribution (or microsegregation) was calculated using DICTRA [46], a module that works
with the commercial CALPHAD software Thermo-Calc [47]. (DICTRA and Thermo-Calc
are registered trademarks of Thermo-Calc Software AB, Solna, Sweden).DICTRA is used to
add kinetics that are responsible for the deviations from equilibrium behaviour into the pre-
dictions; this makes it possible to incorporate those phenomena (e.g., diffusion-controlled
microsegregation) that influence microstructure formation in AM. As shown by the results
of Sargent et al. [44], calculations that integrate kinetics can fine-tune predictions using the
various location-specific cooling rates in a solidifying alloy under AM conditions. This may
be contrasted with a single result obtained for all cooling rates corresponding to maximum
microsegregation from the highly idealised Scheil–Gulliver model due to its assumptions
of negligible diffusion in the solid phase and perfect mixing in the liquid. (It must be noted
here that results obtained from the Scheil–Gulliver model become increasingly valid at
extremely high cooling rates [48], e.g., during the rapid quenching of the first AM layer
deposited on a build plate, due to its assumptions holding in the physical domain). In a
separate recent work [45] that simulated the solidification of AlSi10Mg alloy under AM
conditions, a similar fine-tuning was demonstrated by comparing predictions from the
original Scheil model and its modified forms. The amendments added solute trapping
based on a collection of previously published empirical models (Figure 9) that took into
consideration the solidification front velocity and composition.

O’Toole et al. [20] confirmed the power of using diffusion kinetics combined with
CALPHAD for predicting microstructures of the AlSi10Mg alloy system freezing under
AM conditions. The PF model used by O’Toole and co-workers incorporated the finite
interface dissipation (FID) model [49] to account for diffusion across phase interfaces based
on kinetics in place of the equilibrium partitioning assumption. (The FID treatment does
away with the assumption of equilibrium at the solid–liquid interface and is thus highly
suited for the extreme ‘interface nonequilibrium’ category found on the extreme right in
the ‘hierarchy of equilibrium’ shown in Figure 8). In that study, temperature histories
were transferred from a continuum scale CFD model to a PF microstructure model. This
multiscale model was then used to quantify the discrepancy in the CFD predictions of the
position of the liquid–solid interface between the equilibrium and highly nonequilibrium
treatments. O’Toole et al. also introduced a novel volume mapping method to pass the
temperature field from the continuum scale grid down to the mesoscopic scale mesh.
The FID model [49] was also used by Nomoto et al. [50] for simulating two-dimensional
dendritic growth in the Ni (Bal.)-Al-Co-Cr-Mo-Ta-Ti-W-C alloy solidifying under L-PBF
conditions and is reported in an article that is part of the current Special Issue. Their
nonequilibrium multi-phase field model (MPFM) coupled with the CALPHAD database
predicted cell sizes that were in agreement with experimental data. The approaches
mentioned above are generally limited to simple binary and ternary systems, as increasing
the number of components rapidly escalates the computational complexity [51]. Therefore,
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in a recent study, Liu et al. [51] introduced a time-discrete semi-analytical inversion of the
thermodynamic relations applicable to general forms of the Gibbs free energy. Linking it
with a CALPHAD database enabled the authors to study the grain boundary precipitation
and microchemistry evolution in a quaternary multi-component Al-Zn-Mg-Cu system, at
length and time scales relevant to typical industrial heat treatment processes. Another
recent PF model that merits mention is that of Yang et al. [21], where the solidification of
SS316L under L-PBF conditions was simulated. Although solute trapping was neglected
entirely as their liquid–solid interface was controlled only by the temperature field variable,
they incorporated a noteworthy nucleation model based on classical nucleation theory and
the initial grain structures of powder particles and substrate.
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In an article that is part of the Special Issue, Mohebbi et al. [52] used a CA approach
to simulate primary particle development and its impact on microstructural evolution of
Sc-modified aluminium alloys during AM. They developed a precipitation model that took
into account the significant influence exerted by solid intermetallic particles in the under-
cooled liquid. They also proposed an initiation criterion based on the precipitation kinetics
of primary particles, to address solute trapping under high solidification rates. Finally,
they used the Avrami equation to track the progress of precipitation. Their experimentally
validated approach can predict the distinct fine- (FG) and coarse-grained (CG) zones at the
fusion boundary and the melt pool core, respectively. The model was also shown to be able
to address the FG zone under lower scanning speed and higher platform temperatures.

5. Machine Learning Models

The use of ML models has increased tremendously in recent times, thanks to increas-
ingly powerful hardware capabilities and contemporary algorithms. These models need to
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be trained using a sufficiently large and representative data set to be accurate and reliable.
The ‘big data’ could be obtained from experiments or physics-based models [53].

Machine learning (ML) models are efficient alternatives to physics-rich models (de-
terministic or statistics-based) as they typically solve in seconds or minutes rather than in
hours or days. ML models are particularly suited to tackling higher-dimensional problems
such as microstructure formation in metal AM due to their greater competence in obtaining
complex correlations than humans and without human bias.

The ML models also play another critical role [53]: they help overcome the difficulties
of connecting the various models of sub-processes that comprise the complete AM process.
The disparate mathematics and software codes used to solve the vastly different governing
equations associated with the sub-processes (e.g., powder flow, heat transfer, melt dynam-
ics, solidification, microstructure formation, residual stress development, distortion, etc.)
make it hard to introduce a ‘mathematical handshake’ between the sub-models (see [54] for
details). However, if each sub-process can be distilled into separate ML models, it becomes
easier to instead connect these ML models to obtain a complete model. For example, it
would be easier to tie an ML model that predicts mesoscale microstructures to an ML model
that predicts related continuum scale residual stresses than directly linking the two physics
models (e.g., PF with FEA). However, it must be noted that accounting for one-way or
two-way interactions between sub-processes would be hard to achieve under this strategy.

In an article [55] that is part of the current Special Issue, an efficient workflow for
an ML model was presented where microstructures were correlated to the thermal stress
response of a material. Such stresses play a significant part in the usability of AM parts
because the relaxation of residual stresses (i.e., when they are removed from their build
substrate) are responsible for the distortion of these components.

In closing, it must be recognised that ML models cannot be developed for outcomes
that are unusual [56], i.e., statistical outliers. That is because the ML algorithms are
typically designed to ignore such events as spurious. Additionally, for the best outcomes,
the correlations obtained using ML models must be checked using domain expertise to
ensure these are physically valid.

6. Research Gaps and Opportunities

The subject of solidification emerged as an engineering science back in the twentieth
century. Gulliver (1913) and Scheil (1942) derived material balance equations at the solid–
liquid interface of a solidifying material. They were followed by Chalmers (1956) who
developed the constitutional undercooling concept and codified correlations between
alloy compositions and cooling conditions that led to observably stable or unstable solid–
liquid interfaces (or crystal-melt fronts) [57,58]. While the early treatments applied to
equilibrium solidification where sufficient time was available for diffusion within the
phases, corrections (e.g., by Aziz [59]) were introduced in the latter half of the twentieth
century to consider the nonequilibrium conditions that dominate industrial processes. The
arrival of digital computers around this time marked a leap forward in the modelling
and simulation of microstructure formation. In the past couple of decades, the rise of AM
as an industrial process has added a new dimension to the field with its unique rapid
solidification characteristics.

While solidification studies that centred around thermodynamic equilibrium (or near-
equilibrium) were sufficient in the past to trigger innovations in manufacturing, this no
longer holds for AM. Therefore, the characterisation, manipulation and, ultimately, control
of material properties far from equilibrium offers almost completely untapped possibilities
for uncovering novel states and phases of materials [18].

Modelling of microstructure formation in AM processes is still in its early stages partly
due to the relative novelty of the process itself and partly due to the new paradigms and
computational strategies that must be introduced to support AM’s distinctive complexi-
ties, including extreme nonequilibrium solidification. Another contributing factor is the
presently available computing power, which, despite recent advances, is as yet inadequate
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to accommodate the simulation of part scale volumes—especially in methods such as
PF (and lower scale atomistic or molecular dynamics simulations) that use fundamental
physics. Clearly, the more accurate the simulations become, the higher the chances are that
these can reliably detect the different phase transformation pathways available for AM
alloys under the numerous permutations and combinations of process variables.

Below, we list some of the research gaps that researchers may pursue as opportunities.

6.1. Supporting Multiscale Simulations Associated with the Temperature-Microstructure Linkage

Temperature histories required for the mesoscopic scale microstructure models are
typically obtained using simulations conducted at the continuum scale. The challenges
here are:

1. Multiple length scales: The ability to accommodate the microscopic melt pool caused
by the AM heat source in the continuum simulations while concurrently allowing for
the build of a complete part to be simulated is a major hurdle in this category. In CFD
and FEA simulations, which are usually faster than particle-based hydrodynamics
versions, using mesh sizes that cater for the microscopic melts can result in an exces-
sive computational load at the part level. While it is possible to resort to adaptive
meshing where mesh sizes coarsen as the heat source moves away, there is often a
significant computational overhead associated with remeshing. As an alternative, it
may be possible to simulate the effect of the heat source at selected strategic locations
of the part in finer detail, predict microstructures at those locations, and interpolate
between those locations.

2. Efficacy and accuracy in passing information between scales: An important part
of the multiscale setup is the ability to pass the temperature data, efficiently and
accurately, from the larger grid used for its predictions to the smaller meshes used
for microstructure formation. A viable computational strategy for this purpose was
recently demonstrated [20].

6.2. Accounting for Two-Way Coupling between Temperature and Microstructure

In reality, there is two-way coupling between temperature and microstructure. That is,
the developing microstructure can—in turn—influence the temperature of its surroundings.
This is partly because of the release of the latent heat (source term) and partly because of
the changing thermophysical properties in the range as the liquid phase changes to solid
(more details in Section 6.3 below). Therefore, there is scope for developing a strategy
for concurrent two-way coupling in this area. However, early simulations are likely to be
restricted to small volumes due to the limitations imposed by computational capabilities.

6.3. Impact of Melt Flow at the Mesoscopic Level

Modelling and simulation of melt flow in AM processes, or welding in general, is
a considerable challenge of its own. Numerous studies at the mesoscopic level consider
the influences of the beam pressure and capillary and Marangoni forces on the melt pool.
For an overview, see, e.g., [60]. These phenomena need to be incorporated to model
the solidification problem at the mesoscopic level accurately. At this scale, columnar
solidification will impede the melt flow whilst equiaxed dendrites are transported to and
deposited at locations different from their nucleation site. Additionally, the transport
of solute and heat is affected significantly. Recently a simplified treatment, utilising the
Rappaz–Thevoz model of equiaxed solidification [61] and treating extra-dendritic melt well
mixed by forced convection, was applied to model the columnar to equiaxed transition in a
slab caster [62]. Similar treatments can be applied to an AM solidification scenario. Direct
simulations using, e.g., CA or PF models, are not yet available to the best of our knowledge.

6.4. Strategies/Experiments to Obtain Accurate Boundary Conditions

Heat transfer simulations are highly sensitive to some boundary conditions used, e.g.,
heat conduction away from the substrate (build plate), convection to the ambient (e.g.,
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powder bed, cover gas), and radiation. In addition, phenomena such as metal vapour for-
mation, Marangoni flow, etc., also exert influence over temperature predictions. Therefore,
for the temperature predictions to be accurate, models with accurate quantification of these
phenomena are required. These may be obtained from controlled and well-instrumented
laboratory experiments. Another area that must be addressed carefully concerns the quan-
tification of heat transferred from the heat source. This is especially true for laser-based
systems since a fraction of the heat is reflected away by the material being printed—and
thus must be accounted for accurately to obtain reliable temperature histories in the part
being built. If there is any uncertainty associated with predictions, sensitivity studies must
be carried out in order to gauge their influence on final temperature estimates and quantify
the potential errors.

6.5. Improved Models for Grain Nucleation

A major hurdle to microstructure predictions at the moment is the uncertainty sur-
rounding how to account for the appearance (in terms of time and space) of grains [12].
This subject is particularly relevant to AM because the initial columnar growth attached to
the substrate is strongly affected by the microstructure on its surface. While the nucleation
model of Yang et al. [21] discussed earlier may be considered a step in the right direction, a
deeper understanding is required for the reliable replication of this phenomenon in models.

6.6. Improved Strategies to Account for Multi-Component Diffusion

PF models use nonequilibrium diffusion kinetics linked to equilibrium-based CAL-
PHAD databases to describe solute trapping. A convenient and, therefore, popular, way of
achieving this is using a commercial module such as DICTRA [46] that adds on to the ther-
modynamic database supplied by Thermo-Calc [47], or Pandat [63]. (Pandat is a registered
trademark of CompuTherm LLC, Middleton, WI, USA). Assumptions made in developing
these modules must hold or be sufficient, e.g., one-dimensional diffusion is assumed by
DICTRA. Such unidimensional treatment cannot support diffusion in dendrite tips [48]. In
addition, Sargent et al. [44] have reported that convergence issues associated with DICTRA
calculations affected half of the temperature histories investigated by them. There is thus
scope to make improvements in this area and develop strategies for multi-dimensional
diffusion calculations.

6.7. The Need for Reliable Thermodynamic and Mobility Databases of Alloys Relevant to AM

The reliability of PF calculations is predicated strongly on the accuracy of the informa-
tion contained in the thermodynamic and mobility databases. Sargent et al. [44] and Korner
et al. [12] have highlighted the need to have data generated for alloy systems widely used in
AM to support related modelling activity. Some of this data may be generated using lower
scale simulations at the atomic or molecular dynamics levels, e.g., the quantum-mechanics
based Density Functional Theory (DFT) [64].

6.8. The Need for Reliable Material Data for AM Materials

The non-availability of reliable material properties, especially at elevated temperatures,
is an issue that has been plaguing simulations for decades and applies to alloys used in
AM. It has been the subject of extensive discussion elsewhere [53]. In AM, as suggested in
Section 6.4, temperature-dependent laser absorptivity is another property that is critical
since the amount of energy transferred from the heat source to the system depends on this
value (that changes with the surface condition) and thus can have a strong influence. For
PF models, the situation is presently worse. The need to input relatively esoteric quantities
such as interfacial energy [12] makes these simulations particularly vulnerable. Thus, there
is an opportunity for carrying out targeted work towards filling these gaps.
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6.9. Improved Strategies to Account for Solid-State Precipitation

In solid phases, precipitation occurs if the concentration of one solid is above the
solubility limit in the host solid, due to, e.g., rapid quenching, and the temperature is high
enough that diffusion can lead to segregation into precipitates [65]. In light alloys, which
are useful for aerospace applications, controlled solid-state precipitation is engineered
to obtain desirable properties such as high mechanical strength [66]. Unfortunately, the
nucleation of these usually metastable precipitates is often difficult to predict and the
atomic-scale mechanisms are poorly understood, thus hampering efforts towards rational
materials design [67]. These precipitations can occur in alloys after partial or complete
solidification or after secondary precipitation (regardless of whether eutectic or peritectic).
These phenomena are affected by the high heat extraction rates and consequently the short
time available for attaining phase equilibrium. In addition, the occurrence and distribution
of metastable phases must be considered. Additionally, these phases may dissolve again
during self-tempering from reheating caused by the repeated heating cycles inherent in
AM processes. Wu et al. [45] have sounded a need to improve data in TC-PRISMA [68], the
precipitation module that links to Thermo-Calc [47]. (TC-PRISMA is a registered trademark
of Thermo-Calc Software AB, Solna, Sweden).

6.10. Predictive Modelling of Hot Tearing

One of the most prominent defects in AM microstructures is hot tearing. This phe-
nomenon appears to be influenced by the alloy composition coupled with the pronounced
segregation in liquid channels due to the delay of secondary precipitation [66,67]. This
topic has not been resolved conclusively even in conventional casting and thus remains a
challenge in AM. It would be highly beneficial for an AM microstructure model to have
the predictive capabilities for hot tearing. Any model for quantifying the actual tendency
for hot tearing must, however, be coupled to a simulation of local stress and strain subject
to (i) macroscopic distortion of the specimen during processing, (ii) microscopic stresses
due to non-local thermal expansion, and (iii) transformation strain due to the precipitation
of secondary and tertiary phases.

6.11. Accounting for Novel AM Mechanisms at the Microscopic Level

Researchers are increasingly paying attention to the distinctive microstructural fea-
tures in AM that result from the unique heat transfer profiles. For instance, side-branching
in the dendrites as they form in the solidifying melt was the subject of recent studies,
e.g., [23]. It was shown that perturbations on the sides of cells (or dendrites) facilitated
crystals to change growth direction by side-branching along orthogonal directions in re-
sponse to changes in local heat flux in L-PBF. Accurate modelling of such phenomena is
not possible with one-dimensional diffusion calculations.

6.12. Strategies for Parallelisation and Preparing for Petascale and Exascale Computing

While many of the modelling methods used for microstructure modelling are highly
parallelisable [12,33], they still fall short of providing the speeds required to simulate the
formation of microstructures in good detail for a reasonable volume of a part. Thus, there
is scope to improve on computational efficiency by taking advantage of new hardware
paradigms such as petascale and exascale computing that are currently on the horizon (e.g.,
see [53]). This might involve rewriting some codes to take advantage of the architecture of
the new hardware. Although the cost of these rewrites is likely to be prohibitive in the near
term, they may offer excellent value in the medium to long term.

6.13. Heat Treatment of AM Microstructures

The repeated thermal cycles mentioned previously may cause in-situ heat treatment-
like effects to various degrees, depending on the alloy being printed and process parameters
being used. Parts can also be heat treated in the traditional manner, i.e., after printing, to
relieve the large residual stresses that result from high thermal gradients characteristic of
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AM builds. These treatments trigger changes to the original structures as additional energy
and time are provided for the previously curtailed diffusion processes to take place to
different extents. For more details, see works such as [69,70]. Incorporating these changes
in models will provide researchers the capacity to predict final part microstructures and
optimise heat treatment parameters to obtain the desired results.

6.14. High Entropy Alloys

Unlike conventional alloys, which usually feature one main metal mixed with small
quantities of others, high-entropy alloys (HEAs) typically use five metals mixed in roughly
equal proportions [71]. The resulting crystal structures can endow the alloy with a com-
bination of useful properties, such as strength, toughness and resistance to corrosion.
HEAs were used in AM only very recently, and the impact of rapid solidification on phase
selection in these alloys was highlighted by Gorsse [16]. They showed that significant
grain refinement and nonequilibrium solute-trapping effects were obtained, which in turn
avoided the segregation effects and relieved the solubility limitations in printed HEAs
compared with their cast counterparts. Since HEAs represent a modern family of alloys
that may find use in demanding applications (e.g., additively manufactured jet engine
parts), they are likely to be investigated in detail in the coming decades. Thus, it is useful
to consider applying computational modelling techniques to assist with deepening the
understanding around these materials.

6.15. Extracting Additional Scientific Value from ML Models Using a ‘Grey Box Big Data’ Approach

Despite the several advantages of data-driven ML models and their sharply increasing
popularity, they are primarily designed to be ‘black box’ models. As a result, the science that
underpins physical mechanisms is hidden from the researchers. Therefore, researchers can
assess the possibility of developing ML models that use a hybrid approach when physics-
based mechanistic models are available. This would enable physics to be embedded into
the predictions of ML models. When using this ‘physics-informed ML (or PIML) technique,
ML models are constructed from ‘grey box’ big data (i.e., a combination of ‘black box’ data
from experiments or the field and ‘white box’ data from physics-based models)—see [53]
for a detailed explanation on the subject. In developing a hybrid PIML model, the physics-
based model can be used to provide the domain-expertise based checks and balances by
penalising any physically inconsistent outputs. Additional discussions on the subject are
available elsewhere, e.g., [72–74].

7. Future Perspectives

The metal AM market is expected to grow by USD 4.42 billion during 2020–2024,
expanding at a compound annual growth rate (CAGR) of over 14% (Figure 10), according
to a market research report [75] released in April 2021. Significantly, this report takes into
consideration the effect of the current global pandemic. The demand for metal AM products
from the industries that manufacture mission-critical products is likely to increase over
the coming years. This, in turn, will have implications for product quality and associated
requirements for part qualification (i.e., testing to ensure parts are within specifications)
and certification.

The need to uncover the science underlying microstructure formation in AM is ex-
pected to remain an ongoing requirement for the foreseeable future as the quality demands
of end-users increase with time. This, in turn, is likely to fuel demand for aids such
as computational modelling and keep the area fertile for research and development for
some time to come. While several efforts currently focus on experimental studies, only
a few of them are linked with modelling the same process to obtain a digital replica. By
working hand in glove with modellers, experimentalists will be able to generate a deeper
understanding of the mechanisms involved. This can only accelerate the pace at which
several of these phenomena are better understood—and potentially tuned to obtain de-
sirable tailored microstructures. Investigations of materials far from equilibrium require
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the development of new techniques capable of following dynamic processes in materials
with extreme spatiotemporal resolution [18]. It is encouraging that new breakthroughs
are being reported in the in-situ sensor technologies that can assist the AM community
in deepening its knowledge of the nonequilibrium phenomena. For example, recently
Siwick et al. [18] explained that ultrafast electron-based methods have become a major
new frontier in materials science due to the capability of following dynamics on time
scales as short as femtoseconds with the high spatial resolution and sensitivity afforded by
electrons. Such equipment is likely to be capable of providing information for modellers
and experimentalists on phenomena (e.g., phase transitions, metastable states) that hold the
key to accurately recreating the solidification processes in AM. Advances in sensors could
eventually provide clues that shed light on the currently obscure nucleation mechanisms.

Figure 10. Technavio’s latest market research report titled ‘Metal Additive Manufacturing Market by
Application and Geography-Forecast and Analysis 2020–2024′ [75]. (CAGR = Compound Annual
Growth Rate).

In closing, there are currently some hurdles for accurately replicating microstructure
formation in AM in the digital domain. However, the value in carrying out near-term
computational modelling to strengthen innovation in AM cannot be underestimated. Ex-
perimentally validated simulations of a reasonable accuracy are sufficient to provide rare
and counter-intuitive insights and must be carried out. Such near-term simulations can
uncover trends in the influence of process variables and assist with screening out the least
influential variables, highlighting the critical factors that must be studied more deeply.
They would also provide a strong foundation for future efforts which are more than likely
to be informed by more advanced experimental data, improved theories and computational
methods, and supported by more powerful computer hardware.
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