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Abstract: The objective of this paper was to determine the optimum process parameters of an electric
discharge machine while machining a new hybrid aluminum metal matrix composite. In this study,
a new hybrid aluminum metal matrix composite was prepared, with silicon carbide and graphite
particles used as reinforcements, with the help of the stir casting method. The selected electric
discharge machining parameters in this study were peak current (I), voltage (V), pulse-on time (Ton),
and tool material, while the response parameters were material removal rate and surface roughness.
To machine the fabricated samples, two different types of tool materials (copper and brass) were
used as electric discharge machine electrodes, and each had a diameter (Ø) of 12.0 mm. The optimal
settings of the electric discharge machining parameters were determined through experiments
planned, conducted, and analyzed using the Taguchi (L18) technique. An analysis of variance and
confirmatory tests were used to check the contribution of each machining parameter. It was found
that the material removal rate increased with the increase in pulse-on time and pulse current, whereas
the material removal rate decreased with the increase in voltage. On the other hand, reduced surface
roughness could only be achieved when current, voltage, and pulse duration were low. It was also
found that the selected electric discharge machining electrodes had a significant effect on both the
material removal rate and the surface roughness.

Keywords: aluminum metal matrix composite; electric discharge machining; material removal rate;
surface roughness

1. Introduction

Metal matrix composites (MMCs) are always in high demand due to their properties,
which are distinctive from those of conventional materials [1,2]. Some of the features that
distinguish MMCs from other, similar materials in the same category are high-temperature
strength, low density, specific strength, higher thermal resistance, and a higher strength-
to-weight ratio [1]. Other important properties include high fatigue, wear, and creep
resistances [2]. These properties make MMCs a viable alternative to cast iron, which is
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mostly used in the construction of engines and brakes in the automobile industry [2,3]. In
most previous studies, the metals that have been used for metal matrix composites are
aluminum and titanium [3,4]. Super alloys and copper alloys can also be used to develop
MMCs [5,6]. The most widely used type of MMC is the aluminum matrix composite
(AMC) [7]. One of the main reasons for the greater use of aluminum matrix composites is
that they have comparatively lower cost requirements than other MMCs [7,8]. In addition,
they provide excellent performance in all of the aforementioned properties of MMCs.
Therefore, the scope of AMCs for new applications is increasing.

Hybrid metal matrix composites are those materials that are made up of at least two
different materials and their combination provides superior properties, as compared to
their individual constituents [8,9]. In hybrid metal matrix composites, different nominated
materials work together to provide unique sets of properties [10]. One of the main reasons
to use hybrid metal matrix composites in the automotive industry is their low weight, high
stiffness, and strength [11]. However, the combination of the reinforcement and matrix
can be improved as per the requirement of industries [11,12]. The manufacturing of a
hybrid MMC material depends on its phases, i.e., the matrix phase and the reinforced
(dispersion) phase [12]. The matrix phase is the primary phase, which has a continuous
character, resulting in a ductile and less hard phase [12,13]. Generally, the matrix phase
supports the dispersed phase and shares a sustainable amount of load with it [13]. On
the other hand, the dispersed phase is embedded in the matrix in a discontinuous form.
Normally, the dispersed phase is stronger than the matrix phase [13,14].

In this research, a new hybrid aluminum metal matrix composite was fabricated by
using one of the best and most economical casting/fabrication processes, known as the
stir casting method. To fabricate the new, advanced hybrid AMC material, aluminum
6061 (Al6061) was used as the matrix phase, while silicon carbide (SiC) and graphite (Gr)
particles were used as reinforcements. In most previous studies [15–18], the development
of aluminum metal matrix composites was mainly performed by adding only a single
reinforcement in the stir casting process. No sufficient research has been conducted where
both Gr and Sic hard ceramic materials are used as reinforcements to fabricate a new hybrid
aluminum metal matrix composite using Al6061 as the base material. Normally, composite
materials are difficult to machine via the conventional machining processes or conventional
machine tools [19,20]. This is due to their greater hardness and brittleness, and perhaps
also their shape, which is difficult to produce via any of the traditional methods. Most of
the mechanical industries demand a superior finish, close tolerances, high production rates,
and complex shapes, which are not possible to achieve using conventional manufacturing
methods. Therefore, the electrical discharge machining (EDM) process has become a feasi-
ble method to machine the new hybrid metal matrix composites [21,22]. Most previous
researchers [23–25] have experimented with AMCs and traditional MMCs coupled with
EDM to achieve a high material removal rate (MRR) and low surface roughness (SR). Re-
cently, the authors of [26–28] experimented with Al7075-based composite materials in EDM.
They demonstrated that in the aluminum-based composite materials, different ceramic
reinforcements had noteworthy effects on machining. Moreover, this study presented an
investigation of the effects of EDM parameters on a newly fabricated Al6061-based hybrid
aluminum composite, reinforced with hard ceramic materials.

Generally, most of the metals are considered as homogeneous, whereas composites
are inhomogeneous, due to the inclusion of other materials [29]. These additions, which
have properties that differ from those of the base metal, change the machining behavior
of the composite. Therefore, to investigate the machinability of such metal composites, it
is essential to study the nature of the reinforcements. Therefore, in this study, the EDM
was performed on a newly developed hybrid composite (Al6061/SiC/Gr), and both the
MRR and the SR were studied to optimize the quality of the developed composite. All the
experimental plans were devised by using the Taguchi design (L18) approach in Minitab
software. The EDM parameters considered in this work were peak current (I), voltage
(V), pulse-on time (Ton), and tool material (EDM electrodes). An analysis of variance
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(ANOVA) technique was used to check the contribution of selected EDM machining
parameters. Silicon carbide always enhances the hardness of a composite material, whereas
graphite improves the self-lubricating power of a composite material [29,30]. Therefore, the
machinability of a composite material is different from that of the other metals. Therefore,
this study will directly help to resolve all the influencing factors that can cause variations
in the final results of the machining of a composite material.

2. Materials and Methods
2.1. Materials

Aluminum hybrid metal matrix composites are an exceptional class of advanced
engineered materials [31]. In this study, to develop the new hybrid aluminum metal matrix
composite, both selected reinforcement materials were mixed in the base material (Al6061)
in a 12% (SiC) and 5% (Gr) wt% ratio, respectively. Both SiC and Gr particles of a 200-
mesh size (avg. size 75 µm) were used. To fabricate the hybrid aluminum metal matrix
composite, the stir casting method was used, due to its simplicity and relatively cheap
developing cost [32,33]. All the reinforcements were preheated at 650 ◦C for a sufficient
time, before being mixed with molten aluminum, in order to prevent the formation of
unwanted brittle-phase Al4C3.

In order to confirm the improved strengthening behavior of the developed hybrid
aluminum metal matrix composite (Al6061/SiC/Gr), both the mechanical and tribological
properties were investigated first. For a greater understanding, the mechanical and wear
behaviors of Al6061/SiC/Gr (addition of both SiC (12%) and Gr (5%) particles), Al6061/SiC
(addition of only SiC (10%) particles), and pure Al6061 were measured and compared.
Table 1 shows the calculated mechanical properties of Al6061/SiC/Gr, Al6061/SiC, and
Al6061. The results shown in Table 1 indicate that the yield and tensile strengths of
Al6061/SiC/Gr are greater than those of Al6061/SiC and pure Al6061. The superior
yield strength of Al6061/SiC/Gr has recognized the high load transfer effect. Simulta-
neously, ball-on-flat sliding tests were also performed to check the wear performance of
Al6061/SiC/Gr, Al6061/SiC, and Al6061. The addition of reinforcement particles reduced
the wear rate, as shown in Table 2.

Table 1. Comparison of mechanical properties.

Material
Elastic

Modulus
(GPa)

Ultimate Tensile
Strength (MPa)

Yield
Strength

(MPa)

Hardness
(Hv)

Al6061 71.2 142.2 92.1 59.8
Al6061/SiC 110 178.1 139.4 92.5

Al6061/SiC/Gr 119.2 192.8 152.7 101.7

Table 2. Wear rate comparison.

Material Al6061 Al6061/SiC Al6061/SiC/Gr

Wear rate
(mm3/Nm) 6.84 × 10−3 5.21 × 10−3 4.34 × 10−3

Here, it can be seen that the hardness of Al6061/SiC/Gr increased by 40% compared
to the base Al6061 hardness value. Moreover, all the high-performance mechanical and
wear properties of Al6061/SiC/Gr make it a suitable material to use in an automobile disk
braking system. Finally, all these results demonstrated the effectiveness of Al6061/SiC/Gr,
which makes it an ideal material for further investigation.

In this study, all the experiments were performed on an Oscar Max Die-Sinking EDM
machine (Oscar Max, Taiwan made)), as shown in Figure 1. Commercial grade EDM oil
(density = 0.75 Kg/m3) was used as the dielectric fluid during the EDM. Copper (Cu)
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and brass (Br) electrodes, each of 12.0 mm diameter (Ø), were used as machine electrodes.
Figure 2 shows the fabricated samples and the tool electrodes. The straight polarity of
electrodes was used during all the experimental work. Tool material, current (I), voltage
(V) and pulse on time (Ton) were selected as the EDM process parameters. The selection
of these EDM process parameters was completed on the basis of earlier findings in the
literature and the recommendations of our previous research [34]. Further, to select the
most significant levels of the designated process parameters, a pilot study was carried out,
where the effects of different levels of the process parameters on the output parameters
(MRR and SR) were individually investigated. Based on the results of the pilot experiments,
the resulting set of parameters with certain values were selected for the design of the final
experiments. The final selected EDM process parameters and their levels are shown in
Table 3 below. The SEM (JSM-IT800, Japan made) images of the fabricated samples before
the machining at different magnification levels are shown in Figure 3.

Figure 1. (a) EDM used for experimentation and (b) EDM machining.

Figure 2. Pictorial views of samples and electrodes.

Table 3. Selected EDM process parameters and their levels.

Parameters Units Level-1 Level-2 Level-3

Tool - Cu Br
Current (I) Amp 10 12 14

Pulse-on time (Ton) µs 120 200 300
Voltage (V) V 4 8 12

2.2. Methodology

To examine the effects of the selected EDM machining parameters, two response
variables (MRR and SR) were studied. The MRR was calculated by determining the weight
difference of the workpiece before and after the machining by using a digital weighing
machine with 0.001 gm precision. Here, the machining time was measured by a stopwatch.
A hole cavity of 1 mm depth was created during each machining process.
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The surface roughness is an important element of the machined surface and here it
was calculated via the vertical deviations of a machined surface from an un-machined
surface. Generally, if the calculated deviation is high, then the surface is rough, and if low,
then the surface is smooth. In this work, to enumerate the arithmetical mean roughness
value (Ra) of the machined surface, a precise surface roughness tester (TR110Plus) was
used. The travelling length of the machine was 5 mm and its measuring range was between
0.1 µm and 10.0 µm.

Figure 3. SEM images of Al6061/SiC/Gr before machining at different magnification levels.

Taguchi’s experimental design approach always helps researchers to identify and
scrutinize the prominent parameters of their research. The superior optimization perfor-
mance [35] of the Taguchi approach makes it a viable optimization method. Therefore, to
achieve accuracy in the output responses, the Taguchi orthogonal array L18

(2∧13∧3) was em-
ployed to design the final experiments, after the careful review of all the other optimization
techniques. This selection was dependent upon a number of factors and interactions of
interest, and the levels of the process parameters. Using the Minitab 14 software, the analy-
sis of variance (ANOVA) approach was used to investigate the most significant process
parameters that affect the selected response variables. The S/N ratios were calculated to
identify the major contributing factors that cause variation in the MRR and SR. The S/N
ratio (SNRA) was calculated by using the following formula (Equation (1)) [36]:

(S/N)HB = −10 log (MSDHB) (1)

where MSDHB = 1
r

r
∑

j=1

(
1

yj
2

)
, the MSDHB stands for mean square deviation for the higher-

the-better response, ‘r’ is the number of trials, and ‘yj’ is the value of the MRR for the
jth test.

3. Results and Discussion

This study was highly focused on obtaining optimum levels of the MRR and SR.
Therefore, higher-the-better and smaller-the-better characteristics were employed for the
MRR and SR, respectively. The changes in the MRR and SR due to the change in the
selected EDM process parameters, along with SN ratios and mean, are reported in Table 4.
To authenticate the results, all the experiments were repeated three times. Similarly,
the output values (MRR and SR) of machined surfaces were measured three times, at
different locations.
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Table 4. Experimental results.

Process Parameters Response: MRR (mg/min) Response: Ra (µm)

Ex Tool I
(A)

Ton
(µs)

V
(V)

MRR
1

MRR
2

MRR
3 SNRA

MEAN
(+/−)
0.99

Ra 1 Ra 2 Ra 3 SNRA MEAN
(+/−) 0.2

1 Cu 10 120 4 59.56 58.82 60.29 35.497 59.557 4.6 4.7 4.5 −13.257 4.6
2 Cu 10 200 8 62.5 61.76 63.6 35.932 62.62 5.3 5.4 5.1 −14.433 5.2666
3 Cu 10 300 12 66.54 67.28 65.44 36.444 66.42 6 5.8 6.2 −15.566 6
4 Cu 12 120 4 77.94 78.68 77.21 37.834 77.943 5.1 4.9 5.3 −14.156 5.1
5 Cu 12 200 8 81.25 81.99 80.88 38.209 81.373 5.8 5.9 5.6 −15.221 5.7666
6 Cu 12 300 12 84.93 84.19 86.4 38.604 85.173 6.5 6.4 6.7 −16.304 6.5333
7 Cu 14 120 8 86.76 86.4 86.03 38.729 86.397 5.9 6 5.8 −15.418 5.9
8 Cu 14 200 12 90.07 90.44 89.34 39.079 89.95 6.6 6.4 6.8 −16.394 6.6
9 Cu 14 300 4 121.69 120.96 122.43 41.705 121.69 6.5 6.6 6.3 −16.215 6.4666

10 Br 10 120 12 37.87 37.13 38.6 31.561 37.867 4.9 4.8 5.1 −13.866 4.9333
11 Br 10 200 4 64.34 63.6 64.71 36.152 64.217 4.7 4.9 4.5 −13.447 4.7
12 Br 10 300 8 68.75 67.65 69.49 36.728 68.63 5.4 5.2 5.6 −14.652 5.4
13 Br 12 120 8 61.4 62.13 60.29 35.743 61.273 5.1 5.3 4.9 −14.156 5.1
14 Br 12 200 12 65.07 64.34 65.44 36.250 64.95 5.8 5.9 5.6 −15.221 5.7666
15 Br 12 300 4 97.06 97.43 96.32 39.729 96.937 5.6 5.5 5.8 −15.017 5.6333
16 Br 14 120 12 73.16 72.79 73.9 37.299 73.283 5.9 5.7 6.1 −15.42 5.9
17 Br 14 200 4 101.47 101.1 100.37 40.084 100.98 5.7 5.8 5.5 −15.069 5.6666
18 Br 14 300 8 105.51 104.78 105.88 40.455 105.39 6.4 6.5 6.3 −16.124 6.4

3.1. Influence on the Material Removal Rate (MRR)

The main effects plot for the mean MRR is shown in Figure 4. From Table 4 and
Figure 4, it is clear that all the selected EDM parameters have a considerable effect on the
MRR. Here, the analysis of variance (ANOVA) was used to analyze the results of the MRR
based on higher-is-better criteria, as shown in Table 5. It is clear that the MRR increased
with the rise in the current and the pulse duration. At a high discharge current, the higher
MRR may be due to the high spark energy. The relatively high electrical conductivity in
the copper electrode resulted in a higher MRR. In the fabricated Al6061/SiC/Gr composite,
the addition of SiC and Gr particles increased the conductivity of the workpiece, resulting
in a high MRR. On the other hand, the voltage did not turn out to be a significant EDM
parameter in terms of its influence on the MRR. Figure 4 and Table 5 show the percentage
contribution of each selected EDM parameter to the MRR. It can be observed that the
current made a 58% contribution, followed by pulse duration: 27%; voltage: 13%; and tool
material: 3%. A rank was assigned to various process parameters for MRR, on the basis
of delta value, as shown in Table 6. Further, Figure 5 represents the surface morphology
of machined workpieces. Figure 5a,b show the morphology of the material removal rate
of a machined surface, and the melting and resolidification of the molten workpiece,
respectively. The maximum material removal rate was measured in trial nine, and the
reason for the high MRR was the generation of Lorentz forces via the interplay of electrical
current, which enhanced the plasma pressure.

Table 5. Analysis of variance (ANOVA) for MRR.

Source DF Seq SS Adj SS Adj MS F P %C

Tool 1 184.32 184.32 184.32 186.67 0 2.67
Current (Amp) 2 3974.35 3974.3 1987.18 2012.5 0 57.65

Ton (µs) 2 1827.7 1827.7 913.85 925.5 0 26.51
Voltage (V) 2 897.46 897.46 448.73 454.45 0 13.02

Residual error 10 9.87 9.87 0.99 0.14
Total 17 6893.71 100
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Figure 4. Main effects plots (means) for MRR (mg/min) (units: current (Amp), voltage (V), Ton (µs)).
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For the sake of this discussion, we compared the results of this study with those from
our recent research [34]. The workpiece of this study, with 12% SiC particles, resulted in a
high MRR and a comparatively high amount (18%) of SiC [34]. This is because the work-
piece having a smaller amount of SiC increased its conductivity. The surface morphology
of workpiece Al-Sic (18%) after the electrical discharge treatment is also represented in
Figure 5c; it indicates the high melting and resolidification of the molten workpiece. The
high SiC in the composite material exhibited a shielding effect and decreased the MRR.
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Table 6. Response table for MRR (mg/min).

Level Tool Current
(Amp)

Ton
(µs)

Voltage
(V)

1 81.24 59.89 66.05 86.89
2 74.84 77.94 77.35 77.61
3 96.28 90.71 69.61

Delta 6.4 36.4 24.65 17.28
Rank 4 1 2 3

3.2. Influence on the Surface Roughness (SR)

Surface roughness, often known as average surface roughness (Ra), is a component
of surface texture. The surface roughness analysis of the machined surface described a
true mark of the EDM electrode while machining and the material removal mechanism.
The changes in SR due to changes in the selected EDM process parameters are reported
in Table 7. The purpose of ANOVA (Table 7) was to investigate which of the process
parameters significantly affect this performance characteristic, based on smaller-is-better
criteria. The surface roughness measurements were carried out at different points of
the machined surface. Further, from Table 7, it can clearly be seen that the machining
parameters, such as current, voltage, and pulse duration, had a considerable effect on SR
values. It is clear from the graph (Figure 6) that the brass electrode was also a significant
factor affecting the surface roughness. Table 8 shows the percentage contribution of each
selected EDM parameter to the SR. Here, in the case of surface roughness, the current
contributed 47%, followed by pulse duration: 31%; voltage: 16%; and tool material: 6%.
The ranks were assigned to the process parameters on the basis of delta value. The
high current was responsible for distributing more heat to the workpiece surfaces, which
consequently produced craters, and these craters caused the high surface roughness in the
machined surfaces. The pulse-on time (Ton) was another significant factor that affected
SR. An increase in the pulse-on time led to an increase in the machining duration, which
resulted in an increase in the spark energy and radius of the plasma channel, which further
increased the SR.

Trials one and eleven in Table 4 show that a smoother machined surface can only be
achieved when EDM is carried out with a low current, voltage, and pulse duration. The
Lorentz forces that developed while machining for a shorter duration made the machining
zone smoother and decreased the roughness. From the SEM analysis shown in Figure 7, it
can be observed that a significantly smoother surface occurred when current, voltage, and
pulse duration were low. It is also observed that the SR was lower in the case of brass as
compared to copper, because brass has a low ability to withstand spark energy. Therefore,
it can be seen that thermal conductivity and the melting point of electrodes influence the
output surface quality.

Table 7. Analysis of variance (ANOVA) for SR (Ra).

Source DF Seq SS Adj SS Adj MS F P %C

Tool 1 0.41506 0.41506 0.41506 960.57 0 6.37
Current (Amp) 2 3.03346 3.03346 1.51673 3510.14 0 46.52

Ton (µs) 2 2.00605 2.00605 1.00302 2321.29 0 30.77
Voltage (V) 2 1.0616 1.0616 0.5308 1228.43 0 16.28

Residual error 10 0.00432 0.0043 0.00043 0.07
Total 17 6.52049 100
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Figure 6. Main effects plots (means) for SR (µm). (units: current (Amp), voltage (V), Ton (µs).)

Table 8. Response table for SR (µm).

Level Tool Current
(Amp)

Ton
(µs)

Voltage
(V)

1 5.804 5.15 5.256 5.361
2 5.5 5.65 5.628 5.639
3 6.156 6.072 5.956

Delta 0.304 1.006 0.817 0.594
Rank 4 1 2 3

Figure 7. SEM images of machined workpieces: (a) Ra = 4.7 (µm) at I = 10 (Amp), V= 4 (V), Ton = 200 (µs) and brass
electrode; (b) Ra = 5.4 (µm) at I = 10 (Amp), V= 4 (V), Ton = 200 (µs) and copper electrode.

3.3. Confirmation Experiments

In order to validate the regression equations, experimental data were compared with
the data obtained via the same experimental conditions in the regression equations. The
results for MRR and SR are tabulated in Tables 9 and 10, respectively. The results show that
the experimental data and the data obtained from the regression equations closely correlate
with each other, thus validating the regression equations developed.
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Table 9. Confirmation test for MRR.

Process
Parameters

Parameter
Value

Experimental
Value Model Value Variation

Tool Material Copper

121.693 121.00 0.57%
Current (Amp) 14
Pulse Duration

(µs) 300

Voltage (V) 4

Table 10. Confirmation test for SR.

Process
Parameters

Parameter
Value

Experimental
Value Model Value Variation

Tool Material Brass

4.64 4.94 0.36%
Current (Amp) 10
Pulse Duration

(µs) 200

Voltage (V) 4

4. Conclusions

The newly developed hybrid metal matrix composite (Al6061/SiC/Gr) has supe-
rior mechanical properties when compared with a traditional metal matrix composite
(Al6061/SiC) and pure Al6061. This research represents an experimental investigation of
electric discharge machining as regards the newly developed Al6061/SiC/Gr hybrid metal
matrix composite, which is fabricated via the stir casting process. To verify the contribution
of each selected electrical discharge machining parameter (peak current, voltage, pulse-on
time, and tool material), a statistical technique was used. Based on the observed results,
the following conclusions can be drawn:

1. It was found that the addition of Gr and SiC particles led to superior mechanical and
wear properties of a composite material. The hardness of Al6061/SiC/Gr rapidly
increased by 40% compared to the base Al6061 hardness value.

2. The material removal rate of the new aluminum metal matrix composite increases
from 50% to 60% with the rise in current and pulse duration, while it decreases by
20% with an increase in voltage. Moreover, in comparison to brass, a copper electrode
is better-suited to achieving a high material removal rate in the newly developed
Al6061/SiC(12%)/Gr(5%) composite.

3. The surface roughness of the new aluminum metal matrix composite (Al6061/SiC(12%)/
Gr(5%)) increases with an upsurge in the current, voltage and pulse duration, and
brass is the best electrode to achieve low surface roughness (Ra).

Future scope: Prominent process parameters such as Toff and a magnetic field were
not considered in this study. Though the electric discharge machining process parameters
were thoroughly investigated for the aluminum matrix composite, there is still scope for
further investigation into other hybrid aluminum metal matrix composites. In addition, the
effect of other electric discharge machining process parameters that have not been included
in this study, such as the type of dielectric, concentration of slurry, and tool geometry, may
also be investigated.
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