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Abstract: Sputtering in a divertor is one of the key phenomena that affects plasma purity and
temperature. In previous experimental studies, the term sputtering yield has been used to refer to
net sputtering yield, which is defined as the difference between primary sputtering yield and re-
deposition. Our simulations using molecular dynamics have confirmed that both primary sputtering
yield and re-deposition are affected by particle curvature. In this study, the effect of particle curvature
on the net sputtering yield was quantitatively evaluated, the results were compared to existing
experimental studies, and the discrepancies with experimental results were discussed.
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1. Introduction

A divertor is an armor component that maintains the integrity of fusion reactors from
the irradiation of high-temperature plasma. He ions and neutrons are produced as a result
of fusion reactions between deuterium and tritium in ultra-high temperature plasma [1,2].
The irradiation of the He ions and neutrons degrades the properties of materials; therefore,
the integrity of the components is damaged [3,4].

Sputtering refers to the phenomenon in which an ion is accelerated and collides with
a solid material, causing the atoms that make up the material to bounce outward [5,6].
The sputtering introduces particles into the plasma, which reduces its purity and low-
ers its temperature; as a result, the high temperature of the plasma can no longer be
maintained [3,7]. Therefore, a divertor must be composed of materials which have a low
sputtering yield [4,6]. Since the sputtering yield of tungsten is considerably low amongst
all high-temperature materials, tungsten has been considered to be a potential material for
use in this application [8–11]. Although tungsten has several disadvantages, efforts have
been made to overcome these disadvantages and use it as a divertor material [12–15].

Although the sputtering yield of tungsten is lower than that of other high-temperature
materials, it still needs to be further reduced in order to maintain plasma at a high temper-
ature for a long time. Intensive investigations have been conducted with the aim to lower
the sputtering yield of a divertor composed of tungsten [16,17]. In order to manufacture a
divertor, tungsten powder is heat-treated at a high temperature under high pressure [18].
Various studies have been conducted to reduce the sputtering yield by controlling the
roughness of the tungsten powder [14,15]. In previous experimental studies, the sputtering
yield increases as the roughness of the surface increases [15,19,20], and it was hypothe-
sized that the trend was caused by the re-deposition process. Re-deposition refers to a
phenomenon in which sputtered tungsten atoms are re-deposited on convex tungsten hills,
as shown in Figure 1. In this study, the above hypothesis was examined by molecular
dynamics simulations, which have frequently been used to simulate plasma–material
interaction [21–23].
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Figure 1. Schematic illustration of primary sputtering and re-deposition processes.

2. Simulation Method

LAMMPS is an MD package with features that make it easy to configure the desired
system. We utilized the interatomic potentials between the W-W, W-He, and He-He atoms
studied by N. Juslin et al. [21,24]. According to N. Juslin et al., the interatomic potential of
W-He is given as the following equation: [24]

V(rij) =


ZBL− 10 eV, rij ≤ r1

a5rij
5 + a4rij

4 + a3rij
3 + a2rij

2 + a1rij + a0, r1 ≤ rij ≤ r2

VAT pot, rij ≥ r2

(1)

ZBL is the Ziegler–Biersack–Littmark potential [23] and VAT pot is the Ackland–Thetford
tungsten potential [22]. According to N. Juslin et al., if the ZBL potential is reduced by 10
eV, it will be similar to the AT potential in a short range [24]. Therefore, the interatomic
potential in a short range is expressed as shown in Equation (1). The interatomic potential
of He-He is given as the following equation [21]:

v(r) = Aexp(−αr− βr6)− 0.869
(r2 + a2)3

(
1 +

2.709 + 3a2

r2 + a2

)
(2)

In molecular dynamics simulation, the re-deposition phenomenon was captured by
estimating the positions of W atoms over time according to the laws of classical mechanics
without any prior assumptions about the re-deposition process.

To compare the roughness effect on the net sputtering yield, we set three geometries,
as shown in Figure 2. Geometry 1 is a cuboid shape. Using geometry 1 as a common part,
we merged a dome shape with geometries 2 and 3. We cut off some of the spheres with
radii 9.4956 nm and 4.7478 nm, respectively, and combined them with geometry 1. Thus,
the dome-shape Gaussian curvature of geometry 2 is 0.0111 nm−2 and the dome-shape
Gaussian curvature of geometry 3 is 0.0444 nm−2. The standard for the cutting part of
the sphere was cut so that the diameter of the cross-section was 9.4956 nm. Additionally,
in order to see the effect of surface roughness alone, the area of the dome that met the
cuboid was matched in all of the geometries. For the analysis of the results, we defined the
expression “curvature of the dome parts” as COD.

To proceed with the simulations, we assumed the following conditions:

• The system has a width of 9.4956 nm × 9.4956 nm and the height varies throughout
the COD;

• x-y directions of the system adopt periodic boundary conditions;
• A He ion was irradiated every 0.5 ps until 500 ps. The total number of the He ions is

the same in our simulations;
• He ions are irradiated to a random position by a random function. However, each

geometry has the same coordinate where ions are irradiated;
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• When CN (coordination number) = 0, the tungsten atoms are assumed to be sputtered.
CN is defined as the number of tungsten particles adjacent to the tungsten particle.
Thus, CN = 0 means that there are no other tungsten particles near the tungsten
particle. It indicates that the tungsten particles with CN = 0 are sputtered particles.

Figure 2. The geometry of the simulation system: each geometry has the same width (9.4956 nm ×
9.4956 nm), but the height varies through the curvature of the dome part.

We expected that the energy of the incident particles, the roughness of the divertor
surface, and the direction of the incident particles would affect the results. To examine the
effect of the incident direction used, we analyzed the effects of five directions. The incident
directions of He ions are listed as:

Incident Direction Vector

Direction 1 <−1, −1, −1>

Direction 2 <−1, 0, −1>

Direction 3 <−1, −1, 0>

Direction 4 <−1, 0, 0>

Direction 5 <0, 0, −1>

For the analysis of the results, we defined the sputtering yield of tungsten atoms
released by irradiation as the primary sputtering yield. Additionally, the sputtering yield
when re-deposition is taken into account in the primary sputtering yield was called the net
sputtering yield.

3. Results and Discussion

In our studies, the net sputtering yield defined the number of the net sputtered
tungsten atoms per number of impacting helium atoms. Figure 3 shows the evolution of
the net sputtering yield over time for the case of geometry 3. The primary sputtering yield
tends to decrease over time since the He ions irradiate every 0.5 ps in these simulations. As
time goes on, the net sputtering yield is changed drastically as shown in Figure 3. Therefore,
choosing a representative value of the net sputtering yield under given conditions is not
straightforward. The maximum net sputtering yield value has a large bias because of
the outliers. Thus, the maximum net sputtering yield value is not appropriate as the
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representative value. In order to compare the net sputtering yields, the net sputtering
yields were sorted in ascending order. In this study, the lower 5% of the sorted values were
arbitrarily selected and analyzed.
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Figure 3. Change of the net sputtering yield over time for the case of geometry 3.

Figure 4 shows the net sputtering yield in each geometry. In these simulations, the
locations in which the He ions are incident are the same. In the cases of direction 3 and
direction 4, the primary sputtering yield is close to zero, since directions 3 and 4 have a
zero value on the z component of the vector. This is because when the incident particles
had a zero value on the z component of the vector, the He ions collided with the W atoms
slightly to geometry 1. Additionally, some incident particles were passed without collision
in the cases of geometry 2 and geometry 3. The incident particles having a zero value on
the z component of the vector meant that the progress paths of the incident particles were
parallel with the xy plane. Therefore, primary sputtering does not occur when the incident
He ions do not progress to the curved surface.

On the other hand, directions 1, 2, and 5 have a negative value on the z component
of the vector. As shown in Figure 5 if the incident direction has a negative value on the
z component of the vector, the incident particles must collide with the target atoms. To
make the simulations more realistic, we assembled the results accrued in each direction.
As shown in Figure 4, the assembled results show that the net sputtering yield increased
as the COD increased, since the number of W atoms on the surface increased. Figure 6
shows the schematic illustration of the change in the number of primary sputtered atoms
as the COD increased. Where the surface was flat, the W atoms bonded with the four other
W atoms. However, at the dome surface, the number of atomic bondings of the W atoms
decreased as the COD increased. Reducing the number of atomic bondings of W atoms
means that the W atoms sputter more easily than they do before reducing the number of
atomic bondings of W atoms. In other words, the primary sputtering yield increased as the
COD increased.
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Figure 4. The net sputtering yield for different geometries with He incident directions.

Figure 5. The directions of the progress of incident particles according to the z component. Black
arrows have a negative value on the z component of the vector. Orange arrows have a zero value on
the z component of the vector. This is because when the z component of the vector has a value of
zero, the direction of the orange arrow is parallel in the xy plane.

Figure 7 shows the plots of the net sputtering yield when the incident He ions energies
are 50 eV and 100 eV. For convenience of explanation, we defined the energy at the time of
collision with the surface particles of the target as the remaining energy. When the incident
particle collides with the target atoms, primary sputtering occurs if the remaining energy
of the incident particle is greater than the bonding energy of the W atoms. The remaining
energy increases as the energy of the incident He ion increases. Therefore, the simulation
results at 50 eV and 100 eV are shown as shown in Figure 7.
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Figure 6. Changes in the number of bonding of W atoms increased with COD. If the COD increased, then the number of
bonding atoms would be decreased.
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Figure 7. Net sputtering yield with the change in the energy of incident He ions.

Experimental studies [15,19,20] show that the net sputtering yield decreased as the
COD increased. In these experimental studies [15,19,20], the decrease in net sputtering
yield according to the COD increase was explained as the increase in the re-deposition rate.
For convenience, COD is expressed as λ, primary sputtering yield as α, and re-deposition
yield as β. The net sputtering yield γ is given by the difference between α and β, as shown
in Equation (3):
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γ(λ) = α(λ)− β(λ) (3)

As explained by former studies [15,19,20] and Figure 6, we have:

∂α(λ)

∂λ
= αλ > 0 (4)

∂β(λ)

∂λ
= βλ > 0 (5)

Therefore, the change in the net sputtering yield according to the lambda change is
given by Equation (6):

dγ(λ)

dλ
= γλ = αλ − βλ (6)

It can be reasonably inferred that both αλ and βλ are positive numbers from the results
of the studies so far; however, a reasonable explanation for the magnitude relationship
between the two quantities has not yet been found. In our simulations, the re-deposition
yields were relatively small; thus, it was difficult to compare the magnitude of αλ and βλ

with a high reliability. In previous studies [15,19,20], the net sputtering yield according to
the λ change was explained through the explanation that βλ is positive and, therefore, γλ

is also positive. However, this is an incomplete explanation, as it does not take into account
αλ . Of course, if ones examines the actual atomic scale, it is possible to say that αλ ' 0 is
negligible. In this study, the effect was evaluated as not being marginal. Of course, since
this molecular dynamics methodology or potential always calculates approximate values,
this discrepancy exists due to the limitation of the accuracy of the simulation method used.
However, the results of this study also raise the need to re-verify whether factors other
than particle curvature are well-controlled when evaluating tungsten sputtering yield.

4. Conclusions

We conducted a tungsten divertor sputtering simulation using molecular dynamics.
Both primary sputtering yield and re-deposition are affected by the curvature of the surface
atoms, and former studies have focused on the latter. However, since the number of bonds
of surface tungsten atoms varies depending on the curvature, the primary sputtering yield
will also increase with the curvature. Thus, we find that the net sputtering yield does
increase because of the increase in the primary sputtering yield in our study. The effect of
curvature on primary sputtering yield changes has not been discussed comprehensively in
existing experimental studies. Therefore, we suggest that an experimental evaluation of
the particle curvature effect on the primary sputtering yield of W atoms is needed.
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