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Abstract: Real-time health monitoring of civil infrastructures is performed to maintain their structural
integrity, sustainability, and serviceability for a longer time. With smart electronics and packag-
ing technology, large amounts of complex monitoring data are generated, requiring sophisticated
artificial intelligence (AI) techniques for their processing. With the advancement of technology,
more complex AI models have been applied, from simple models to sophisticated deep learning
(DL) models, for structural health monitoring (SHM). In this article, a comprehensive review is
performed, primarily on the applications of AI models for SHM to maintain the sustainability of
diverse civil infrastructures. Three smart data capturing methods of SHM, namely, camera-based,
smartphone-based, and unmanned aerial vehicle (UAV)-based methods, are also discussed, having
made the utilization of intelligent paradigms easier. UAV is found to be the most promising smart
data acquisition technology, whereas convolution neural networks are the most impressive DL model
reported for SHM. Furthermore, current challenges and future perspectives of AI-based SHM systems
are also described separately. Moreover, the Internet of Things (IoT) and smart city concepts are
explained to elaborate on the contributions of intelligent SHM systems. The integration of SHM with
IoT and cloud-based computing is leading us towards the evolution of future smart cities.

Keywords: electronics packaging; lead-free solders; structural health monitoring; civil infrastructure;
damage detection; pipeline leakage detection

1. Introduction

The electronics packaging industry is at the forefront of the artificial intelligence
(AI) revolution. AI is widely applied in electronics and computer networks and is now
being focused on the health monitoring of engineering structures. Civil constructions
such as bridges, dams, multistory buildings, pipeline systems, etc., are very vulnerable
to weathering impacts and changing loads [1,2]. Earthquakes, human-made excitation,
wind, and weather conditions introduce unwanted vibrations in civil infrastructures and
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may trigger a catastrophic breakdown [1,2]. These structures are required to be supervised
for repairing and strengthening the cracks, faults, etc., to control structural damage and
maintain their sustainability [3,4]. To supervise civil structures’ health, structural health
monitoring (SHM) methods have been implemented to maintain their service life and
durability. SHM involves real-time sensory data that are recorded for monitoring the
civil structures during loading and bad weather conditions [5–7]. The primary concern of
SHM is to supervise the security and serviceability of structures such as bridges, buildings,
flyovers, etc. SHM comprises four important steps, viz., data capture, system recognition,
health evaluation, and decision for scheduling maintenance [8]. Conventionally, SHM
utilizes vibration or strain-based methods to evaluate the in-service conditions of civil
infrastructures in diverse climatic situations. These methods require the installation of
contact or non-contact sensors on the target equipment for quick assessment of equipment
health. Contact sensors including strain gauge, piezoelectric sensors, accelerometers, etc.,
are attached with the structural body to capture the dynamic response of civil structures
efficiently [8–11]. Still, this type of sensor has its own advantages and limitations. Vibration
sensors (such as pin/spring type, piezoelectric type, accelerometer, velocity sensor, and
proximity sensor) are widely applied due to their low cost, the capability of capturing lower
frequency responses and withstanding high temperatures, smaller size, ease of installation,
and accurate measure of axial displacements. However, the installation of contact sensors
is a labor-intensive, risky, and high-maintenance job [8]. Moreover, data captured through
contact sensors are sparse, discrete, and have a low spatial resolution, which reduces the
efficiency of SHM [12–14].

Wireless sensors are utilized to handle the challenges of contact sensors but have their
own limitations [15–17]. Wireless sensors are to be installed in thousands of quantities
on a civil structure, taking time to collect structural health monitoring data. Moreover,
the collection of data from wireless sensors becomes a challenge as data broadcast is
complicated, needs synchronization, and is power-demanding. To overcome the limitations
of contact and wireless sensors, researchers have developed and implemented smart
sensing technology for data capturing of SHM [18,19]. Real-time monitoring through smart
sensors is a recent advancement, enabling the early detection and diagnosis of fractures
or cracks for preventive maintenance of civil infrastructures. The preventive maintenance
operations are carried out with optimized infrastructure resources resulting in smarter,
intelligent, and more sustainable civil structures. These methods involve the application of
sensors for patiently monitoring the dynamic reactions alongside the damage locations,
and the evaluation of structural health over the lifespan [18,19]. Moreover, the captured
information needs evaluation because of the multifaceted nature of captured data, interval
management, and control utilization [8,9]. Damage detection for locating fractures’ position
and capturing structural data is the most basic part of SHM [18,19].

In the 1990s, SHM went through significant changes because of smart sensors and
data innovation. Exceptionally precise sensors, optical and remote systems, global posi-
tioning systems (GPS), and different advancements have added to the improvement of
more accurate, cost-productive estimation and monitoring of civil structures [20]. As a
result, the volume of informational indexes has expanded immensely, at the pace of a great
many estimations for each sensor. These newer, better-off datasets present the capability to
distinguish physical performance in uncommon manners, leading to worldwide interest
in executing huge monitoring systems on civil architectures. The datasets captured and
stored through SHM-based systems can also be considered as “big data” because of their
data diversity, informational value, the velocity of data generation, volume, and data qual-
ity [21,22]. Thus, SHM has appeared as an innovation, driven by advanced technological
proficiencies with comprehensible goals and possibilities [21,22].

Several researchers have supported the data-driven pattern recognition approach for
the processing and analysis of the captured data [17–19,22]. In past years, researchers
were doubtful about the accomplishment of SHM because it was generating an enormous
quantity of data difficult to analyze properly. With the advancement in high computational
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power, storage capability, and machine learning (ML), the extraction of useful information
from big SHM data has become possible in real time [20,21]. Therefore, knowledge about
the changing health of civil structures over time is easy to monitor, record, and predict.
The ever-diminishing costs of the computerized approach for handling, shipping, and
putting away information has made SHM popular to the degree that a few analysts are
utilizing the expression “information storm”. This has prompted a significant forward
leap in design acknowledgment and encouraged the growth of computing in SHM [21].
The area of SHM research has expanded in diverse applications due to the technological
advancement of sensors and artificial intelligence algorithms that are comprehensively and
quantitatively investigated in this study. The distribution of research publications from
2006–2021 for SHM is shown in Figure 1.
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In this paper, a comprehensive review of structural health monitoring is presented and
consolidated from traditional methods to advance intelligent AI techniques. Additionally,
three popular smart sensing techniques such as camera-based methods, smartphones, and
unmanned aerial vehicles (UAV) are studied to provide a better understanding of data
capturing techniques and their associated challenges. We also discuss the generalized
steps utilized for ML applications to provide guidelines for quick understanding. The state
of the art for SHM with AI applications is presented to compute research literature on
the structural damage detection of buildings, bridges, and pipelines. Moreover, distinct
sections are provided for addressing the current challenges and future perspectives of SHM
technology. The advantages and disadvantages are also discussed. Various applications
of ML techniques are conferred and supported with chronological tables containing infor-
mation such as the name of researchers, year of publication, ML models, and associated
references utilized for fault diagnosis. This will help researchers during the selection of
suitable ML models for their work. The current research trends, associated challenges,
and future scope of ML technique-based fault diagnosis have been discussed. The main
objectives of this research are listed below.

• A comprehensive overview of ML applications in smart SHM electronics is elaborated.
• The state of the art of data-driven SHM is thoroughly studied and organized systematically.
• Separate tables are provided to illustrate diverse SHM methods chronologically for

the reader’s convenience.
• Research trends of the past fifteen years are thoroughly studied and illustrated to

identify the popularity of ML models for structural damage detection and localization.
• The implementation of smart sensing technologies for SHM is discussed in detail with

the Internet of Things and smart city implications.
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• The pros and cons of conventional and advanced SHM techniques are provided in
tables that also highlight their important features.

• Current technological challenges and future research perspectives of AI algorithms in
SHM are also discussed.

The purpose of this study is to consolidate new approaches for the applications of
noteworthy AI methodologies in the past decade of structural engineering. However, the
performance of the stated SHM-AI approaches depends heavily on the amount of data to
be gathered via smart sensing-based monitoring devices. The implementation challenges
of AI techniques to real-world power system scenarios are also discussed that may help
field engineers to mitigate similar issues during their pragmatic applications. The paper
is systematized as follows: Section 2 presents an overview of SHM, Section 3 provides
an overview of AI for SHM, Section 4 explains the applications of AI models in SHM,
and Section 5 discusses the challenges existing in ML implementation for SHM. Finally,
Section 6 concludes the main results of this research and its future scope. Figure 1 shows
the distribution of research publications from 2006–2021 for SHM utilizing AI techniques
and smart sensors.

1.1. Research Methodology

The presented paper provides a comprehensive review of AI techniques in SHM along
with the smart sensing technology that makes this possible. The overall discussion is based
on 207 articles in related fields from the year 2006 onwards, of which 181 are journal papers
and 26 are conference papers while, the remainder includes books or digital books. The
papers included are directly or indirectly related to SHM, deep learning (DL), ML, and smart
sensors, viz., UAV, smartphones, and cameras. Journal articles were the first preference for
inclusion; however, relevant conference papers are included. Several academic repositories
such as ScienceDirect, IEEE, Taylor and Francis, Sage, Web of Science, and Scopus were
searched to collect the relevant research works. The keywords such as “structural health
monitoring”, “machine learning”, deep learning civil structural health monitoring”, “data
mining health monitoring”, “artificial intelligence health monitoring”, etc., were searched in
the abovementioned databases to recognize the research works related with AI application
in SHM. The search periods were set from 2005 to 2021, resulting in the identification of 501
works. The screening criteria for identified researcher works was SHM-related implementation
of data analytics, data mining, ML, and DL. Initially, titles, keywords, and abstracts were
studied thoroughly then the papers were read and analyzed if the abstract was found suitable.
All the selected papers are close to the research objective of this article. Finally, 230 articles
were selected and utilized for this review work. Figure 2 shows a pictorial representation of
the addition and elimination criteria of papers to validate the review of prognostics.

The pie chart presented in Figure 3a depicts the percentage share of research papers
included from various publishers of those journals separately. Moreover, the histogram
shown in Figure 3b gives the impact factor of journal papers, which further validates the
value of the papers.

The contribution of this review work can be summarized as given below.

• A comprehensive review was performed on advanced smart data acquisition methods
for SHM.

• AI applications in SHM were studied to deliver a broad review of the existing tech-
nologies and advancements.

• We provide a brief description of diverse challenges prevailing in the SHM domain.
• We offer insights about future research directions and challenges in the application of

ML for SHM.
• We provide a chronological arrangement of recently published works for diverse

sensor-based techniques for reader ease.
• Efforts were made to illustrate various methodologies pictorially.
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Data Diversity and Databases Utilized for SHM

Data are the most important aspect of artificial intelligence models, whether they are
applied for SHM or any other engineering field. Due to advancements in smart sensing
technology, large amounts of real-time and experimental research data are available in
the public domain that is useful for testing newer intelligent paradigms. Three are three
common data formats that are widely produced during SHM operations, namely, time-
series vibrational data, 2D pictures, and 3D point cloud data. Time series data are the
most common form of data types primarily recorded from vibrational sensors installed for
damage detection. The real-time measurements can be captured through single or multiple
time series data format depending on the number of sensors placed on the structure under
surveillance. The next data format of SHM exists in the form of 2D pictures of cracks,
factures, etc., which are processed through image processing techniques. The third data
format which prevails in SHM is point cloud data generated from laser light detection
and ranging devices such as terrestrial laser scanners (TLS), etc., and require sophisticated
simulation software for its processing. Point cloud data are 3D data generated through
the measurement of laser reflection from the object’s surface. Later, these data points are
converted into mesh models, surface models, or computer-aided design (CAD) models
through the process of surface reconstruction. There are several online databases available
for SHM such as “Los Alamos National Laboratory, U.S.A”, “IASC-ASCE Task Group on
Structural Health Monitoring”, etc. The list of these open-source databases is provided in
Appendix A, Table A1. Several individuals have also provided their open research data for
SHM. Information about individual research databases is also included in the Appendix A,
Table A1.

2. Overview of Structural Health Monitoring

The concept of measuring basic vibrational responses of civil structures exists for
the detection and location of damage over a long period of time. This consideration in
common mechanical and aviation assemblies to comprehend and recognize the damage
is prevalent in the basic design field [23]. SHM employing the vibrational inspection
technique contains five levels, namely, discovery, localization, grouping, appraisal, and
forecast [24]. Direct and non-straight sorts are the two significant arrangements implied
for dynamic damage. A straight flexible structure will occur as the equivalent even after
damage, where the modular characteristics and varieties because of mathematical or
materialistic changes can be exhibited utilizing a direct condition [25]. Non-direct damage
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happens when a straight versatile structure deviates into a non-direct way afterward the
event of damage. For example, the progress of a crack that may consequently expose
and close under vibrations in its ordinary working conditions is a suitable model for
nonlinear damage.

A solid damage recognition method is pertinent to both kinds of damages as a rule. As
referenced previously, the cycle of SHM includes various developments. Figure 4 depicts a
schematic workflow of SHM for damage detection.

From the start, the structural framework is checked after some time, using several
sensors and raw data that are gathered dependent on intermittent examples of estimations
of dynamic reactions obtained from similar sensors. Extraction of the information is the
next phase, where the tops that can achieve damage are removed from these experimental
evaluations [26]. An inspection is executed on extracted damage gentle highlights to survey
the present circumstances and soundness of the supporting framework [15]. Should there
be an existence of long-haul dynamic checking situations, the yield of such a measurable
cycle is refreshed routinely, to acquire data that validate the limit of the structure easily
when it is exposed to maturation and crumbling because of different natural conditions,
or when the structure experiences adverse effects because of events such as tremors or
overwhelming loading [27].

SHM is a means to approve the real-world reliability of civil structures. The break-
down of the North Carolina Bridge in the US is an event that pushed engineers to concen-
trate on dynamic fitness observing procedures. Additionally, the progression in remote
sensor systems has impacted SHM innovation and encouraged the remote broadcast of
the observed boundaries, for the most part highlighting the distant access of the SHM
frameworks [28,29]. Figure 5 shows a depiction of different conventional techniques used
for leakage detection. Figure 6 shows the RGIPT plant demonstrating pipe leakage and
structural damages in water pipelines. Table A2 contains diverse techniques utilized for
the detection of corrosion in transmission pipelines to maintain structural integrity.

Indifference to city-wide appropriation frameworks, pipelines, and building frame-
works can be influenced by minor leakages that can be recognized simply after extensive
or complex activities, such as checking estimated asset permits at the meter during times of
no asset use [30]. They may stay unnoticed for quite a long time or months, subsequently
generating an enormous amount of waste or even damage. The insights detailed in the
Water Sense Project [31] display that private water spills in the United States waste around
3.78 trillion liters of water per year. Numerous inadequacies influence the progress of
legitimate applications for observing water and gaseous petrol matrices, as explained in the
thorough study by Fagiani et al. [32], regardless of the accessibility of cutting-edge metering
frameworks [33,34] and sensor deficiency in structures. In particular, a wide arrangement
of artificial intelligence and computational approaches zero in on the satisfaction of the
shrewd household and the keen matrix ideal models [35,36]. Innovative exposure methods
raised profound interest in numerous applicable fields, and a huge quantity of writing
has been created to this point [37,38]. Among these, non-meddling strategies [39,40] have
been considered quite compelling since they do not need extra instruments, other than
the water meter, to find the spillage. In addition, ample information about spillage/issue
identification in mechanical conditions is accessible in the literature. Generally, oil and
petroleum gas pipelines depend on high inspection rates as well as numerous detecting
sensors arranged along the pipeline [41,42].

SHM can bolster the procedure of executing a damage recognition approach for civic
structures [43]. Damage is the change in physical and statistical characteristics that shifts
towards the worst conditions [43]. In other words, the damage is whatever affects structural
performance. Structural health monitoring involves routine indicators using an image or
precise data and an investigative model together with engineering knowledge. The final
consequence is the health profile of the structure through the performance profile, which
makes it possible to reliably predict the future health of the structure [44]. Figure 7 shows
the placement of sensors for the SHM of bridge structures.
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Damage to the structure is nonlinear and hysteretic. Natural elements (e.g., tempera-
ture) can change the common recurrence of structures with no damage to the structure [45].
Similarly, the between-story floats, if not determined by coordinating the band-pass sepa-
rating increasing speed information, are certifiably not dependable damage markers, as the
mistakes created by the commotion in the records are dramatically enhanced during such a
mix [46,47]. A smart algorithm is created to process real-time data at the same time and
this algorithm also gives a very precise location of the damage [48]. Therefore, real-time
data processing gives a smart solution for damage detection as well as sheath monitoring
of the structures [49]. A systematic review was provided for dynamic damage detection
using the subspace technique for civil constructions [50].

The health profile, for both diagnosis and prognosis, typically depends on SHM. These
techniques are generally mentioned as model updating or device recognition and consist of
searching the parametric real-world models that optimally suit the structural data produced
by the sensors to gather information that cannot be calculated on-site directly [51,52]. As
referenced previously, the cycle of SHM includes various advances. From the start, the
framework is checked over a long time, utilizing many sensors, and perceptions are guessed
dependent on intermittent examples of estimations of dynamic reactions acquired from
similar sensors [53]. Extraction of the information is the next step, whereas the data,
which represent damage, are separated from the noticed estimations [54]. Furthermore, a
measurable examination is executed on this removed damage-related information to survey
the current conditions and wellbeing of the basic framework [55]. If there should arise an
occurrence of long-haul dynamic situations, the yield of such a factual cycle is refreshed
routinely, to acquire data that validate the limit of the structure easily when it is exposed
to maturing and crumbling coming due to different natural conditions [56–58]. These
sensors are simpler, user-friendly, and permit quicker installation to capture monitoring
data that has high-resolution and spatial structural data. These sensors are also small-work
concentrated as well as profoundly profitable. Here, we present a comprehensive review of
the existing literature on current sensors-based technologies, namely, cameras, unmanned
aerial vehicles, cell phones, and acoustic sensors [58].

2.1. Overview of Artificial Intelligence

Artificial intelligent (AI) models such as ML and DL are extensively utilized in the do-
main of SHM for several forms of damage, leakage, and health monitoring purposes [59,60].
AI is proven to be a cost-effective alternative to traditional modeling methods. AI is a com-
puter science subject that focuses on the production of human intelligence machines and
software. Many problems in civil and structural engineering are affected by uncertainties
that cannot be addressed by traditional techniques. In solving these difficulties, the appli-
cation of AI can help. In addition, AI-based solutions for the determination of engineering
design parameters are practicable when testing is impossible, leading to significant savings
of time and effort in tests. Moreover, AI may accelerate the process of decision making,
decrease error rates, and enhance processing efficiency.

ML is often considered to be synonymous with AI, yet it covers other smart con-
cerns such as grouping, groupings, computer vision, etc. ML debates computers with
sophisticated human behavior, whereas AI denotes a machine’s potential to mimic hu-
man cognitive processes. AI is a wider phrase and concept that includes applications
where a machine imitates “cognitive” capabilities associated with humans and their brains,
e.g., “learning patterns” and “finding solutions of problems”. ML is a subset of AI which
includes “traditional” paradigms for diverse tasks, such as classification, estimation, or
clustering. ML models must be trained on a sufficient quantity of data to learn hidden
patterns and also to achieve accurate predictions. Data mining/science is a wide field
that tries to uncover essential valuable information in vast volumes of data. Data mining
practices are utilized to find unknown qualities in domains where knowledge is sparse. The
datasets are classified as “big data” only if it has five V’s—volume, velocity, value, velocity,
and variety—as its qualities. Big data relate to large or complex data sets that employ
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standard data analytics techniques which are essential to extract hidden information. ML
may be used to develop an AI subfield to detect the hidden patterns and emphasizes
the prediction based on recognized attributes that have been learned from the training
datasets. DL is another subset of ML, a method that works on gaining knowledge about
the data’s structures, their properties, and hidden patterns. DL is developed to handle
big data efficiently with machine vision-related problems. It utilizes multi-layered deep
neural network architecture for learning the hidden patterns of training data and has
distinct inbuilt capabilities that are absent in conventional neural networks such as feature
extraction, big data handling, machine vision, etc.

In the subject of structural engineering, uncertainty affects several aspects of archi-
tecture, analysis, status monitoring, project management, and decision making. In certain
aspects, the issue of structural engineering is unavoidable. In seismic design, for example,
earthquake requirements are not understood precisely. In structural patient monitoring,
there are mistakes in the amplitude of the input stimulation, noise measurement, and
spatial density. Models designed to predict and characterize structural responses can
contain large uncertainties. Geotechnical information is obtained by the use of limited
information or laboratory testing data for the high level of uncertainty existing in structural
base applications. All these glitches may be simulated and regarded as uncertainties [61].
However, AI can address such uncertainties effectively. Updates of the finite element
model were utilized to address problems of uncertainty for instance within the context of
system diagnosis of damage [62]. The updating of the model may be used to identify seven
physical parameters for which value changes are utilized to signal damage (e.g., the rigidity
of a structural component). However, such reductions can only be caused by statistical
uncertainty. Thus, the uncertainty of the estimate must be calculated to see if a parameter
drop can be caused by real damage. In addition, the application of AI techniques may save
time and money and enhance computing efficiency in various structural engineering activi-
ties. Figure 8 shows (a) different advanced data-driven techniques utilized for SHM and
(b) generalized workflow for Azure Machine Learning proposed by David Chappell [63].

2.1.1. Deep Learning in SHM

Recently, the utilization of DL has increased for structural engineering purposes.
The implementation of DL (e.g., Convolutional Neural Networks (CNNs)) for damage
detection is very innovative. CNNs learn and extract through provided features to achieve
optimal features and classification. This makes a very efficient image-recognition workflow
convenient to design for 2D signals such as images, video frames, etc. CNNs are classified
and employed as vision-based SHM techniques, which record images in different structural
states. Table 1 shows the comparison between ML and DL properties for SHM applications.
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Table 1. The evaluation of ML vs. DL approaches for SHM applications.

Machine Learning (ML) Deep Learning (DL)

Merits
• This can be applied in conventional and

data-driven systems of SHM.

• DL can be applied with conventional systems.
Mainly applicable for vision-based SHM
systems.

• ML can be combined with Internet of Things
(IoTs) for smaller implementation. • DL can easily handle big data conditions.

• Relevant for smaller optimization problems
with proper model parameters tuning.

• Applicable for large optimization problems
without tuning of parameters.

• Computationally efficient with less data. • Computationally efficient with high data
volumes.

Demerits
• Not suitable for newer SHM systems for video

processing. • Not suitable for conventional SHM systems.

• The data structure of ML is different than
CNNs.

• Large amounts of data are required for
effective performance.

• Normally, low computation cost when
compared to DL. • Higher computational cost than ML.

Sarkar et al. [64] first used CNNs to classify crack damage of composite materials
in structural engineering. Abdeljaber et al. [65,66] introduced a one-dimensional CNN
approach with vibration-based damage detection. They verified that the technique could
be directly learned from the measured acceleration statistics, resulting in a proper approach
to civil structure health monitoring. However, the proposed system required many data
capture sessions to generate the training data, particularly for large civil structures, which
is a limitation. They proposed a method for identifying nonparametric damage through
CNNs which required two training data capture sessions to overcome the above-mentioned
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drawback [66]. They demonstrated the efficacy of the SHM system in the detection of
actual damage. Cha et al. [67] introduced a DL model for sensing concrete cracks in tunnels
without computational defects. A comparative study was also carried out to understand
how concrete cracks were detected robustly as compared to traditional image detection
methods in the proposed DL damage assessment approach. To find out the unidentified
association between captured data and patterns of damage, Gulgec et al. [68] proposed the
method to identify the structural damages using CNNs. The applicability of DL in a ten-bar
planar truss for structural analysis was further examined by Lee et al. [69]. It was shown
that conventional techniques were less efficient than CNNs. All these studies suggest
effective tools for SHM using DL/CNNs architectures and established these frameworks
as feasible procedures for newer vision-based SHM systems. Figure 9 shows the utilization
of CNNs for crack detection in buildings adopted from [70].

2.1.2. Machine Learning-Based Damage Detection for SHM

Initially, Bayesian probabilistic models were applied with an artificial neural network
(ANN) for small structural monitoring, damage localization, and determination of its sever-
ity [71]. The dynamic response is utilized for SHM using ANN along with signal anomaly
index which represents a deviation in the shape of the frequency response function [71].
Additionally, the effect of noise was also studied on the ANN outcomes. ANN and model
variables were employed for the SHM to monitor a steel frame five-story building. The
mode frequencies were taken as input variables and stiffness as a response. White noise
was added to understand its effect [72]. Diverse activation functions of ANN were tested
with IASC-ASCE standard structure data. Model parameters were also compared with
the Ritz vector. It was found that model parameters were more suitable for the training
of ANN for SHM applications with the presence of an adequate amount of noise within
the captured training data [73]. A hybrid neuro-wavelet technique was employed for
damage recognition in SHM [74]. The input data comprised the Gaussian noise that was
intentionally added to generate noisy training data to study its impact. A two-level ANN
was applied for the estimation of unmeasured mode shape, severity, and localization of
structural damage. A hybrid combining ANN and a genetic algorithm was proposed for
damage detection in [75].

A nonparametric damage recognition paradigm was proposed based on a self-organizing
map to extract damage indicators without utilizing modal frequency data. Later, feature
extraction was implemented to detect structural damage using accelerometer data. K-
nearest neighbor (K-NN) and support vector machine (SVM) were applied for the damage
detection of rotary machines [76]. Later, variations of K-NN were also reported for damage
detection [77]. The residual error was utilized for damage recognition through an autore-
gressive model with the acceleration time series [78]. SVM was employed for SHM with
velocity, acceleration, and displacement as input features [79,80]. Further, CNNs were
applied for damage detection using accelerometer data [79,80]. CNNs were also applied on
a wireless sensors network with raw vibration signals which included 1D CNNs for every
wireless node [81,82]. A separate study was performed utilizing a smartphone to detect
seismic damage [83,84]. The smartphone accelerometers were applied to determine the
structural displacement of multistory buildings due to shaking induced by earthquakes [85].
These smartphones contained low-quality sensors; thus, a high pass filter was used for
noise cancellation [85], along with a low-quality accelerometer to learn the impact of the
noisy dataset on the enactment of machine learning models for SHM applications [86]. A
detailed review of damage recognition was provided on the bridge structures to describe
the diverse levels of damage. It elaborated four levels, namely, (a) quick detection of
damages, (b) localization of identified damage, (c) assessment of damage severity, and (d)
prediction of existing structures life [87]. It also identified three limitations of model-based
damage detection, namely, changing environmental conditions, improper application of
intelligent data-driven models, and too much confidence over sensitive features of captured
data for the bridge structure [87].
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2.1.3. Data-Driven Pipeline Leakage Detection

In the industry, the transportation of a bulk number of fluids is performed through
pipelines. These pipelines are usually damaged with time because of seasonal weathering
conditions. Thus, continuous monitoring of pipelines is performed to maintain their
structural integrity and repair damage.

Figure 10 shows pipeline leakage detection using LIDAR technology. The initial
real-time model was proposed to measure the short-lived behavior of fluid to identify
the leaks using adaptive state observers, mathematical dynamic models, and correlation
identification techniques [80]. Further, fuzzy logic, ANN, and genetic algorithms were
applied to develop an expert system for the identification of seepage in oil pipelines [88].
In another work, SVM was utilized for leakage detection using noisy training data [89,90].
The method of hierarchical seepage recognition and localization in sensor networks was
anticipated for the monitoring of the natural gas pipeline [91]. The pipeline system was
modeled in EPANET software to generate the training data for ML models, viz., ANN
and SVM [92]. They also compared the performance of ANN and SVM for the detection,
localization, and estimation of the size of pipe leakages [92]. A novel workflow was also
proposed for the seepage detection of water/natural gas grids. It utilized the Sequential
Feature Selection paradigm (SFSA) for the feature extraction and three machine learning
techniques, namely, Gaussian Mixture Models (GMM), One-Class Support Vector Machine
(OCSVM), and Hidden Markov Model (HMM), for leakage detection. The backpropagation
ANN for the water resources management of Rajasthan illustrated the potential of several
ML models [93,94]. Another work compared ANN, SVM, Logistic Regression, and Random
Forest (RF) algorithms for monitoring the water distribution network of Italy [95,96].

A stacking ensemble was applied to combine the results of multilinear regression,
ANN, SVM, and RF for the determination of pipe performance. This work also reported
that there was a 35.7% increase in the prediction accuracy with a 13.6% reduction in
error when compared to the single supervised algorithm [97]. The existing technologies
were reviewed for the identification and localization of leakages to use in water pipeline
systems using wireless sensor networks (WSNs) [98]. The fusion of 1D CNN–SVM was
implemented for the leakage detection and graph-based method for the localization of
leakage fault [92,99]. Later, a comparative study reached a detection accurateness of 99.3%
and localization error was less than 3 m when applied to the actual water circulation
network [100]. Intrinsic mode function, principal component analysis, and approximate
entropy were implemented to extract important features from data collected from 4G
wireless sensors networks installed at water distribution systems [101]. These extracted
features were utilized to train the SVM model to spot seepages in the water pipeline
system. Wavelet decomposition was employed to extract important features and ensemble
methods for the identification of seepages in water circulation networks through pressure
analysis [102]. A review was published about pipe leakage recognition systems and data
fusion [103]. A deep learning technique was implemented for SHM utilizing exceptionally
compressed data [104]. Table A3 shows recent publications on various data-driven methods
applied for SHM (in Appendix A).
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3. Next-Generation Smart Electronic Packaging Solutions

Electronic contact sensors are attached to the structural body to capture the dynamic
response of civil structures [8]. However, the installation of contact sensors is practically labor-
intensive, risky, and high-maintenance [8]. Data captured through contact sensors are sparse,
discrete, and have a low spatial resolution, which reduces the efficiency of SHM [8–11]. Wireless
sensors are utilized to handle the challenges of contact sensors but are reported to have their
own limitations. Wireless sensors must be installed in thousands of quantities on a civil infras-
tructure and it takes time to collect the SHM data [8,12–14]. Moreover, the data acquisition of
wireless sensors becomes a thought-provoking job due to the complication of data transmission,
synchronization, and power consumption [8,11,13,14]. The non-contact sensors are reported
to be costly and less effective with varying climate conditions and distance measurements.
Longer distance measurement through non-contact sensors requires a higher intensity laser
light for its measurements [8,11,12,14]. This is hazardous for structures when data are collected
for SHM. The above difficulties of ordinary non-contact sensors have been removed with the
ongoing advancement of diverse smart sensors and electronic packaging inventions that are
coordinated with visual and versatile checking frameworks [105–108]. Smart sensors capture
data from their surrounding environment and utilize their computational power to evaluate
predefined functions when particular signals or inputs are perceived. They pre-process the
captured raw data typically using a Digital Motion Processor before transmitting them to cloud
computing platform for further analysis. They contain analog filters, transducers, excitation
control, battery power source, amplifiers, and inbuilt software functions for data digitization,
onboard pre-processing, and transmission. Further, smart sensors are integrated with Internet
of Things (IoT) gateways to cloud computation platforms. IoT networks also enable real-time
remote monitoring of connected systems and are often termed smart-based monitoring devices
in Industry 4.0. These smart detecting strategies incorporate advanced and ultra-high-speed
cameras, UAVs, cell phones, and portable (mechanical) sensors [109–112]. Figure 11 shows a
diagram of several smart next-generation sensing technologies applied for SHM. We discuss
the important techniques in this section.
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3.1. Camera Method

Low-cost vision sensors have been developed that assist the health monitoring of civil
structures remotely. Nowadays, digital single-lens reflex (DSLR) and a high-speed camera
can be utilized for the data acquisition of SHM data. Digital single-lens reflex cameras
and exceptionally advanced cameras have been used for information securing of small
buildings [8]. Cameras are differentiated using pixels, data transfer capacity, and picture ad-
justment. The current camera methods are different in variety and range from digital image
correlation (DIC) to motion magnification (MM). There are four primary steps involved: (a)
camera adjustment, (b) image acquisition and refinement, (c) displacement field measure-
ments, and (d) damage detection [8]. DIC fails to detect a low amplitude level of motions
in civil structures due to high frequency. Hence, motion magnification technology has been
developed to measure the displacement shape of vibrating structures. Up to a particular
frequency, DIC and MM in combination can measure minor displacements during higher
frequency vibrations [10–12]. A non-contact vision camera system was applied for multiple
locations’ dislocation monitoring in a cable-stayed footbridge [113]. The camera method
mainly contains four stages with camera adjustment in a steel box brace and captures
data by taking pictures using the user camera. The impact of pictures and component
dimensions are concentrated to comprehend the strength of the suggested strategy [113].
Sometimes, for structures and scaffolds, multipoint dislodging observing is basic, and the
advancement of a lower price camera-based method is fundamental for its usage in indus-
tries. The vision-based framework was provided for estimating the dislocations of large
structures along with concurrent adaptive calibration and full-motion assessment [114].
The real-time identifying of native damages was proposed in civil structures using robust
principal component analysis [115].

An update for the advanced high-speed correlation framework was developed to
assess the parameters of two thin steel samples [116]. Q-450 Dante dynamic’s cameras were
used with a testing recurrence of 2000 fps, and the subsequent documents were spared
as various leveled information design through Intra4D [116]. A mechanized instrument
called Modan3D was created to process pictures directly from available data format files to
recognize the model. The 3D digital image correlation technique was investigated for the



Metals 2021, 11, 1537 17 of 48

identification, localization, and quantification of damage in an aluminum cantilever beam
using a stereo camera pair to capture the object’s surface [109]. Dynamic load conditions
were also applied to capture the beam response on the first three resonant frequencies. This
technique was found suitable for large cracks and faults in the beam structure [117].

A novel non-contact vision sensor was developed based on two advanced template
matching techniques: the unsampled cross-correlation (UCC) and the orientation code
matching (OCM). These templates are utilized for synchronized recording of structural
dislocations at multiple points through a single camera [118]. Substantial benefits of this
anticipated vision sensor include its low cost and flexibility to extract defect information
at any point from a single vision-based measurement [118]. With the decent information
procurement capacity of a camera, the requirement to build up a coordinated picture and
video investigation application was also examined [119].

In another innovative procedure, a video picture handling method was created to
address difficulties related to vision sensors [120]. The basic challenges, namely, restricted
lighting, multipoint relocation, and camera vibration related to vision sensors, were tested.
A low-cost camera vision scheme for capturing multipoint dislocations on a cheaper con-
sumer camera was investigated for video capturing and its processing. This entire system
was validated on a cable-stayed footbridge for deformation and vibration data recording
under pedestrian loading [121]. Practically identical research work was performed utilizing
2D digital image correction and fiber Bragg grinding to examine its adequacy in estimating
the relocation of barrier spans in different imperatives.

A review of the state of the art related to a vision-based scheme is provided for the
displacement measurements of civil structures [98]. The processing of captured video
files of vision-based systems is organized in this work into three components: structural
displacement calculation, target tracking, and camera calibration, all with their limitations
and advantages. The deformations in bridge assembly and cable vibrations were also
investigated properly. Significant existing research gaps were also investigated for robust
tracking approaches, non-contact sensing methods, and data capturing accuracy in real
field situations [98]. As introduced above, the utilization of cameras and important picture
handling calculations of the structure are among a wide variety of non-contact techniques
for health monitoring. There are a few difficulties and confinements that are presently
influencing the exhibitions of visual strategies with the camera sensor. Elements comprising
climate impacts, such as downpour, light, thundering, and wind, and the ensuing vibrations
should be investigated with regard to SHM. Camera position, number of cameras, blind
spot, database complexity, etc., are a few limitations faced by camera-based SHM methods.

The DIC method was applied for the investigation of bridge health monitoring [122].
The performance strain gauge data and digital images were utilized for risk analysis
of a critical bridge structure. It was reported that strain measurements are unaffected
due to camera height. The pavement defects are also detected during this investigation.
The implementation of a semantic texton forest combined with ML paradigms has been
utilized to perceive the pavement damage using the visual data collected through parking
cameras [97]. The information was gathered using two cameras: (a) an HP Elite Webcam
selected to mimic a low-quality resolution for ending the camera and (b) a gray Blackfly
05S2M camera to fulfill current guidelines of the stopping cameras [97]. It was also observed
that applied techniques require a large quantity of data for their training. However,
rutting, defects, depressions, inclinations, etc., are also required to be integrated with the
pavement health monitoring model, as discussed above. Because the stopping camera
caught unintentional territories that hindered the speed of the observing strategy, Xu et al.
introduced a procedure that recognized the correct region of interest (ROI) utilizing an
inverse perspective mapping [92,123,124]. Park et al. [12] utilized VICON T-160 cameras to
develop 3D displacement models. They showed that this system was quite useful where
torsional and lateral displacements occurred simultaneously. However, the above methods
had certain shortcomings such as a minimum of three cameras, range requirements, and
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reflective markers [12]. Oh et al. [113] also implemented a gesture capture system with
frequency decomposition to record the dynamic response of the structure.

Several research works have been published containing the hybrid blend of vision
sensors and image processing paradigms. An EOS 5D MKII camera system was used for
measuring the displacement of cantilever beams. The line segment method and voting
methods were applied to model deflection curves. Ye et al. [115] proposed multipoint
pattern matching paradigms to detect the goals from the pictures recorded from the GE1050
camera. It was observed that vapor and illumination adversely affect vision-based systems.
The full motion of the civil structure was tracked using vision-based methods [122]. Yang
et al. [125] developed a paradigm for under-sampled data using Sony NXCAM at 240 fps.
Fukuda et al. [119] developed a digital camera and processing software. Wu et al. [120]
provided a framework for dynamic testing of civil structures through the target tracking
system. Yoon et al. [121] proposed a consumer camera for a target-free, vision-based
system for SHM and utilized three paradigms, viz., Kanade-Lucas-Tomasi, MLESAC,
and eigne system. An autonomous deep learning model was applied for continuous
health monitoring and to detect damages in steel bridges [92,123]. Images of bridge and
element size were particularly investigated to understand the potential of the DL-based
method [92,123]. Feng et al. [122] also evaluated multipoint displacement of building
frame structures utilizing the unsampled correlation and OCM techniques. Luo et al. [97]
suggested the requirement of the new application for the combined images and video
analysis. InnVision technique was developed to handle dim light, multipoint displacement,
and camera vibration problems. Xu et al. [92] utilized a low-grade camera to investigate
the model frequencies of cable bridges. Xu and Brownjohn [100] reviewed the state of
the art for SHM with regard to displacement estimation, tracking of targets, instrument
calibration, and the associated challenges.

Chen et al. [125–127] utilized a high-speed camera for quantifying the mode shapes
of civil structure through vibrational study. They applied an RGB-D camera for the detec-
tion of deformation in civil structures. RGB-D sensors were able to give their maximum
performance at a 30 Hz sampling rate. In a separate study, a Kinect sensor was investi-
gated to measure 3D translation motion along with torsional and rotational components
for understanding the dynamic behavior. The noncontact methods provide potential ap-
plication areas for modal identification. Feng and Feng [128] performed displacement
measurements of civil structures through the stiffness and excitation forces. Kromanis and
Al-Habaibeh [129] applied smartphones with an optical lens to continuous surveillance
of vibrational movements in civil structures. Poozesh et al. [130] utilized optical data to
implement a complexity pursuit algorithm for construct source signals. Molina et al. [131]
applied the MM and DIC for the modal shape characterization of the stepped aluminum
bar. The impact of weather conditions on camera performance was also studied using
signal processing techniques, observed to have 1% variation as compared to accelerome-
ters [132]. Zhou et al. [133] applied videogrammetry under variations in temperature and
reported axial, horizontal, and vertical variations in temperatures and applied wavelet
transform for the detection of signal frequencies. Yu and Pan [134] implemented the stereo
DIC method on a single camera and reduced the cost by replacing two cameras with one.
Yeum et al. [135] applied automatic picture collection through UAVs. They also proposed a
new image localization method to extract ROIs. Yang et al. [136] developed a novel modal
analysis algorithm where surface preparation was not required. Similarly, Oh et al. [137]
utilized the Vicon 2016 camera to propose a new modal identification technique.

In a high-speed camera, noise may accumulate and affect modal analysis, acting as the
main disadvantage. Noisy camera pictures were studied employing the least square com-
plex frequency methods for modal analysis [138]. The integrated camera and accelerometer
data provided excellent results for model parameter estimation. Javh et al. also applied
spectral optical flow imaging for estimating displacement through a DLSR camera [139].
Khuc and Catbas [140] proposed a new workflow combining vehicle load as input for a
beam-type or plate-like steel structure.
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Feng and Feng [141] provided an extensive review on vision-based techniques de-
scribing system recognition, damage detection, its field application, associated errors,
processing paradigms, etc. An integrated highspeed camera system was used to conduct
a feasibility assessment for visualizing concealed damage. The concealed damage was
subsequently visualized with a laser Doppler vibrometer scanning system [142]. Deep min-
ing was employed to monitor SHM vision-based data. ML can deliver powerful scientific
frameworks that will help simulate the performance and conditions of a civil structure.
ML takes advantage of the potential to develop a revolutionary algorithm for structural
health analysis and forecast. The above section reviews the application of cameras and
video cameras for SHM with different processing algorithms. However, various problems
directly hamper the performances of vision-based methods such as weather conditions,
environmental vibrations, and difficulties in the detection of small-amplitude motion,
which must be addressed properly. The chronological arrangement of important published
works for camera-based methods is listed in Table A4 (in Appendix A).

3.2. Smartphone-Based Electronic Packaging Approach

The AI chip undergoes super multi-parallel processing that mimics the brain. AI chips
may need to secure massive I/O and electrode terminals due to high integration. As an
ultra-fine bump forming technology, the electroplating method is the main method for
forming solder. However, solder bump formation such as SnAg or SnCu via electroplating
has difficulties in uniform bump composition and bump height, and plated composition
is generally limited to binary alloys. Generally, Type 6 or 7 solder bumps offers excellent
printing of the flip-chip interconnections in electronic packages, as shown in Figure 12.
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nections using Type 7 solder pastes.

The red arrows in Figure 12 show the position of the wafer where solder bumps are
reflowed for the interconnections to the outer world in electronic packages [143]. For
advanced, ultra-fine pitches, stencil printing is complex and associated with a number of
variables that determine the yield and stability [143]. For high-density interconnections,
due to the increase in functionality, accommodation of various chips together becomes
difficult. It is expected that high-density wiring will be required for AI chips and line
widths of less than 1 µm [144]. According to Lie et al. [145], packaging challenges in the
wafer-scale for deep learning include cross-die connectivity; yield; mismatch in thermal
expansion between the Si chip and PCB in the package; package assembly with precise
alignment including PCB, connector, wafer, and cold plate; high power delivery; and
cooling [145].

AI for mobile devices such as smartphones has been applied by Qualcomm, Apple,
Huawei, MediaTek, etc., and AI for vehicles is applied by Tesla Co. with its hardware
version 3 (HW3) for ADAS (advanced driver-assistance system). Tesla’s automatic pilot
includes self-parking, driving lane centering, traffic-aware cruise control, and so on. An AI
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processor for next-generation is applied by IBM and Intel using neuromorphic chips [146].
Intel designed the Loihi chip to provide functional systems to implement SNN (spiking
neural networks), which is a fifth-generation self-learning neuromorphic research test
chip. The Loihi chip is known to include 130,000 neurons, each of which can communicate
with thousands of others [147]. The Swiss company Sensimed introduced the Triggerfish®

contact lens sensor (CLS) to monitor continuous intraocular pressure changes for 24 hrs.
The contact lens is made of soft silicone having a diameter of 14.1 mm and thickness in
the center of 585 µm. Two strain gauges, a microprocessor, and an antenna are embedded
in the lens [148]. The adhesive antenna sends patient information to a portable recorder.
Hayashi et al. also reported CMOS, a self-powered, and fuel-cell-embedded continuous
glucose-monitoring contact lens, where the footprint of the CMOS prototype is 0.36 mm2

(600 µm × 600 µm) [149].
Modern cell phones are equipped with acceleration sensors, gyrators, and a global

positioning system that can be skillfully applied for condition monitoring of civil structure
buildings. There has been an expanding pattern of applying cellphone sensors in the health
monitoring of structures because of their low price, versatility, enormous storage capacity,
noteworthy computational capability, and effectively modifiable internal programming.
Initially, efforts were made to recognize human movements utilizing Android-based cell-
phones. With the advancement of smartphones associated with a lot of attractive features,
they are widely utilized for SHM of civil structures.

Wang et al. [150] utilized the iPhone’s camera, iOS application, and D-Viewer for cap-
turing 3D displacement of a building structure. A camera was employed to continuously
monitor a spherical target, and the iOS application estimates objects’ directional displacements.
Zeng et al. [151] developed an application for smartphones to predict road roughness for the
transportation department of the US state of Virginia. Zhao et al. [152–154] reported the use
of smartphones for quick SHM of a bridge. They proposed vision-cable force measurement
techniques that were implemented using the iPhone camera and authenticated through the
cable model test. D-Viewer and Orion-CC are two iPhone operating system applications that
were developed especially for SHM and freely available.

The fourth generation iPhones were used as a mini-SHM system containing embedded
responding software and inter and outer sensor board configurations [155]. The internal
sensors collected information about temperature, inclination, moisture, azimuthal, and
acceleration which were further processed to make rational decisions regarding objects
under surveillance for SHM. If inter-board configuration fails to fulfill SHM requirements,
then outer sensor board configuration was applied with port or Wi-Fi connections. To
validate the iPhone’s Gyroscope, a swing test was also conducted with dynamic angle and
inclination measurements [156]. A shake table test was executed to assess the reliability of
the iPhone as seismic monitoring equipment with 1D and 3D tremors ranged between 1 to
10 Hz, relocating earthquake scenarios. They presented a novel application of smartphones
for measuring intensity parameters of ground motion utilizing four 3GS iPhones and
three iPod touchpads [157]. The primary drawback observed for the iPhone in earthquake
monitoring was its limited operational range.

Yu et al. [158] proposed SCHS stereo-DIC methodology with four mirror adapters for
the measurement of 3D dynamic measurement. Surface images of test and target objects
were measured through two dissimilar ocular pathways and later processed to obtain the
vibrational response of the object or specimen surface. The vibrational factors such as
damping ratios, mode shapes, and natural frequencies were also estimated to validate
the potential of the proposed approach. It was found that the proposed approach was
practically effective for dynamic parameters estimations and vibrational measurements.
A new cable force estimation technique employing an iPhone with an installed Orion-CC
application was proposed for SHM [134,159]. A comparison study was also conducted
between iPhone and wireless monitoring methods then Orion-CC was implemented on
lab cable model tests. Finally, the proposed technique was implemented for the health
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monitoring of the Dalian Xinghai Bay Cross-sea Bridge to prove its efficacy in pragmatic
situations [160].

A mini-SHM system was developed with embedded responding software and inner
sensor board or exterior sensor board configurations on iPhone 4S which was connected
with sequential port or Wi-Fi. Cable force and swing tests were conducted in the laboratory
and the cable test was repeated on the real bridge to validate the applied method. Various
examinations were led on a research center level utilizing a shake table and real field
extensions to confirm the practicality of the suggested sensor board. Innovative mobile
testing methods were applied for SHM using iPhone 4S with two new data acquisition
methods. Later, a cable force test was performed to validate the anticipated method.
Finally, the developed method was also implemented on the Hualu and Sifangtai bridges
to authenticate its efficiency for fast cable force measurements.

Zhao et al. [152–154] investigated structural displacement using the laser projection
sensing technique. They processed structural displacement data with D-Viewer developed
on the Android platform. They compared two typical cell phones, namely, Samsung A5
and Meizu MX4. They were utilized for the measurements of structural displacement in
static and dynamic conditions. Samsung A5 demonstrated a higher securing outline rate
because of its fewer pixels as compared to Meizu MX4. The trial outcomes demonstrated a
blunder of 0.85% in uprooting estimation, whereas for the engineered overpass model, the
error was 6.33%.

Zhou et al. [29] review thermal load and its distribution in bridges with emphasis on
numerical analysis and field estimations. The heat transfer in the bridge with boundary
conditions was first discussed with finite difference and finite element methods. This
study considered steel, concrete, and steel–concrete bridges for thermal load analysis.
Smartphone applications were reviewed for economical unpleasantness observing of
street surfaces [155]. Twin Android-based tablets were utilized for collecting information.
They were firmly retained in the crates fixed on the vehicle floor during the trial trips.
The utilization of cell phones requires particular preparation in programming and PC
programming alongside broad stockpiling instrumentation to process large information
productively [155]. An Android system APP was developed that allows many Android
cellphones to be quickly converted into a wireless SHM system [155]. The server/client
architecture was used to make the planned system stable and simple to use. A smartphone
was designated as the system’s server to control all other smartphones, which served
as structural vibration sensors. A comprehensive review of vision-based SHM concepts,
techniques, and their real-world applications has been published [161].

The critical findings of smartphone strategies rely on the following: (1) it has an
effective programmable programming stage, (2) continuous observation is conceivable
over the web and distributed storage, (3) advanced cell direction is basic for worldwide
evaluation, (4) it is reasonable and alluring for huge information assortment, and (5) it
can work with no preparation. Recently, CNNs have been successfully applied as efficient
ways for feature extraction, advancing image categorization, and object identification
technologies [162]. Wang et al. proposed a method for detecting beam fractures based on
acceleration waveforms using a DL model. This model was trained using 20,000 and 200
pseudo acceleration waveform datasets generated through simulation, respectively [162].
Table A5 shows recent publications on smartphone-based methods for structural health
monitoring (in Appendix A).

3.3. Unmanned Aerial Vehicle Method

A large quantity of contact sensors is generally required for SHM of civil structures,
which limits the affordability of contact sensors for large area coverages. Primarily, UAVs
or drones are utilized in the field as an affordable alternative to contact sensors. UAV-based
measurements have gained support from researchers due to advancements in control
strategies, robotics, computational power, and real-time automation capability. Light-
weight cameras are mounted on drones to capture image and video data to evaluate the
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structural health, and contain vision-based systems consisting of GPS, optical sensors,
infrared cameras, LIDAR, and navigation systems. They also have airborne flight data
capturing and processing capabilities that can be easily controlled from the ground. UAV
applications reduce data acquisition efforts, conventional logistics, and accidents. They
provide better spatial and temporal resolution of images when compared to satellite images.
Three-dimensional images of civil structures can also be captured by mounting terrestrial
laser scanners on UAVs, which is an advantage for larger structures.

UAVs were utilized for traffic surveillance and bridge inspection with a new control
law for tacking the targets [163]. Rathinam et al. [164] applied image sensors to the drone
containing a tracking system and GPS controls. The tracking paradigm did not consider
the weather impacts such as wind, rain, etc. A UAV installed with a digital imaging
system was established to gather road surface data to create a 3D model to assess interior
damages [165]. During an experimental flight, a multi-rotor UAV captured photographs of
various rural roads with symptoms of worsening such as pits, potholes, and furrows. The
3D coordinates of conjugate points were computed through two stereo pictures employing
image processing techniques, including image orientation.

Roca et al. [156] inspected building facades and roofs with UAVs fitted with Kinect
cameras. The photos were heavily overlapping, the same scene obtained from multi-view
matching (around 90–95%), to create a point cloud picture of the façade (3 to 4 m of flight
height) [166]. A helicopter furnished with a camera was used to measure the UAV’s use in
monitoring unpaved road surfaces [157]. The UAV could fly between predefined waypoints
automatically and maintain constant flight in winds up to 5 mph. The photographs were
taken on a 200 m length of road in 5 min at 2 m per second [157]. Later, the pictures
were processed through Canny and Hough circle algorithms to identify potholes and their
radii. Eschmann et al. [167] applied non-destructive testing (NDT) for civil structures
using UAVs, specifically micro aerial vehicles (MAVs). An octocopter attached camera with
12-megapixel resolution was chosen for the building assessment. Instead of employing
GPS navigation, the MAV was operated manually. An automatic image capturing sequence
was used to capture photographs of the building. There were two methods, namely, edge
detection and Gaussian Blur, used to study automated crack identification; however, these
were insufficient in sensing smaller cracks or fractures. It was also studied how UAVs
moved horizontally and vertically in the direction of data accuracy to see whether UAV-
based SHM is feasible. Ortiz et al. [168] deployed UAVs to monitor the health of cultural
sites. The UAV captured video, conducted a thermographic study, and took temperature
readings. Several weathering patterns were discovered by the UAV throughout the flight,
including material loss, fissures, color loss, unwanted scale deposits, corrosion, erosion, etc.
Ellenberg et al. [169] employed 3D simultaneous mapping and localization technologies
through UAVs. They used the UAV to validate field demonstration for crack recognition in
an ordinary bridge. A new method termed oblique color imagery was devised to record
the cracks or fractures on the building fronts, which were ignored in prior publications.
Galarreta et al. [170] utilized UAVs to capture high-resolution oblique photographs as
a remote sensor. The photographs were utilized to create a 3D point cloud for damage
assessment and to examine the roof and facade using object-based image analysis. The
key issue was the integration of damage datasets acquired from multiple portions of the
building structure. An examination of the 3D point cloud with proper picture diagnosis at
the same time could be a feasible answer, but more research is needed. In another study,
a UAV was tested on an office building’s frontage and navigated the confined areas and
delivered optical recognition of fractures with a short exposure period to decrease motion
fuzziness [171]. The fissures, which were 0.5 mm wide, were visible. Sankarasrinivasan
et al. [172] applied a grayscale filter based on hat transform methods to locate cracks. To
offer effective crack identification, a Hat transform was combined with a hue filter, e.g., hue
saturation value, having an appropriate threshold. Wind and picture noise were handled
using modern flight controllers and gyrostabilized cameras. Zhou et al. [173] applied
a graph cut algorithm for 2D image processing to detect road pit holes. The tests were
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carried out with 2760 images at diverse resolutions and flight ways. The precision of the
UAV system was assessed to be 98.4%, indicating that UAVs have large future potential.
However, drift problems and uneven contours were proven to cause large errors at low
speeds in UAVs.

Cho et al. [174] executed crack recognition utilizing CornerHarris, a feature-based im-
age recognition technology that uses Haar features and subsequently converts the pictures
from color to grayscale. On black and white images, histogram equalization was employed
to improve recognition rates along with an adaptive binary approach which creates a
threshold on the input image data. This method safely examined skyscraper buildings and
can also be used to scan cliffs and docked vessels in other industries. Researchers looked
at post-data collection techniques such as data processing, vision-based approaches, and
geometrical processing to find the most important photographs [175].

The UAVs were equipped with a vibrational non-destructive technique (NDT) for the
early detection of cracks to lower both maintenance expenses and the sensors installed on
the civil structure [176]. The planned NDT approach relied on piezoelectric material that as-
sisted as both an exciter and a sensor. It was wired to the UAV and magnetically connected
to ferromagnetic materials for wood or concrete civil constructions. The developed method
was also successful in distinguishing between distinct damage types. Franke et al. [177]
investigated two dissimilar soil liquefaction locations in Chile using small UAVs.

Qidwai and Akbar [178] detected flaws in metallic constructions through UAV in-
spection which was paired with a robotic magnetic flux leaking device. Edge detection
and Hough transform were used to create the imagery of metallic construction. Reagan
et al. [179] identified cracks in a concrete bridge using UAVs and 3D DIC technology.
The 3D DIC UAV system was shown to be a viable SHM solution. Reagan et al. [180]
investigated the UAVs and 3D DIC techniques for the SHM of a bridge. Laboratory and
field investigations were used to verify the suggested system’s evaluation. It was observed
that proper lighting conditions are essential to capture the data accurately to build a 3D
DIC system.

The utilization of unmanned aerial vehicles (UAVs) for large-scale structure moni-
toring was investigated [181]. The researchers employed a remotely operated airborne
vehicle to detect the displacement of a huge floating membrane in a wastewater treatment
plant that spans over 170 × 420 m2. The UAV system only gave structural displacement
concerning the camera’s position. Yoon and Spencer [182] combined relative structural dis-
placement with camera motion, and a framework was developed to obtain the structure’s
absolute displacement. Damage detection in inaccessible places is the main area for UAV
applications. Morgenthal and Hallermann [183] used UAVs to detect damage, which was
an improvement above the traditional inspection method. A brick construction, a hangar, a
turbine, and a chimney, displaying diverse damage types, were all subjected to test flights.

Ellenberg et al. [184] successfully merged the imagery received from UAVs. Re-
searchers were able to conduct a bridge study and achieved quantitative facts about civil
constructions. Kim et al. [185] presented a fracture recognition technology founded on
UAV-acquired pictures and image processing. The data of concrete walls containing diverse
crack types, caused by loading creep and shrinkage conditions, were acquired from the
field. The photos were then processed using a hybrid image binarization technique to
determine the crack width. With an inaccuracy of 7.3%, the planned picture processing
approach was effective in defining cracks with a thickness greater than 0.1 mm. Omar and
Nehdi [186] utilized UAVs furnished through infrared thermography abilities to observe
defects of strong framework surfaces. The captured warm pictures were prepared using an
estimation that sewed the photos composed to outline a variety of the augmentation sur-
face, and a k-means bundling strategy was applied to order the faults into essential groups.
Figure 13 demonstrates the components of the UAV method for structural data collection.
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UAVs outfitted using infrared thermography capacities were utilized to observe
the defects of solid extension surfaces. The captured pictures were prepared to apply a
calculation that sewed the pictures composed to shape a variety of the scaffold surface and
the k-means bunching method was utilized to order the deformities into serious gatherings.
Germanese et al. [187] proposed a health monitoring of the structure system for striking
structures using UAV captured pictures for crack detection. The test game plan was driven
in an examination office by utilizing indicators to detect crack openings. These indicators
were relocated all through the examination to impersonate time-consuming crack courses
of action.

In [118], damage identification was developed using a diminished scale channel called
the top change method. The authors tried to merge a base top change with a color-based
channel, for instance. The UAV sensors are sensible for observing hard-to-arrive-at zones
and give remarkable transient and spatial objectives conversely with satellite pictures. One
of the appealing features of UAV devices is that they give 3D data that are important for
tall structures. A visual vibration checking framework was introduced to screen the speed
and relocation area [117,118]. The picture preparation was carried out using three unique
strategies: outline contrast technique, molecule picture velocimetry, and optical stream
strategy [118]. The test after effect of the investigation indicated that the optical stream
technique arrived at higher precision contrasted with molecule picture velocimetry. This
technology applied a sliding window-based relationship calculation that was exceptionally
needed due to the characteristics of captured pictures.

In a comparative report [188], virtual visual sensors were applied through digital
cameras for health monitoring of timber wooded structures. Vibrational frequencies were
estimated by the intensity of the fixed pixel coordinate of captured video and then by
implementing fast Fourier transform to extract natural signal frequencies. Degradations
in stiffness and weight of wooden material are reflected in the natural frequencies. Visual
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sensors were applied to monitor the health of a United States Forest Service’s pedestrian
bridge. It was found that moisture content and damage on the bridge had a significant
impact on the natural frequencies. In an additional investigation [173], street recognition
was performed through UAV by applying a graph cut algorithm on UAV aerial videos.
The investigations were performed on cleared streets with 2760 pictures being caught
in changing goals and strategies for flight. The street detection framework provided
98.4% accuracy with a processing speed of 43 frames per second with an average of
1046*595 videos. Morgenthal and Hallermann [189] achieved damage recognition utilizing
UAVs to enhance customary investigation techniques. Practice runs were completed on a
stonework fabrication, a holder, a breeze turbine, and a smokestack, all displaying different
types of damage. They discussed visual inspection of civil structures using UAVs with the
effects of wind speed on the image data. They applied computer vision procedures for the
detection of cracks in various civil structures such as a church, chimney, under bridge unit,
truck crane, etc. They completed an examination on connection and obtained quantitative
subtleties of common structure frameworks by joining symbolism gained from the UAVs.

Kim et al. [185] also offered a crack recognition workflow using a UAV captured video
data with a hybrid image processing technique. The tested UAV contained an ultrasonic
sensor, a camera, and a small Wi-Fi unit for capturing images of the target structures. This
proposed approach detected fractures thicker than 0.01 mm with a prediction error of 7.3%
for length [190]. Duque et al. [191] checked lumber connects utilizing a UAV joined with a
fracture evaluation convention. In [192], the crack central point technique was proposed
for the fracture detection of a bridge structure using UAV-captured image data. They
also reported comparative results of the proposed technique with the k-means clustering
technique and the edge detection method to establish its supremacy as more robust and
adaptable technique.

In [192], machine learning approaches were utilized to improve the different design
and functional elements of UAV-based communications, such as network modeling, source
management, placement, and safety. In [193], ML, stochastic geometry, optimization theory,
transport theory, and game theory are present among the analytical frameworks and mathe-
matical techniques discussed. The usage of such technologies to solve specific UAV-related
challenges is also discussed. In a nutshell, this research work explains the optimization,
analysis, and development of wireless communication networks based on UAVs. The
picture recording and geo-tagging system along with CNNs were used to quickly identify
and locate damage [194]. The geotagging of 3D coordinates and camera posture data with
bridge examination photographs was possible due to the image capturing and geotagging.
DL-based CNNs were trained for automated crack detection. In [195], a path planning
method for multiple UAVs to cooperatively track targets using a DQN-based MADDPG
(Multi-Agent Deep Deterministic Policy Gradient) paradigm, which can dynamically plan
and adjust the flight path of multiple cooperative UAVs in real time and achieve better
tracking effect over time. Im et al. [196] published a comprehensive review of GPS technol-
ogy for SHM applications. Table A6 displays the rundown of the UAV framework and its
significant implementations in the SHM domain in literature (in Appendix A).

3.4. Internet of Thing (IoT) for SHM

Continuous health monitoring of infrastructures is performed to maintain their structural
integrity, sustainability, and serviceability for a long period of time. The sustainability of civil
infrastructure has become an important matter worldwide because of the large quantities
of civil structures that are required to be maintained and the efficacy of conventional main-
tenance and repair procedures approaches is questionable. This creates a strong platform
for the advancement of newer technologies such as the IoT [197–200]. Figure 14 displays
the architecture of the typical IoT system, having four key gears: (i) WSNs, (ii) Gateway, (iii)
Remote Control and Service Room (RCSR), and (iv) Open Platform Communications (OPC)
client server [201,202].
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In IoT, WSNs are utilized successfully for structural monitoring, where the captured
data are processed via smart software and local computer power [198]. IoT intends to
expand machine-to-machine communication using WSNs to monitor and control devices
remotely and efficiently. Smart distributed network of gadgets integrates and communicate
inside its architecture to analyze information through cloud computing platforms. This also
utilizes sophisticated software to extract relevant information from a wide range of data.
ML can also be associated with IoT networks for detection, recognition, and localization of
damage present in civil infrastructures. The application of the ML and IoT combination
has become an important tool for handling SHM-related problems [198–200]. The key
challenges for the SHM of civil infrastructures are the continuous monitoring of the sensors
deployed and the comparison of new data with earlier readings [193]. The geographical
separation also increases the difficulty for SHM. Therefore, a recording gadget is required
that connects all sensors on the civil structure. In addition, the links between the captured
information and a central monitoring station that can receive data from the sensors through
the Internet are crucial. It is possible to successfully handle the stated issues using the
combination of IoT and artificial intelligence technologies [200]. IoT allows engineers
to gather data for future analysis from many bridges. For analyzing and interpreting
captured data from WSNs, ML can be utilized. IoT-based structural health inspections may
provide a promising solution for SHM systems that are fast, accurate, and low cost [201].
The integration of SHM, IoT, and cloud-based computing can lead to sophisticated data
diagnosis. Cloud platforms can act as storage, and use intelligent monitoring devices on
an SHM system. The real-time health status of the civil structures is communicated to an
Internet server. The captured and saved data on the server can be viewed and interpreted
using ML remotely from a mobile device [202]. The installed components are described as
“things” that are identifiable, communicable, and interactable within the network. These
smart IoT “things” have communication services with physical features, a unique identifier,
IP address, and elementary computing capabilities, and they record physical phenomena,
trigger actions, or actuate control [201].

4. Recent Concept of Smart Cities

In recent years, in many engineering groups, the notion of smart cities has become
more important, and research is being developed via the implementation of the IoT con-
cept to smart cities. The primary objective of a smart city is to utilize public resources
efficiently and minimize operative expenditures and resource wastages. An intelligent city
aims to make infrastructure smarter to optimally utilize its available resources. An IoT
system installed in a smart city may offer distributed information to evaluate the structural
integrity of monitored infrastructures using captured real-time sensory data. Further, data
interpretation can be performed through DL architectures, such as CNNs [203,204]. The
real-time data collected vary in structure type and value, and it is impossible for a particular
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system to analyze all these data efficiently for any city. It is important to use intelligent
data interpretation approaches since every city is unique and has various associated issues
and challenges [203]. It is important to provide strong data-collecting layers, communi-
cation protocols, data storage, etc., to handle SHM data. These vast volumes of SHM
data can be processed through the DL approach to extract useful information. DL can be
deployed for training computers to identify fault patterns of huge real-time WSN-based
networks to provide early performance concerns [204]. The main difficulty faced by the
smart cities’ idea is to cope with the huge volume of sequential data, time-series data, etc.,
captured through connected sensors. DL architectures are capable of processing sequential
data [204]. DL platforms can also handle optimization challenges affecting smart cities and
their building structures [205].

The concept of smart cities is based on their real-time monitoring and efficient man-
agement through the information gathered from a distributed network of sensors through
various electronics packages as shown in Figure 15. The collected data will be processed
through the AI platform for quick decision making that will help to ensure the sustain-
ability, security, and efficiency of civil infrastructures [206]. Technological advancements
have resulted in the creation of self-sensing materials that can offer cities more reliable
and smart ways for capturing monitoring data to identify the current status of their infras-
tructures [206]. Another promising development is smart concrete, which may introduce
self-sensing abilities or features in the civil infrastructures [207]. The correlation between
the fluctuation of the inner stress and changes of suitable material characteristics helps to
achieve such useful qualities. These sensors are made of a cementitious matrix with carbon
nanotubes that can be employed for smart sensing purposes [208]. The interpretation
of captured real-time monitoring data can be executed efficiently with intelligent algo-
rithms [209–211]. The vision-based DL paradigm can be utilized for corrosion detection in
concrete buildings.Metals 2021, 11, x FOR PEER REVIEW 29 of 48 
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The objective is to monitor the concrete condition during the curing time, resulting in
enhanced life and safety of concrete buildings [192]. These sensors are implanted inside
the concrete to capture the infrastructure responses which are transmitted to smartphones
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utilizing IoT. The collected data can be processed through AI algorithms for structural
health monitoring.

5. Current Challenges and Future Perspective of SHM Domain

Civil infrastructures normally have high exposure to weathering effects and fluc-
tuating loading situations that introduce fault, cracks, seepage, etc. [212–217]. SHM is
performed for repairing and strengthening the cracks, faults, etc., for overall structural
damage control [218,219]. These methods involve the application of sensors to monitor the
current conditions, dynamic reactions, damage locations, and the evaluation of structural
health all over the lifespan [6,7].

Data acquisition for structural information is also a risky task, as most of the moni-
toring equipment is installed on tall civil structures. Moreover, the captured information
needs evaluation because of the multifaceted complex nature of information broadcast
or interval management or control utilization [8,9]. Exceptionally precise sensors, optical
and remote systems, GPS, and different advancements have all added to the improvement
of more exact and cost-efficient checking of structures [12,13]. As a result, the volume of
informational data has expanded immensely, at the pace of a great many estimations for
each sensor.

The SHM data captured through modern sensors are known as “big data” and create
challenges for existing data processing technologies. However, advanced sensors-based
methods have their limitations and shortcomings. In camera-based SHM, there are a
few difficulties and confinements that are at present influencing the exhibitions of visual
strategies with the camera sensor. Elements comprising climate impacts, for example,
such as downpour, light, thundering, and wind, and the ensuing vibrations should be
investigated with regard to SHM. Camera position, number of cameras, blind spot, database
complexity, etc., are a few additional limitations faced by camera-based SHM methods. To
overcome the issues of camera-based methods, modern smart cell phones are furnished
with acceleration sensors, gyrators, and GNSS receivers that are proficiently applied for
the conditional appraisal of civil structures.

The basic challenges—namely, restricted lighting, multipoint relocation, and camera vi-
bration related to vision sensors—limit the performance of smartphone applications [220–222].
However, certain limitations are also reported for UAV-based SHM methods such as difficulties
in finding an appropriate UAV position, environment conditions, the stability of the UAV, design
challenges, motor faults and failure, limited control range, etc. Moreover, discrimination of
acoustic signals from background environment noise is a difficult task for acoustic sensors due to
their weak strength. These sensors are embedded types that cannot be utilized for other purposes
after installation. Reliability is also a major concern for acoustic emission sensors. To handle the
complex sensory data acquired for SHM from civil structures, artificially intelligent models are
recommended for the processing and extraction of significant information from these captured
datasets. The performance of AI models depends upon the superiority of data acquired from
the sensors. The faulty sensors introduce noise which is an undesirable and serious issue for
ML models such as noise adversely affects their performance. Several research works contain
diverse ML techniques for the detection and localization of faults; however, none of them have
comprehensively compared the different ML techniques on the same data types. Figure 16 shows
a typical SHM systems along with its components and techniques involved.
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Given the aforementioned obstacles, it is quite difficult to judge the effectiveness
of intelligent techniques such as ML available in the literature [223–225]. Secondly, the
selection of suitable values for the parameters of machine learning models is a crucial task
for robust application in SHM. For example, to maintain their impressive performances,
fuzzy logic requires its member functions to be well defined, ANN depends on the right
selection of its architecture, SVM needs its hyperplane parameters to be properly tuned, etc.
Here, chances of overfitting are also quite possible as bulk data are available for the training
phase. There are no proper guidelines available for the choice of a suitable AI model for a
particular application in SHM. ML models are found unsuitable for vision-based systems.

With the advancement of DL, smart sensors, and smart monitoring systems, several
shortcomings have been minimized and research is ongoing for their further development.
Smart sensors have enhanced the quality of measured raw data and reduced their noise
content. More research is required to develop better smart sensors as they still require
calibration from external processors. DL models are capable of handling big data with
inbuilt feature extraction characteristics that reduce computational costs. They do not
require separate parameter tuning in general, which is essential in ML models. DL models,
e.g., CNNs, are highly suitable for machine vision-based applications such object detection,
facial recognition, etc. Furthermore, with the emerging concept of reinforcement learning,
transfer learning, edge computing, and cloud computing, new technologies will evolve in
the SHM domain.

6. Conclusions

Predictive maintenance operations are performed using advanced data-driven SHM
systems that utilize real-time and up-to-date information on civil infrastructure condi-
tions. This, in turn, reduces the overall maintenance costs as interventions would only
be performed when required. Hence, it has become possible to attain smart and more
sustainable civil infrastructure by minimizing the resources and funds required for its
regular maintenance. We carried out a comprehensive review on data acquisition methods
and AI models applied in SHM to maintain sustainable civil structures. Data acquisition
methods are reviewed that made the utilization of intelligent paradigms easier during SHM.
AI models are evolving in parallel with the advancement of smart sensors, and both are
highly interconnected with each other [226–230]. More accurate data can be captured with
modern sensors that require sophisticated AI algorithms as a processing tool. Therefore, the
utilization of next-generation sensors—e.g., high-resolution cameras, drones, automated
sensors, cell phones, etc.—has been reviewed explicitly for health monitoring of the civil
structures. This study reports the pros and cons of diverse data acquisition techniques and
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AI models along with constraints associated with SHM. Several critical findings for the
prevailing sensor-based data acquisition techniques can be summarized as given below.

• Contact sensors are often utilized for SHM due to their smaller size, lower economic
cost, and less power consumption. However, the discrimination of signals from
background environment noise is a difficult task due to its weak strength. These
contact sensors are embedded types that cannot be utilized for other purposes after
installation. Reliability is also a major concern if any sensor becomes faulty.

• Several non-contact sensors are preferred over contact sensors for SHM due to their
technological advantages. Camera position, the number of cameras, blind spots,
database complexity, weather conditions, etc., are few limitations faced by camera-
based SHM methods.

• Smartphones are low-cost cell phones that are utilized for SHM due to their versatility
and enormous stockpiling limits, noteworthy computational force, and effectively
modifiable programming. However, they require particular preparation in program-
ming and PC programming alongside broad stockpiling instrumentation to process
large volumes of information productively.

• UAVs equipped with a lightweight camera are primarily used for imaging and, con-
sequently, measuring an area with the overall prosperity of a structure. Certain
limitations are also reported for UAV-based SHM methods, such as difficulties in
finding an appropriate UAV position, environment conditions, the stability of the
UAV, design challenges, motor faults and failure, limited control range, etc.

• Other non-contact sensors, such as laser vibrometers, LIDAR, and radar interferometry,
have been reported to give excellent estimation results for SHM. These instruments
are reported to be costly and adversely affected by rough climate conditions.

• Machine learning models are found unsuitable for vision-based systems. However,
deep learning models have been widely applied to vision-based SHM systems, allow-
ing them to deal with large real-time datasets.

• Unmanned aerial vehicle and non-contact sensors are found to be the most promising
smart data acquisition technology, whereas convolution neural networks comprise
the most impressive data-driven models reported for SHM.

• With the progress of IoT integrated with AI algorithms, health monitoring of civil
structures has become a much easier task compared to traditional SHM systems.
Algorithms such as CNNs are continuously monitoring civil structural integrity and
may schedule maintenance to minimize any damage in the structure.

• IoT-based structural health inspections may provide a promising solution for SHM
systems that are fast, accurate, and low cost. The integration of SHM, IoT, and cloud-
based computing can lead to sophisticated data diagnosis. Cloud platforms can act as
storage, and use intelligent monitoring devices on an SHM system.

We studied several AI applications in SHM to deliver a broad review of the existing
technologies and advancements. ML models are mainly utilized to extract useful informa-
tion from bulk health monitoring data. Supervised and unsupervised ML models have
been reported to be utilized for health monitoring of bridges, buildings, pipelines, etc., to
maintain their structural integrity. With the advancement of technology, more complex
AI models have been applied, from simple K-NN to sophisticated CNN models for SHM.
Convolution neural networks comprise the most advanced and impressive data-driven
models applied for SHM. Overall, AI models have given impressive results for the handling
of bulk structural monitoring data. However, more comparative studies are required to
test various intelligent models on SHM datasets to demonstrate their effectiveness.

These models also offer various advantages, such as integration with the Internet of
Things. Moreover, ML can be applied for solving optimization problems. These models are
computationally efficient and require limited data samples during their training phases.
Finally, most of the ML models applied for SHM have produced impressive simulation
results; however, only a few of them are tested in real-time dynamic conditions for real-
world systems.
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Appendix A

Table A1. Vibrational and images datasets available for research purposes.

S. No. Source Data Types Dataset Description

1 Los Alamos National Laboratory Diverse experimental data types

Alamosa Canyon Bridge Data, I-40 Bridge Data, UC-Irvine Bridge
Column Data, Sheraton Hotel (Universal City, CA) Ambient

Vibration Data, 8-DOF System Data, Bookshelf Frame
Structure—DSS 2000, Bookshelf Frame Structure and 4-DOF

Nonlinearity data set

2. Laboratory of Infrastructure Science and
Sustainability Diverse data types Camera-based motion magnification, vibrational data of building,

etc.

3. IASC-ASCE Task Group on Structural Health
Monitoring Simulated data SHM of civil structure using simulated vibration data

4 National Center for Research on Earthquake
Engineering

Diverse vibrational and images data related to
earthquakes

Structural vibrational frame test data in diverse earthquake
scenarios, 5000 data images, etc.

5 IEEE Dataport Vibrational data and LIDAR data Multiple LIDAR datasets such as aerial warehouse data, indoor
experimental data collected from two 3D sensors, etc.

6 Maguire et al. [231] SDNET2018 56,000 2D images of deck, wall, and pavement of a bridge

7 Hoskere et al. [232] 2D image data Pictures of building, walls, etc.; laboratory experimental results

8 Avci et al. [65] Vibrational data 330 signals each containing 245,760 samples

9 Beckman et al. [233] Vision-based data 444 concrete spalling images (853 × 1440 pixels)

10 Bao et al. [234] Vision data 333,792 acceleration signals

11 Dung and Anh [235] 2D image data An open database with 40,000 data samples of concrete fractures
with 227 × 227 pixel pictures

12 Lin et al. [236] Vibrational data 459 datasets captured from nine nodes present in 1024 × 9 matrices

13 Gulgec et al. [68] 2D image data 30,000 unhealthy and 30,000 undamaged tension distribution
matrices in 28 × 56 measurement

14 Tung et al. [237] Vibrational data 10,014 responses of a long hanging bridge cable having two output
channels with 100 × 100 resolution

15 Nahata et al. [238] 2D image data 224 × 224 × 3 pixels containing 1200 RGB image data

16 Ni et al. [239] Deep learning image repository Images (RGB 224 × 224 pixels) for GoogLeNet with 60,000 pictures

17 Duarte et al. [240] 2D image data 12,973 pictures of the satellite and an airborne vehicle (224 × 224
resolution)

18 Kim et al. [186] 2D image data 3186 pictures of cracks and intact surfaces (227 × 227 pixels)
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Table A1. Cont.

S. No. Source Data Types Dataset Description

18 Kim et al. [186] 2D image data 3186 pictures of cracks and intact surfaces (227 × 227 pixels)

19 Chen [241] Vision data 147,344 cracks and 149,460 non-cracks (120 × 120 patches)

20 Sharma et al. [242] 2D image data 15,600 factures and non-factures (28 × 28 RGB patches)

21 Pathirage [243] Vibrational data Modal information of 10,300 fractures (7 arrays)

22 Wang et al. [244] 2D image data 500 pictures (500 × 500 pixels)

23 Dorafshan et al. [245] 2D image data 9011 (227 × 227 pixel) images of lab-made bridge decks

25 Jang et al. [246] 2D image data with vision data 20,000 hybrid images by merging vision and infrared
thermography of concrete factures (224 × 224 pixel)

27 Yu et al. [247] Vibrational data 1900 clusters of 5 × 2832 matrices

28 Ye et al. [248] 2D image data 14,000 fracture pictures (80 × 80 resolution)

29 Modarres et al. [249] 2D image data Data of 2400 concrete fractures,
sandwich panels with a resolution of 96 × 96 pixels

30 Zhang et al. [250] Vibrational data 8595, 14,465, and 4800 vibrational signal (9 Ch. × 10,000)

31 Xu et al. [251] 2D image data 2400 pictures (640 × 640 resolution), concrete fractures, spalling,
rebar exposure, and buckling

32 Yang et al. [118] 2D image data 800 images of cracks (224 × 224-pixel resolution)

33 Abdeljaber et al. [65] Vibrational data 749 × 12 vectors of vibration signals (128 × 1 dimension)

34 Atha and Jahanshahi [252] 2D image data 67,187 images of corrosion (128 × 128 resolution)

35 Zhang et al. [253] 2D image data 300 images with 224 × 224 pixels

36 Silva et al. [254] 2D image data 3500 sample images of 256 × 256 pixels

37 Kumar et al. [255] 2D image data 12,000 pictures of fractures, extreme cracks, intrusions, scaling,
deposits, corrosion in pipelines (256 × 256 dimension)
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Table A2. Diverse techniques utilized for detection of corrosion in transmission pipeline to maintain structural integrity [256].

S. No Method Name Description Applicability Results Use for Water-Based or Oil-Based Conduit Comments for Future Prediction of
Damages

1 Corrosion Coupon Coupon is placed within the working
material, thus invasive

Can be applicable for pipe/reactor of any
shape or size

No precision position and time of
leak/corrosion Water-based system Difficult to predict any future damage

location

2 Electrical Resistance Probe Invasive probe works as a real-time
corrosion coupon

Can be applicable for pipe/reactor of any
shape or size

No precise positioning but time and extent
of corrosion or mass loss can be determined Suitable for oil and water-based system Real-time data may be utilized to detect the

future damage or probable future leaks

3 Electrochemical Sensors In situ electrochemical corrosion rate
determination

Can be applicable for pipe/reactor of any
shape or size

No precise positioning but time and extent
of corrosion can be determined Works better for ion conducting electrolytes Difficult to predict any future damage

location

4 Ultrasonic (Acoustic) Testing Sensor Ultrasonic probes are placed inside the pipe
to detect pipe thickness, flow change or loss

Can be applicable for pipe/reactor of any
shape or size

Good precision; real-time positioning is
possible; not suitable for very small leaks or

structural damages
Suitable for oil and water-based system Real-time data can be utilized to detect the

future damage or fault location

5 Magnetic Flux Leakage Method
Invasive technique for detection of damage

in structure by comparing magnetic flux
lines

Can be applicable for pipe of any shape or
size

Cannot precisely locate the position of
structural damage Oil/water-based system Difficult to predict damage location

6 Point OFS for Corrosion Optical corrosion coupon using optical
spectrum from its position inside the pipe

Can be applicable for pipe of any shape or
size

No precise positioning but incidence and
extent of corrosion can be determined Suitable for oil/water-based system Difficult to predict damage location

7 Quasi-Distributed OFS for Corrosion

It uses FBG based external point sensors to
determine change in temperature and strain;

the pressure wave generated transmits in
both the directions from point of leakage,

where the pressure sensors detect the
leakage point my analyzing pressure wave

Very useful to determine the corrosion in
pipeline and wellbore in real time

Precise point and time of leakage can be
determined using this technique of negative

pressure wave (NPW)

Suitable for oil or water-based system, it can
detect gas leaks

Can be useful for predicting future leak or
damage

8 Distributed OFS for Physical Sensing

Parameters of corrosion and leaks are
determined by monitoring pressure and
temperature change due to leak; optical

fibers are winded over the pipe to detect the
leak

The technique is also useful for
determination of efficient flow of crude in

pipes and impacts in flow due to corrosion;
estimates corrosion and structural changes

The leak can be determined precisely and in
real time

Can work for conduits carrying oil, waters,
and gas

The technology can be extended to
determine corrosion or damages in pipe

9 Distributed OFS for Chemical Sensing

Optical fibers with chemical coating and air
holes is activated over pipe core or cladding,

can be applied to check the external or
internal health of piping structure

Multi-sensor OFS are designed and utilized
to determine leaks of gases of different types
and nature of environments the conduits are

exposed to

Precise determination of leaks and damages
are possible in real time

Can work for conduits carrying oil, waters,
and gas for leak detection

It gives early signs of corrosion; it is the best
method to predict the damage or leak

10 SCADA and CMS

Acoustic emission, optic fiber,
thermographic, photogrammetric

techniques and other are used to remotely
collect and monitor the surface of structure

These can be used to detect damages in
pipelines and other civil infrastructures

Cracks can be easily monitored; very fine
cracks may not be detected through

real-time data

Can work for conduits carrying oil, waters,
and gas

Monitoring external conditions may not hint
always any impending danger

11 UAV-Based Technique

Multi-sensor (thermal, laser, sonic,
spectroscopic, photogrammetric) remote

sensing of crack, and structural
deformations using UAV platform

Determine the surface damages to any
infrastructure of oil and gas industry

Laser UAV can detect fine damages if
scanning is performed from close proximity;

data are required to be analyzed to
determine the leaks

Can work over oil, water, gas conduits or
any other infrastructure

The damages existing in pipelines or
infrastructure may be extrapolated to

determine the future source of leak or gas
emissions
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Table A3. Recent publications on data-driven methods applied in SHM for diverse purposes.

Authors Year Type of SHM Techniques Reference

Mosalam et al. 2019 Civil infrastructure Deep learning [54]
An et al. 2019 Bridge and truss structure Deep learning [55]

Baroudi et al. 2019 Oil and gas infrastructure and
pipelines Data fusion techniques [90]

Aalsalem et al. 2018 Oil and gas pipelines ANNs [57]

Abdeljaber et al. 2018 Large framed structure 1D CNNs [66]
Vitola et al. 2017 Large civil structure SVM and K-NN [49]

Abdeljaber et al. 2017 Steel framed structures 1D CNN [65]
Goyal et al. 2017 Water pipelines ANN [82]

Shi et al. 2017 Pipeline structures ML, SVM [85]
Santos et al. 2016 Bridge and cable structure ANN and Clustering techniques [47]

Vitola et al. 2016 Large civil structure

PCA, K-NN, SVM, Boosted tree,
Bagged tree, Subspace K-NN,
Subspace Discriminant, and

RUSBoosted Trees

[208]

Santos et al. 2015 Bridge structure Unsupervised detection [47]

Fagiani et al. 2015 Gas pipelines and water grid
structure SFSA, GMM, HMM, and OCSVM [32]

Nasir et al. 2014 Oil and gas pipelines ANN and SVM techniques [80]

Khaleghi et al. 2013 Building structures Multi-sensors data fusion [56]

Wan et al. 2012 Natural gas pipeline SVM [79]

Jayawardhana et al. 2011 R.C.C. Slab

Autocorrelation Function-Cross
Correlation Function and

Auto-Regressive (AR) time series
model

[48]

Laurentys et al. 2011 Pipeline structures ANN [76]

Glaser et al. 2008 Tall structures Microsensors wireless network
technology [52]

González et al. 2008 Earthquake-resistant building ANN [59]

Farrar et al. 2007 Civil and mechanical structures Statistical pattern recognition [51]

Yuen et al. 2006 Symmetrical large civil structure ANN along with feature extraction [58]

Chen et al. 2004 Water pipelines SVM [77]
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Table A4. The chronological arrangement of recently published works using camera-based methods.

Authors Year Camera Types Numerical Strategy Main Topics Researched Reference

Chang et al. 2020 High-speed camera Scattered wavefield
reconstruction

Damage that has been hidden
from view [257]

Bao et al. 2020 Video camera Image processing Stay cable condition
assessment [234]

Bao et al. 2020 Digital camera Machine learning Symmetrical structure [258]

Xu et al. 2018 Action camera Encoding, software design Stiffness of cable bridge [92]

Javh et al. 2018 DSLR D850 ANN, CNN technique Displacement measurement [138]

Khuc et al. 2018 DSLR D5600 C and C++ Techniques Deflection identification [140]

Javh et al. 2018 High-speed camera Software design Nonlinear building frames [139]

Xu et al. 2017 DSLR D7000 ANN technique Crack detection [100]

Chen et al. 2016 Digital video camera Dynamic techniques Earth retaining and tall
structure [126]

Santos 2016 Digital camera Kalman filter Stiffness of tall building [47]

Yang et al. 2015 DSLR L18 Head segment interest Present time crack detection [93]

Oh et al. 2015 DSLR D5300. Vision-based identification Health assessment of
building frames [113]

Chen et al. 2015 Digital video camera Motion magnification Symmetrical linear structures [127]

Trebuna et al. 2014 3D high-speed camera Typical mode and
complexmode marker work Modular investigation [259]

Im et al. 2013 Digital camera GPS technology Symmetrical structures [196]

Olsen et al. 2010 Terrestrial laser scanner
camera

Feature extraction by
software

Damage assessment of the
structure [260]

Helfrick et al. 2009 Computer vision camera Computerized picture
connection

Shape strategy for crack
recognition [95]
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Table A5. Recent publications on smartphone-based methods applied for SHM purposes.

Authors Year Phone Types Numerical Strategy Researched Topics References

Wang et al. 2021 Android CNNs Steel beam analysis [162]

Dong et al. 2020 Android Computer vision-based Local and global stiffness
analysis [115]

Zhang et al. 2020 Android Vibration monitoring Seismic structure analysis [155]

Wang et al. 2018 Apple 6s Stiffness detection High-speed camera [150]

Khuc and Catbas 2018 Apple 5s Damage identification Health monitoring of bridge [140]

Yu et al. 2017 Apple 4S Crack detection Seismic wave measurement [134]

Zeng et al. 2017 Tablets with Android Android
utilization Pavement cracks detection [151]

Feng et al. 2017 Apple 4S Hybrid motion sensing High rise structure [128]

Zhao et al. 2016 A5 Android Android
utilization

Stiffness detection by laser
technique [153]

Ozer and Feng 2016 Android Apple 4S Displacement measurement Assessment of bridge health
monitoring [261]

Matarazzo and Pakzad 2016 Apple 4s Crack identification For multi-story frame
structure [262]

Marulanda et al. 2016 Android Ambient excitation For seismic structure [263]

Dashti et al. 2014 Apple 3G Earthquakes checking Seismic measurement [264]

Höpfner et al. 2013 Android Smartphone sensors Measuring mechanical
oscillation [265]

Tang et al. 2002 Android Mobile manipulator Bridge crack inspection [266]
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Table A6. Recently published paper for UAV applications in SHM.

Authors Year Type Methods Main Topics Researched References

Liu et al. 2021 Drone ML Confrontation of multi-UAV
assault and defensive [195]

Saleem et al. 2020 UAV CNN Bridge visual inspection [194]

Mozaffari et al. 2019 UAV ML
Channel modeling, resource

management, positioning, and
security

[193]

Germanese et al. 2018 Drone Compact system camera Damage design in an old
building [187]

Duque et al. 2018 UAV Digital image processing Detection for bridge deterioration [191]

Lei et al. 2018 UAV A digital camera with acoustic
sensors

Crack detection and bridge
inspection [267]

Omar et al. 2017 Inspire T600 Infrared imaging camera Detecting of extension deck [186]

Chiu et al. 2017 UAV Digital camera Tall structure monitoring [181]

Qidwai et al. 2017 N/A Quadcopters Health monitoring of civil
infrastructure [178]

Radopoulou and Brilakis 2016 Drone Quadcopters Detection of multiple pavements [102,103]

Na and Baek 2016 Camera drone NDT testing Large civil infrastructure [176]

Ellenberg 2015 Camera drone Action camera Crack measurement [169]

Sankarasrinivasan et al. 2015 N/A Quadcopters Damage measurement in a tall
structure [172]

Hallermann et al. 2015 Ascending Technologies Mirrorless camera Assessing spans [171]

Franke et al. 2014 Drone Small aerial vehicle Geotechnical site investigation [177]

Dobson et al. 2013 UAV Quadcopters Unpaved road evaluation [157]

Roca et al. 2013 Skyjack Small aerial vehicle Outdoor assessment of building
frames [156]

Ortiz et al. 2012 Drone Quadcopters Civil structure surveillance [168]

Rathinam et al. 2008 N/A Aerial vehicle Linear structure assessment [164]

Metni and Hamel 2007 N/A Small aerial vehicle Bridge damage assessment [163]
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