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Abstract: With the increasing application of steel materials, the metallographic analysis of steel has
gained importance. At present, grain size analysis remains the task of experts who must manually
evaluate photos of the structure. Given the software currently available for this task, it is impossible
to effectively determine the grain size because of the limitations of traditional algorithms. Artificial
intelligence is now being applied in many fields. This paper uses the concept of deep learning to
propose a fast image classifier (FIC) to classify grain size. We establish a classification model based
on the grain size of steel in metallography. This model boasts high performance, fast operation, and
low computational costs. In addition, we use a real metallographic dataset to compare FIC with other
deep learning network architectures. The experimental results show that the proposed method yields
a classification accuracy of 99.7%, which is higher than existing methods, and boasts computational
demands, which are far lower than with other network architectures. We propose a novel system for
automatic grain size determination as an application for metallographic analysis.

Keywords: grain size; artificial intelligence; deep learning; fast image classifier

1. Introduction

Many industrial processes require information about grain size, a critical metallic mi-
crostructure characteristic that significantly influences design parameters such as strength
and toughness. Therefore, grain size determination of materials is important in metallic
microstructure studies. Industry standards such as ASTM E112 [1] and ISO 643 [2] describe
a variety of procedures for determining grain size.

In the microstructure analysis of metal, traditional methods use image processing to
obtain measurements such as grain size and size distribution. However, with the success of
deep learning in pattern recognition have come significant advances in object classification
in the field of computer vision. In recent years, deep learning technology has been widely
used to extract features from digital images, resulting in achievements in fields such as
image classification, object detection, and image segmentation. The primary interest in
automatic methods based on deep learning is because they enable precise measurements
and facilitate rapid analysis. In this work, we explore and experiment with methods for
grain size classification based on deep learning. The research work and contributions of
this paper include the following aspects:

1. Neither too much nor too little feature extraction are suitable for grain size classifi-
cation. We propose a fast image classifier (FIC), a novel neural network architecture based
on a convolutional neural network (CNN) model.

2. For real-time classification, we use a neural network with only 42 layers to replace
the traditional method for grain size classification.

3. Compared with the classical deep learning network, the proposed algorithms
reduce the number of network layers and weights, decreasing the computing cost while
improving the performance of grain size classification over existing methods.
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The remainder of the paper is organized as follows. Section 2 briefly introduces related
work. A detailed description of the proposed strategy for grain size classification is given
in Section 3. Experimental results and comparisons with representative existing methods
are discussed in Section 4, and Section 5 concludes and mentions future work.

2. Related Work

A material’s grain size is an important parameter in engineering, given its influence
in mechanical properties such as strain, ductility, and resistance to stress. All the major
material properties (strength, creep, fatigue resistance, electrical and magnetic properties)
are known to depend upon grain size. Therefore, in order to investigate the connection
between microstructure and properties in martensitic steels, it is important to measure
the prior austenite grain size [3]. To determine the prior austenite grain size, the prior
austenite grain boundaries need to be delineated. After this, the prior austenite grain
size needs to be measured [4]. Fuchs et al. [5] proposed an efficient method for in-situ
austenite grain growth observations based on high-temperature laser scanning confocal
microscopy (HT-LSCM). In 2001, Colás [6] studied the relationship between grain size and
thermal treatments by using stainless steel and low alloy steel, respectively. Currently
(2021), standards for grain size determination are set in ASTM E112 and ISO 643. There are
three distinct methods for the determination of grain size: the comparison procedure, the
intercept procedure, and the planimetric procedure.

In the comparison procedure, the greatest similitude between the grain structure and
the comparison chart of sizes is determined, whereas in the intercept and planimetric
procedures the amount of grains inside a known test area is considered. Since the plani-
metric and intercepts procedures yield grain size accuracy of ±0.5 units and ±0.25 grain
size units of repeatability and reproducibility, most measurement operators used ASTM
standard E112 to determine grain size. Standard procedures are used to determine the
grain sizes and average grain size. However, there are limitations in determining the grain
size distribution. In general, when making repeated checks on the same specimen using
the comparison procedure, the operator is prejudiced by the first estimate. Although the
intercept and planimetric procedures are good solutions for determining grain size, they
are more time-consuming due to image pre-processing. However, this image processing
does improve the visual appearance of the metallic microstructure, enhancing the features
and structures present and thereby promoting reproducibility and repeatability [7].

Work has been done to explore the use of machine vision and image processing in
microstructure science. Lixin et al. [8] propose dan edge detection algorithm based on fuzzy
logic to determine the grain sizes of metallographic images. Lu et al. [9] proposed grain
identification by processing two polarized images which permits one to obtain the edges.
Gajalakshmi et al. [10] proposed an image processing algorithm to determine the average
grain size in a metallic microstructure by counting the number of grains using Canny edge
detection and support vector regression (SVR). Dengiz et al. [11] employed a fuzzy logic
algorithm and a neural network (NN) algorithm for grain boundary detection in images of
superalloy steel microstructure during sintering. Recent deep learning methods for object
classification have been dominated by CNN-based algorithms. Ma et al. [12] propose a
weighted propagation U-net (WPU-net) for grain boundary detection in polycrystalline
materials and develop a new solution to reconstruct the 3D structure of the sample using a
CNN to perform grain object tracking between slices. George et al. [13] proposed a CNN
structure to recognize good and bad grain structures in Cu-alloy.

In traditional image processing, because each test image must be compared with
all the stored training images, much storage space is required, consuming both memory
and CPU resources. Here, however, we attempt to ensure that testing efficiency is much
greater than training efficiency. Thus the proposed CNN reaches the other extreme in this
trade-off: although the training is time-consuming, once it is completed, the classification
of new test data is fast. Such a model reflects real-world requirements. To the best of our
knowledge, no paper discusses CNN models for determining grain size. To address the
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aforementioned problem, we propose the fast image classifier (FIC) for CNN-based grain
size determination. This model provides automatic evaluation of grain size given metallic
microstructure images.

3. Fast Image Classifier

Image classification, which determines the prescribed category for a given image
based on the image content, was developed to decrease the gap between computer vision
and human vision by “training” the computer by using data. Novel methods for image
classification belong to the subfield of artificial intelligence (AI) known as deep learning.
Deep learning models persistently break down information with a homogeneous structure
that is similar to the way that humans make determinations. In deep learning, we consider
neural networks that identify an image based on its features. This section describes the
proposed framework for determining grain size with metallic microstructure images. The
details of a series of solutions and steps are described below.

Feature Extraction Using Convolutional Neural Networks

In this paper, we apply several CNN networks to extract features from grain size
images. We mainly adopt residual networks (ResNet) [14] and cross-stage partial networks
(CSPNet) [15] to extract local descriptors from each image. ResNet [14], one of the most
successful architectures in image classification, provides shortcut connections that allow a
signal to bypass a layer and move to the next layer in the sequence, which makes it possible
to train hundreds or even thousands of layers and still achieve compelling performance.
CSPNet is the backbone of YOLOv4 [15], which is used to enhance the learning capacities
of CNN models and reduce computing costs. Our system adopts the system architecture
shown in Figure 1 when given an image from a digital camera or a database.
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In contrast to other deep learning network architectures, the FIC model reserves more
information by not downsampling at the first level, as shown in Figure 1. Next, the feature
extraction networks of the FIC model use three ResNets and CSPNets to extract more
information. The FIC model applies various convolutions to extract features such as edges,
textures, colors, and inconsistent lighting patterns from the grain size images, yielding size
scale convolutions such as 3 × 3 and 1 × 1. Here, a 1 × 1 convolution is applied to reduce the
channel dimension and thus computation cost without harming performance. Max pooling
layers are used mainly to reduce the matrix dimensions, which also accelerates computation.
For example, we use max pooling for a 4 × 4 matrix to produce a 2 × 2 matrix. In addition,
softmax cross-entropy [16] is the canonical loss function for multi-class classification in
deep learning. Therefore, softmax is used to predict the probability of different grain sizes.
The details of the FIC model’s layers are presented in Table 1.



Metals 2021, 11, 1547 4 of 9

Table 1. FIC network architecture.

Layer Operation Type Input Filter Size/Stride Output Layer

0 Convolution 448 × 448 × 3 32 3 × 3/1 448 × 448 × 32 -

1 Convolution 448 × 448 × 32 64 3 × 3/2 224 × 224 × 64 -

2 Convolution 224 × 224 × 64 32 1 × 1/1 224 × 224 × 32
ResNet3 Convolution 224 × 224 × 32 64 3 × 3/1 224 × 224 × 64

4 Shortcut 224 × 224 × 64 - - 224 × 224 × 64

5 Convolution 224 × 224 × 64 128 3 × 3/2 112 × 112 × 128 -

6 Convolution 112 × 112 × 128 64 1 × 1/1 112 × 112 × 64
ResNet7 Convolution 112 × 112 × 64 128 3 × 3/1 112 × 112 × 64

8 Shortcut 112 × 112 × 64 - - 112 × 112 × 128

9 Convolution 112 × 112 × 128 64 1 × 1/1 112 × 112 × 64
ResNet10 Convolution 112 × 112 × 64 128 3 × 3/1 112 × 112 × 128

11 Shortcut 112 × 112 × 128 - - 112 × 112 × 128

12 Max pooling 112 × 112 × 128 - 2 × 2/2 56 × 56 × 128 -

13 Convolution 56 × 56 × 128 128 3 × 3/1 56 × 56 × 128

CSPNet

14 Route 13 - - 56 × 56 × 64
15 Convolution 56 × 56 × 64 64 3 × 3/1 56 × 56 × 64
16 Convolution 56 × 56 × 64 64 3 × 3/1 56 × 56 × 64
17 Concatenation 15, 16 - - 56 × 56 × 128
18 Convolution 56 × 56 × 128 128 1 × 1/1 56 × 56 × 128
19 Concatenation 13, 18 - - 56 × 56 × 256

20 Max pooling 56 × 56 × 256 - 2 × 2/2 28 × 28 × 256 -

21 Convolution 28 × 28 × 256 256 3 × 3/1 28 × 28 × 256

CSPNet

22 Route 21 - - 28 × 28 × 128
23 Convolution 28 × 28 × 128 128 3 × 3/1 28 × 28 × 128
24 Convolution 28 × 28 × 128 128 3 × 3/1 28 × 28 × 128
25 Concatenation 23, 24 - - 28 × 28 × 256
26 Convolution 28 × 28 × 256 256 1 × 1/1 28 × 28 × 256
27 Concatenation 21, 26 - - 28 × 28 × 512

28 Max pooling 28 × 28 × 512 - 2 × 2/2 14 × 14 × 512 -

29 Convolution 14 × 14 × 512 512 3 × 3/1 14 × 14 × 512

CSPNet

30 Route 29 - - 14 × 14 × 256
31 Convolution 14 × 14 × 256 256 3 × 3/1 14 × 14 × 256
32 Convolution 14 × 14 × 256 256 3 × 3/1 14 × 14 × 256
33 Concatenation 31, 32 - - 14 × 14 × 256
34 Convolution 14 × 14 × 256 512 1 × 1/1 14 × 14 × 512
35 Concatenation 29, 34 - - 14 × 14 × 1024

36 Convolution 14 × 14 × 1024 512 1 × 1/1 14 × 14 × 512 -
37 Convolution 14 × 14 × 512 512 3 × 3/1 14 × 14 × 512 -
38 Convolution 14 × 14 × 512 256 1 × 1/1 14 × 14 × 256 -
39 Convolution 14 × 14 × 256 512 3 × 3/1 14 × 14 × 512 -
40 Avgpool 14 × 14 × 512 - Global 1 × 1 × 512 -
41 Connected 1 × 1 × 512 4 1 × 1/1 1 × 1 × 4 -
42 Softmax

Table 2 compares well-known network architectures with the proposed model in terms
of model size, as shown in Table 2. Here, “size” indicates the size of the neural network
architecture. Clearly, ResNets and CSPNet both reduce the size of the FIC model. However,
methods such as Darknet53, with bigger models, degrade operational performance. The
FIC model is positioned as a lightweight model for real-time grain size evaluation that uses
efficient convolution layers and neural network design.
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Table 2. Existing methods vs. proposed method.

Model Darknet53 DenseNet VGG16 ResNet50 FIC Model

Size 159MB 61MB 1729MB 81MB 37MB
BFlops 56.88 32.63 122.79 28.01 16.33

4. Experimental Results and Analysis

In this section, we evaluate the FIC model on the MIRDC metallographic dataset. All
the experiments were implemented using the CUDA C++ API on a machine with NVIDIA
2080Ti GPUs (Nvidia Corporation, Santa Clara, CA, USA). We collected the grain size
dataset from the metallographic analysis laboratory of the Metal Industries Research and
Development Centre (MIRDC). All of the grain size images were collected using the Zeiss
Axiovert 200 Mat optical microscope (Carl Zeiss Light Microscopy, Göttingen, Germany),
as shown in Figure 2. The input grain size images were resized to 736 × 416 pixels. The
weight parameters were initialized randomly for all experiments, and the learning rate was
set to 0.01. During training, once the error rate stopped decreasing, the learning rate was
multiplied by 0.001.
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4.1. Grain Size Dataset

Currently there are no appropriate grain size datasets for training the proposed
model. Thus we collected two kinds of grain size images (austenite and ferrite) from the
metallographic analysis laboratory of MIRDC. Due to the differences between austenite
and ferrite grain size structures, we compiled two standard series of graded images. In
the two datasets, we evaluated the grade of grain size images by using the two standard
graded wall chart image series for the comparison method. According to the ASTM E112
standard, the ferrite grain sizes are divided into grades 0 to 10, and the austenite grain
sizes are divided into grades 0 to 8. Low-grade grain sizes correspond to poor metal
strength and toughness. With modern quality control in the manufacturing process with
technological advancements, such low-grade grain sizes are rare. Therefore, in the two
datasets, we collected grain sizes of four grades under 100× magnification or the ferrite
grain size dataset, that is, grade 7 to 10; likewise, for the austenite dataset, we collected
grain sizes of grades 5 to 8, as shown in Figure 3.
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grade-5 to -8 austenite images.

In the ferrite dataset, each grade comprises 250 to 300 grain size images. Therefore,
the grain size dataset is composed of 1092 24-bit JPEG images. In addition, there are
2248 images in the austenite dataset, each grade of which comprises 550 to 700 images.
Generally, as bigger datasets result in better deep learning models [17], one way to improve
model performance is to augment the data. Data augmentation is used to artificially expand
the size of a training dataset by creating modified versions of images in the dataset. In
addition, data augmentation helps reduce overfitting when training a deep neural network.

As shown in Figure 4, we used the three most common data augmentation techniques
for grain size images: flipping, cropping, and rotation, each of which is associated with two
parameters. Thus, in this study, we used data augmentation with six operations to train
the models for each image. In total, we evaluated the proposed method using 7644 ferrite
grain size images with four grades and 15,736 austenite grain size images with four grades.
We divided the two grain size datasets into training and testing sets by randomly splitting
the dataset. In our experiments, the training and testing data was selected at a ratio of 80:20
for training and testing, and five-fold cross validation was conducted.
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4.2. Validation Metrics

In this paper, the grain size evaluation effect is divided into overall classification
accuracy, classification accuracy of different categories, and classification time consump-
tion. The classification accuracy of an image includes the accuracy of the overall image
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classification and the accuracy of each classification. Assuming that nij represents the
number of grain size images in grade i divided into grade j, the accuracy of the overall
classification is as follows:

accuracyall = ∑
i

nii/ ∑
i,j

nij (1)

The accuracy of each individual classification is as follows:

accuracyi = nii/ ∑
j

nij (2)

The run time is the average time to read an image to produce a classification result.

4.3. Experimental Results and Analysis

As seen in Table 3, the recognition rate of the FIC model is generally the same for
different grain size grades, exceeding 98; accuracy is particularly high when classifying
ferrite images of grades 7 and 8 and austenite images of grade 5. This shows that larger
grain sizes are advantageous for feature extraction.

Table 3. FIC performance for different grain sizes.

Grade 5 6 7 8 9 10

Ferrite − − 100% 100% 99.13% 99.68%
Austenite 100% 98.98% 99.13% 99.38% - -

In addition to performance, speed is important for neural network architectures. There-
fore, we also used the ferrite grain size dataset to compare our method with state-of-the-art
CNN classifiers in terms of classification accuracy and BFlops (billions of float operations
per second), as shown in Table 4. These classifiers include Darknet53 [15], DenseNet201 [18],
VGG16 [19], ResNet50 [14], and the proposed method. The experimental results show that
FIC is the fastest classifier and VGG16 is the slowest, mostly because VGG16 has 138 million
parameters, leading to greater computational costs. In DenseNet201 [18] and ResNet50 [14],
the main network architectures of feature extraction are obviously not enough for image
classification, resulting in the lower accuracy. In addition, although Darknet53 has the
highest accuracy on the training and testing sets, its BFlops of 56.88 is unacceptable for
real-time image classification. Thus, the FIC accuracy is not the best, but its performance
approximates that of Darknet53, making it useful for real-time image classification.

Table 4. CNN classifier performance.

Method Accuracy BFlops

Darknet53 99.81% 56.88
DenseNet201 97.52% 32.63

VGG16 45.00% 122.79
ResNet50 98.88% 28.01
FIC model 99.70% 16.33

In this experiment, some ferrite grain sizes were still not accurately evaluated by the
proposed algorithm. Analysis of the testing results revealed that grain sizes between grades
9 and 10 were too similar, and revealed an uneven grain size distribution. This will likely
be a difficult problem for future research. Automatic grain size classification is essential
for metallic microstructure data. We hope to further improve the classifier using more
advanced model ablation and auxiliary methods to facilitate the accurate classification of
grain size specimens, thus making it easier for operators to use these methods to evaluate
grain size effectively.



Metals 2021, 11, 1547 8 of 9

5. Conclusions

In this work, we proposed the CNN-based FIC model and used it to determine grain
size for carbon steel. In addition, we presented two kinds of datasets to evaluate the
effectiveness of FIC in determining grain size. The experimental results show that the
proposed method yields high performance in terms of accuracy, and even outperforms
state-of-the-art algorithms. To speed up the process of the development of steel products
with more accurate judgment for grain size, and to lighten the heavy load of professional
operators and prevent evaluation misses and false classification, a grain size classification
system is essential. In future work, we will collect a larger dataset to further improve the
algorithm and boost classification accuracy. We believe that FIC will be of use in many
successful image classification applications.
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