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Abstract: Given the shortage of zinc resource, the low utilisation efficiency of secondary zinc resource,
and the crucial problem that the synchronous dissolution of zinc from different mineral phases, an
activation pretreatment method merged with calcium activation and microwave heating approach
was proposed to enhance the zinc leaching from complex encapsulated zinc-containing metallur-
gical residues (ZMR). Results indicated that under the optimal pretreatment conditions, including
microwave activation temperature of 400 ◦C, CaO addition of 25% and activation time of 20 min,
the zinc leaching rate reached 91.67%, which was 3.9% higher than that by conventional roasting
pretreatment. Meanwhile, microwave heating presents excellent treatment effects, manifested by the
zinc leaching rates, all exceeding that of conventional roasting under the same conditions, while the
process temperature is decreased by 200 ◦C. In addition, XRD and SEM-EDS analysis denoted that
microwave calcification pretreatment can effectively promote the transformation of the refractory zinc
minerals like Zn2SiO4 and ZnFe2O4 into the easily leachable zinc oxides. The distinctive selective
heating characteristics of microwave heating strengthened the dissociation of mineral inclusion,
and the generated cracks increased the interfacial reaction area and further enhancing the leaching
reaction of zinc from ZMR.

Keywords: zinc-containing metallurgical residues; calcium activation; microwave heating; enhanced
leaching

1. Introduction

Zinc (Zn) is a key transition metal with excellent wear resistance, calenderability, and
corrosion resistance; thereby its applications involve anticorrosive galvanised sheet, alloy
materials, battery materials, and non-ferrous metallurgy [1,2]. Currently, zinc sulphide
ores is the main ore for zinc production. As the demand for Zn-based materials increases,
zinc sulphide resources are gradually depleted, and its grade is getting lower and lower,
which severely hinders industrial production [3,4]. The output of hazardous metallurgical
residues is also considerable and needs to be treated efficiently. Therefore, it is urgent and
of significant and sound research value to exploit and utilise the secondary zinc resource,
zinc-containing metallurgical residues (ZMR). These residues are usually accompanied
with the production of iron, zinc and lead. The iron and steel industry produces many
kinds of ZMR, such as blast furnace dust, converter dust, electric arc furnace dust and
other dust [5]. When producing 1 ton of crude steel, approximately 15–20 kg/ton of electric
arc furnace dust is produced, and the amount of electric arc furnace dust is increasing with
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the increase in steel output [6]. The zinc content in dust is about 10~25%, with significant
recovery value [7]. Besides, the lead-zinc smelting industry also generates a large amount
of slag containing about 10~20% of zinc [8], and this slag also confers numerous toxic
compositions such as chromium, cadmium, and arsenic [9]. If ZMR is directly stacked
without treatment, it will cause land occupation, environmental pollution and waste of zinc
resources [10]. Therefore, it is important to recover Zn from ZMR for resource recycling
and environmental protection [11].

The Zn recovery from ZMR is difficult due to the complex phases, high gangue and
serious pelitization of ZMR [12]. Zinc in ZMR always presents as multi-phase, like ZnCO3,
ZnS, Zn2SiO4, and ZnFe2O4. Meanwhile, it also contains the impurities of gangues (silica
and aluminium), halogens (fluorine and chlorine), lead, iron, and cadmium [3]. Currently,
many processes are proposed for recycling Zn from ZMR, such as pyrometallurgical and
hydrometallurgical methods [13]. The pyrometallurgical process relies on carbon as a
heating agent and reducing agent. However, it suffers from strict reduction conditions,
high energy consumption, large investment, and huge harmful gas emissions [14]. It is
also unsuitable for processing low-grade zinc sources. Hydrometallurgical treatment with
low energy consumption has attracted wide attention and exploration to treat ZMR. Since
zinc oxide is an amphoteric oxide which can be dissolved in an acid or alkali solution, the
appropriate leaching agent can be selected to separate zinc and other impurities. At present,
the mature technologies mainly involve acid leaching, alkali leaching, and ammonia
leaching, accompanying its respective advantages and disadvantages [15]. During the acid
leaching, the lower acid concentration and oxidizing media can inhibit and reduce the
iron dissolution [16], hence only ZnO phase can be effectively extracted. Thus, the total
leaching efficiency of zinc is very low under lower acid concentration [17]. Conversely,
the higher acid concentration is needed to extract zinc from zinc ferrite, but zinc silicate
and zinc sulfide cannot be extracted, except from in the circumstance of sulfuric acid with
oxidizing media [18]. Meanwhile, the higher acid concentration will cause the alkaline
gangue to enter the solution, further blocking the pipeline; and silicon components will
react in acid to form silica gel, further rendering the filtration difficult. Furthermore, the
fluorine and chlorine will enter into the acidic solution and affect the quality of zinc in
the electrowinning process [19]. Regarding alkali leaching, lower equipment requirements
are needed and better selectivity can be achieved, compared to acid leaching. However,
its overall cost is higher, and roasting pretreatment is needed before alkali leaching [20].
Furthermore, using NaOH as leaching agent, silica and lead will dissolve with Zn in
solution; hence, the leaching solution needs to purify before the final electrowinning
process [21]. Generally speaking, the feasibility of the industrial application of alkali
leaching method is low. Furthermore, in ammonium leaching method, zinc oxide and zinc
carbonate can form soluble complexes with ammonium agent in the leaching solution;
meanwhile, iron, carbon, fluorine and chlorine components, and basic gangue (such as
aluminium and silicon) remain in the solid residue [22,23]. The addition of CH3COONH4
into the NH3-H2O solution can promote the conversion of the [Zn(NH3)4]2+ compounds
into the more stable compounds, significantly improving the Zn leaching efficiency via
a more economical and environmental way [24]. The mixture solution of CH3COONH4
and NH3-H2O is verified to be the most effective leaching agent for recovering Zn from
ZMR [24]. However, the Zn leaching efficiency is still low when Zn in ZMR exists in the
phases of zinc ferrite or zinc silicate, attributed to these phases are stable and difficult to
dissolve in ammonium solution [25].

Calcium activation with adding CaO to pretreat ZMR may have some contribution to
solving the above problems bothering the ammonium leaching method. It refers to that
ZnFe2O4 will react with CaO at 900–1100 ◦C, and convert to ZnO and Ca2Fe2O5 without
carbothermic reduction, further improving the Zn leaching efficiency [15,26]. Meanwhile,
CaO activation pretreatment also has the advantage of removing fluoride, chloride, and
heavy metals without resulting in the necessary evaporation loss of zinc and iron [15].
However, the process temperature and time of this conventional treatment both need
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to be reduced to decrease energy cost. In contrast to conventional heating, microwave
heating endows the distinctive advantages of shorter time and lower process temperature,
selective heating, and controllable operation [27–34]. Due to the difference of microwave
absorption of various useful minerals and gangue minerals, different heating efficiencies
will appear during microwave heating. The ores will generate cracks by the thermal stress,
which will promote the dissociation of useful mineral monomers and improve the recovery
of target metals [35–39]. Therefore, microwaves can be used as an alternative energy
source of conventional heating to process ZMR in a more energy-saving and environmental
protection approach [40–42].

The previous study reported the respective utilisation of CaO activation pretreat-
ment [15,26] or microwave heating [29,30] to process metallurgical residues and highlighted
the two ways that are effective for improving the Zn leaching efficiency [15,26,29,30]. How-
ever, no detailed study has reported processing zinc-containing metallurgical residues
(ZMR) with the two ways merged, even the leaching mechanism of ZMR by the combined
approach. Therefore, the present study proposed a new hybrid process to enhance the
Zn leaching from ZMR, wherein the ZMR was roasted by microwave activation pretreat-
ment with the addition of CaO, followed by the roasted ZMR sample were leached in
NH3-CH3COONH4-H2O solution. The effects of CaO addition, microwave activation tem-
perature, and activation time on the Zn leaching efficiency were investigated and optimised.
Meanwhile, the advantages of the new process were evaluated by comparing conventional
roasting treatment. Furthermore, laser particle size analyser, scanning electron microscopy
(SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) were employed
to analyse the mechanism of this pretreatment.

2. Experimental
2.1. Materials

The raw material of zinc-containing metallurgical residues (ZMR) was derived from a
secondary zinc resource recovery industry (Kunming, Yunnan, China), which is a mixture
of various types of metallurgical slag and dust (MSD). The ZMR sample contains the
zinc-containing gas mud (ash) produced in the blast furnace smelting process, the zinc-
containing dust produced in the electric arc furnace smelting process. In addition to soot,
there are parts of the zinc-containing smoke and dust after the volatilization of the lead
smelting slag in the lead-zinc smelting process and the leaching slag in the hydro-zinc
smelting process. Table 1 illustrates the chemical composition of the raw material. As
presented in Table 1, the raw material has a complex composition with the high contents like
zinc of 24.74% and iron of 21.66%. Besides, it also contains the rare metal indium (In) with
a content of about 354 g/t, and a high content of chlorine (Cl) and plenty of basic gangue
components. In summary, the residues could be determined with high recycling value.

Table 1. Chemical compositions of the ZMR sample.

Chemical Composition

Compositions Zn Fe C Pb Mg Al2O3
Content (w%) 24.74 21.66 9.14 1.13 1.14 2.22

Compositions CaO Cl Si S Bi In
Content (w%) 4.10 2.94 2.66 1.39 0.97 0.035

Figure 1 displays the XRD pattern and particle size distribution of the raw ZMR. It
is concluded that zinc mainly presents in the forms of ZnO, ZnS, Zn2SiO4, ZnFe2O4, and
Zn5(OH)8Cl2 H2O, while iron presents in Fe3O4 and Fe2O3, and the complicated phase
compositions render the Zn recycling process more difficult. According to the previous
research, ZnS, Zn2SiO4, and ZnFe2O4 are refractory mineral phases in NH3-CH3COONH4-
H2O solution [22]. To further improve the Zn leaching efficiency, it is necessary to pretreat
these refractory mineral phases to transform them into the easily leachable mineral phases.
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Figure 1. XRD pattern (a) and particle size distribution (b) of the raw ZMR sample. 

Figure 2 illustrates the SEM image and EDS point analysis of the ZMR sample. As 
displayed in Figure 2, it is found that the bright particles (Point A) are mainly iron oxides, 
and the grey particles (Point B) are quartz. Furthermore, the valuable metal minerals and 
gangue components are embedded with each other to form an inclusion state in the raw 
material (see Figure 3), which the microstructure also indicates that it is difficult to recover 
Zn from ZMR. 

Figure 1. XRD pattern (a) and particle size distribution (b) of the raw ZMR sample.

Figure 2 illustrates the SEM image and EDS point analysis of the ZMR sample. As
displayed in Figure 2, it is found that the bright particles (Point A) are mainly iron oxides,
and the grey particles (Point B) are quartz. Furthermore, the valuable metal minerals and
gangue components are embedded with each other to form an inclusion state in the raw
material (see Figure 3), which the microstructure also indicates that it is difficult to recover
Zn from ZMR.

2.2. Characterisation

The mineral phase of the ZMR samples before and after microwave calcium activation
pretreatment and the leaching residue was determined by X-ray diffraction (TTRA III,
Rigaku, Tokyo, Japan). The rotating anode powerful rotary target was used as the X-ray
generator with the power of 18 kW, the voltage of 40 kV, the flow of 200 mA and CuKα

(λ = 1.54056 Å) irradiation. Under the filtering of graphite monochromator with high reflec-
tion efficiency, the patterns of the samples were obtained at the scanning speed of 4◦/min
in the range of 10~90◦ with θ~2θ step scanning. The microstructures of these samples were
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analysed by the SEM (XL30ESEM-TMP, Philips, Amsterdam, The Netherlands) and EDS
(EDS-Genesis, EDAX, Mahwah, NJ, USA) characterisations. The particle size characteristics
of these samples were characterised by the laser particle size analyser (JL-1177, Shanghai
Shuangxu Electronics Co.; Ltd., Shanghai, China).
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2.3. Procedure

The ZMR raw material was dried at 85 ◦C in a drying oven (DHG-9055A, Shanghai
Shuangxu Electronics Co.; Ltd., Shanghai, China) to a constant weight. According to the
previous basic theoretical research, the transformation of these refractory mineral phases
can be realised by adding a proper amount of CaO under a certain roasting pretreatment
temperature [15,26]. Therefore, before ammonium leaching, the dried ZMR sample was
through microwave calcium activation pretreatment. During the pretreatment process, the
roasting temperature varied among 100–600 ◦C, activation time varied among 0–50 min,
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CaO addition varied among 0–30%. Meanwhile, a comparative experimental study of
conventional roasting and microwave roasting was designed to explore the effects of
activation temperature, CaO addition, and activation time on Zn leaching efficiency.

After calcium activation pretreatment, the roasted ZMR sample was leached using
the freshly prepared ammonium acetate (NH3-CH3COONH4-H2O) leaching system in
a 300 mL conical flask with stirring. The optimal leaching parameters included total
ammonia concentration of 5 mol/L (including c[NH3] of 2.5 mol/L and c[CH3COONH4]
of 2.5 mol/L), a liquid-solid ratio of 5:1, leaching time of 60 min, leaching temperature of
25 ◦C, and stirring speed of 300 r/min, which the detailed investigation has been reported
in the previous work [24]. In NH3–CH3COONH4–H2O solutions, the dissolved zinc oxide
(ZnO) can combine with ammonium ions and ammonia to form soluble [Zn(NH3)i]2+

complexes, as shown in Equations (1) and (2) [24]:

ZnO(s) + iNH4
+(aq) = [Zn(NH3)i]

2+(aq) + H2O(aq) + (i − 2)H+(aq) (1)

ZnO(s) + iNH3(aq) + H2O(aq) = Zn(NH3)i
2+(aq) + 2OH−(aq) (2)

After leaching, solids and liquids were separated, and the Zn concentration in the
leaching solution was measured by EDTA titration method. The Zn leaching rate (ηZn, %)
is determined by Equation (3):

ηZn =
CZn × V
m × WZn

(3)

In Equation (3), CZn is the Zn concentration in the NH3-CH3COONH4-H2O solution,
g/L; V is the volume of the NH3-CH3COONH4-H2O solution, L; m is the ZMR sample
weight, g; WZn is the weight per cent of zinc in the ZMR sample, 24.74%.

3. Results and Discussion
3.1. Zinc Leaching Efficiency

Under the different pretreatments of conventional roasting and microwave roasting,
the effects of activation temperature, CaO addition amount and activation time on Zn
leaching efficiency were studied comparatively. Figure 4 shows the obtained results.

3.1.1. Effects of Activation Temperature

Figure 4a illustrates the effects of activation temperature on Zn leaching efficiency,
by controlling the CaO addition of 25% and an activation time of 20 min. As displayed in
Figure 4a, the Zn leaching rate was relatively low at low temperatures among 100 ◦C to
300 ◦C, with leaching efficiency values ranging from 84.19% to 85.68% under conventional
roasting and from 87.69% to 90.28% under microwave roasting. With activation temperature
increasing to 400 ◦C, the Zn leaching rate under microwave roasting reached 92.11%, which
was 4.83% higher than that by conventional roasting. In addition, it is assumed that
under the same temperature, the Zn leaching efficiencies under microwave roasting were
all higher than that of conventional roasting. This finding was mainly attributed to the
following two reasons. On the one hand, the distinctive selective and rapid heating
merits of microwave heating induce thermal stress between useful minerals and gangues,
causes cracks in the mineral particles, and increases the reaction area between useful
minerals and the leaching solvent, thus facilitating the leaching reaction. On the other hand,
the significant difference in the microwave absorption properties of useful minerals and
gangues causes the microscopic non-uniform distribution of temperature in the multi-phase
complicated system, which enhances the dissociation of useful minerals [43]. The above-
formed non-equilibrium reaction conditions will promote the interfacial chemical reaction
and realise the rapid transformation from complex refractory ores to easily leachable phases,
thus achieving the improvement of Zn leaching efficiency. In addition, at temperatures
higher than 450 ◦C, the Zn leaching rate obtained by microwave activation decreased
slightly, which was mainly ascribed to that with the increase in temperature, the efficiency
of ZnO reacting with Fe2O3 in raw materials to form ZnFe2O4 is higher than that of CaO
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reacting with ZnFe2O4 to form ZnO. By studying the effect of CaO addition on the dielectric
properties of ZMR at different temperatures, it is highlighted that the dielectric loss of the
sample mixing with ZMR and CaO at 400 ◦C evidently exceeds that at 500 ◦C, denoting
that microwave energy could be better applied by controlling the activation temperature at
400 ◦C. Therefore, the subsequent activation experiment was carried out at 400 ◦C.
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3.1.2. Effects of Activation Time

Figure 4b depicts the effects of activation time on Zn leaching rate, by controlling the
CaO addition of 25% and an activation temperature of 400 ◦C. It can be seen from Figure 4b
that the Zn leaching efficiency was markedly affected by the activation time, showing a
good positive correlation. With an activation time of 20 min, the Zn leaching rate after the
activation pretreatment under conventional roasting and microwave roasting was 88.55%
and 91.25%, respectively. However, there was an absence of significant increase in the Zn
leaching efficiency as the activation time prolonged to 50 min. The same finding was pre-
sented in Figure 4b that in contrast to conventional roasting process, microwave activation
pretreatment could achieve high leaching efficiency in a shorter time. Considering the
increase in energy consumption caused by the extension of microwave activation time, the
microwave activation time of 20 min was preferred.

3.1.3. Effects of CaO Addition

Figure 4c presents the effects of CaO addition on Zn leaching rate, by controlling the
activation temperature of 400 ◦C and an activation time of 20 min. As demonstrated in
Figure 4c, it is summed that CaO addition has a pronounced influence on Zn leaching
efficiency. A larger amount of CaO addition can promote the transformation of refractory
phases in the ZMR to the easily leachable mineral phases, further realising the Zn leaching
rate. The same finding also appeared between the relationship of CaO addition and Zn
leaching rate, and the biggest difference value of Zn leaching rate between microwave
roasting and conventional roasting arose under the CaO addition of 25%, with a value of
91.67% under microwave roasting and 87.79% under conventional roasting. As the CaO
addition improved 30%, the Zn leaching efficiency tended to be balanced. In summary, the
optimal CaO addition was determined at 25%.

3.2. XRD Characterisation

To clarify the mechanism of enhanced Zn leaching from ZMR via microwave calcium
activation pretreatment, the effects of activation temperature on the phase transformation
under microwave roasting and conventional roasting were investigated by XRD.
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Figure 5a illustrates the XRD patterns of the ZMR sample under various microwave
activation temperatures. As shown in Figure 5a, the main zinc phases in ZMR changed
greatly after microwave activation pretreatment with CaO as the calcification agent. Zinc in
the raw ZMR existed in the phases of zinc oxide (ZnO), zinc silicate (Zn2SiO4), zinc sulfide
(ZnS), zinc ferrite (ZnFe2O4), and basic zinc chloride [Zn5(OH)8Cl2·H2O]. After adding CaO
as the calcification agent to pretreat ZMR by microwave roasting, the diffraction peak of
Zn5(OH)8Cl2·H2O gradually decreased with temperature rising from 100 ◦C to 300 ◦C, and
disappeared completely at 300 ◦C. As the temperature rose to 400 ◦C, ZnFe2O4 and Zn2SiO4
phases reacted with CaO, and were transformed into ZnO, Ca2Fe2O4, Ca2Fe2O5, CaFe3O5,
and Ca2SiO4. The Ca(OH)2 phase completely disappeared at temperatures between 300
and 400 ◦C. The CaCO3 phase arose at 400 ◦C, and the diffraction peak of ZnO was found
to become stronger with temperature rising. The diffraction peaks of ZnO and the newly
formed phases (Ca2Fe2O4, Ca2Fe2O5, CaFe3O5, Ca2SiO4, and CaCO3) remained unchanged
at temperatures exceeding 400 ◦C, denoting that the transformation of ZnFe2O4 and
Zn2SiO4 into ZnO phase can be achieved at 400 ◦C. Besides, the intensity of the diffraction
peaks of ZnS phase gradually weakened, but it did not disappear completely with the
increase in temperature. Theoretically, the reaction of ZnS(s) + CaO(s) = ZnO(s) + CaS(s)
could not occur at 400 ◦C, but the reaction of 2ZnS(s) + 3O2(g) = 2ZnO(s) + 2SO2(g)
could occur, indicating that part of ZnS was oxidized during the microwave calcium
activation pretreatment process. In addition, Figure 5b displays the XRD patterns of the
ZMR samples under various conventional roasting temperatures. As presented in Figure 5b,
the complete transformation of zinc silicate (Zn2SiO4) and zinc ferrite (ZnFe2O4) required
above 600 ◦C under conventional roasting pretreatment, in comparison with the same
transformation occurred in the temperature range of 300–400 ◦C by microwave activation
pretreatment. Meanwhile, it was found that the Ca(OH)2 decomposition temperature
and CaCO3 formation temperature under conventional roasting treatment were 600 ◦C
and 400 ◦C, respectively. By contrast, under microwave activation pretreatment, Ca(OH)2
phase in raw ZMR material was decomposed completely at 400 ◦C, and CaCO3 phase was
formed at 300 ◦C. The findings denoted that microwave heating can shorten the process
temperature compared with conventional heating, further reducing the production cost and
energy consumption of the secondary zinc resource recovery industry. The excellent process
advantage demonstrated by microwave heating is assigned to that microwave heating can
realise selective heating based on the difference in the dielectric loss of various minerals,
and the rapid dissociation and temperature increase in valuable minerals and gangue are
achieved due to the complex compositions of ZMR under the action of microwave [44].
Therefore, the complete transformation temperature of mineral phases under microwave
activation pretreatment is further reduced compared with the conventional pretreatment.

Figure 6 presents the XRD patterns of the microwave-activated ZMR sample at 400 ◦C
and the leaching residue. It is concluded from Figure 6 that in the microwave-activated
ZMR sample at 400 ◦C, ZnO and ZnS were the main phases. After leaching in NH3-
CH3COONH4-H2O solution, ferric oxide (Fe2O3), calcium carbonate (CaCO3), calcium
ferrite (including Ca2Fe2O5, CaFe3O5, and Ca2Fe4O7), and calcium silicate (including
CaSi2O5, Ca3SiO5, CaSiO3, and Ca2SiO4) appeared in the leaching residue, which is composed
of Fe, Si, Ca, and O. Compared with the phase composition of the raw ZMR (Figure 1), it is
summed that the intensities of the diffraction peak of ZnO and ZnS phases became stronger
after microwave calcium activation pretreatment. It can also be observed from Figure 6b
that the refractory mineral phases (including Zn2SiO4 and ZnFe2O4) disappeared and were
successfully calcified and transformed into the easy-to-handle mineral phases, like calcium
ferrite (including Ca2Fe2O5, CaFe3O5, and Ca2Fe4O7) and calcium silicate (including
CaSi2O5, Ca3SiO5, CaSiO3, and Ca2SiO4). Combining with the obtained Zn leaching
efficiency in Figure 4, the phase change of ZMR samples before and after microwave
calcium activation pretreatment verifies that CaO activation is an efficient pretreatment
approach to ameliorate the leaching efficiency of zinc from ZMR.
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3.3. SEM-EDS Characterisation

To further evaluate the advantages of microwave activation pretreatment on the
enhanced zinc leaching from ZMR, SEM-EDS characterisations were utilised to observe
the microstructures change of the ZMR samples before and after microwave activation
pretreatment and the leaching residue.

3.3.1. SEM Characterisation

Figure 7 presents the corresponding SEM images. As displayed in Figure 7, obvious
cracks arose in the samples pretreated by microwave activation and the subsequent leaching
residue, in contrast with no crack was observed in the raw ZMR and the ZMR sample
pretreated by conventional activation. As exhibited in Figure 7a,b, the morphology of the
sample before and after conventional roasting pretreatment was almost the same, and
the agglomeration was more obvious. This phenomenon denoted the unique heating
characteristics of microwave heating. During the microwave activation pretreatment
process, the microwave-absorbing properties of useful minerals and gangues present huge
differences, leading to the uneven heat distribution in this multi-element and multi-phase
complex ore system. The unique selective heating mode of microwave generates thermal
stress between useful minerals and gangues, which causes the mineral inclusion particles
to crack, strengthens the dissociation of useful minerals, achieving the dissociation effect
that is difficult to achieve by conventional methods [43,44]. Meanwhile, the increased
reaction area at the interface of useful minerals and accelerated diffusion efficiency also
accompanies with the generation of crack, further contributing to the enhanced leaching of
zinc from ZMR.
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3.3.2. EDS Characterisation

Figure 8 exhibits the corresponding EDS point analysis results of the ZMR samples
before and after microwave activation pretreatment, and the leaching residue. As shown in
Figure 8B, there were mainly three morphologies in the microwave-activated ZMR sam-
ple: (1) point (a), bright white cluster particles; (2) point (b), amorphous grey fine particles;
(3) point (c), grey bulk particle. A similar finding was observed from Figure 8A where the
three morphologies were embedded and wrapped. The grey fine particles were distributed
over most of the region. Moreover, the difference between Figure 8A,B was demonstrated
by that the bright white cluster particles were exposed after microwave activation pretreat-
ment. In more detail, it was summarised that the main phase composition of the cluster
particles was ZnO phase (Figure 8A), the amorphous grey fine particles were mainly the
agglomeration area of Zn, and the grey bulk particles were mainly iron oxides. In addition,
as showed in Figure 8C, there were also mainly three morphologies in the leaching residue:
(a) bright grey particles; (b) amorphous dark grey fine particles; (c) dark black particles. As
illustrated in Figure 8B, long cracks arose among the three types of morphology particles
after the microwave activation pretreatment. The EDS analysis of point (a) indicated that
the bright grey particles were mainly iron oxides with a small amount of Au, which is
ascribed to the gold spraying on the sample surface increases its conductivity during the
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preparation of the characterised sample. The EDS analysis of point (b) indicated that the
amorphous dark grey fine particles were composed of Si, O, Ca, Fe, Al, S, Cl, and Zn,
and the presence of a large amount of Cr in this area was due to the addition of polishing
agent containing mainly chromium trioxide when polishing the surface of the embedded
powder sample. The EDS analysis of point (c) denoted that dark black particles were
mainly gangue minerals. Furthermore, by comparing the Zn content in the amorphous
grey fine particles in Figure 8C, it is found that the Zn content in the leaching residue is
significantly reduced, with the weight percentage of 67.31% for the raw ZMR, 41.79% for
the microwave-activated ZMR sample, and 3.66% for the leaching residue. Meanwhile, the
Fe content is also significantly reduced, with the weight percentage of 6.70% for the raw
ZMR, 4.74% for the microwave-activated ZMR sample, and 3.72% for the leaching residue.

EDS line scanning analysis was utilised to further clarify the phase changes of ZMR
during microwave activation pretreatment process and the leaching process, and the
corresponding results are provided in Figure 9. Specifically, combined with the analysis
results in Figure 7, it can be summarised that the phase of Zn in the raw ZMR sample before
activation pretreatment had not changed. It mainly existed in the form of ZnO, Zn2SiO4
and ZnS, and ZnFe2O4 (see Figure 9A). Besides, combined with the analysis results in
Figure 9, it can be surmised that after adding CaO as the activation agent, Zn2SiO4 and
ZnFe2O4 were transformed into ZnO, Ca2Fe2O5, and Ca2SiO4 (see Figure 9B). Meanwhile,
ZnS still existed in the sample after the microwave activation, matched to the XRD findings
(Figure 5). Furthermore, combined with the analysis results in Figure 9, it is summed that
the peaks of ZnO phase disappeared completely after NH3-CH3CONH4-H2O leaching. The
leaching residue mainly contained the easily leachable phases such as Ca2Fe2O5, Ca2SiO4
and ZnS (see Figure 9C). In summary, the findings obtained from SEM-EDS analysis were
matched to the XRD analysis results.
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3.4. Mechanism of Enhanced Leaching Zn by Microwave Calcium Activation Pretreatment

Figure 10 presents the particle size distribution characteristics of the ZMR samples
after microwave activation pretreatment and the leaching residue. Table 2 lists the detailed
particle size parameters. As presented in Figure 10 and Table 2, compared with the raw
ZMR sample, the parameter values of D10, D50, D90 and D98 gradually increased for the
ZMR samples after microwave activation pretreatment and the leaching residue, altogether
with the area average particle size, the volume average particle size and the corresponding
surface area to volume ratio. The increase in these parameters may be attributed to the
disappearance of the ZnO phase that is mainly distributed in fine particles after leaching
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and the phase transformation of the refractory mineral phases into the easily leachable
mineral phases. In addition, in order to investigate the leaching of other harmful impurity
elements in ZMR with zinc, the chemical element content of Zn, Pb, Fe, Ca, and Si in the
leaching solution at 25 ◦C was determined, and the content in the leaching solution was
determined at 41.15 g/L (Zn), 0.0094 g/L (Pb), 0.0208 g/L (Fe), 0.66 g/L (Ca), 0.094 mg/L
(Si), respectively. The analysis results indicated that the NH3-CH3COONH4-H2O system
can selectively leach Zn without leaching metal and alkaline gangue impurities like Pb, Fe,
Ca, Si, and etc. The relevant data have been published in the work [25].
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Figure 10. Particle size distribution of the ZMR samples (a) after microwave activation pretreatment 
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Figure 10. Particle size distribution of the ZMR samples (a) after microwave activation pretreatment
and (b) the leaching residue.

Table 2. Particle size parameters of the ZMR samples (A) before and (B) after microwave activation
pretreatment and (C) the leaching residue.

Samples D10
(µm)

D50
(µm)

D90
(µm)

D98
(µm)

Volume
Average Particle

Size (µm)

Area Average
Particle Size

(µm)

Surface Area to
Volume Ratio

(m2/cm3)

A 10.26 21.42 44.67 68.15 23.40 19.40 2.48
B 10.44 21.80 45.33 68.93 23.78 19.74 2.60
C 11.68 24.27 50.17 75.21 26.35 22.03 2.73

In summary, combining with the above analysis results obtained from Zn leaching
efficiency, XRD characterisation, SEM-EDS characterisation, and particle size analysis, the
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mechanism of enhanced Zn leaching from zinc-containing metallurgical residues (ZMR) by
microwave activation pretreatment can be deduced. Under the activation action of CaO,
the refractory mineral phases (including Zn2SiO4 and ZnFe2O4) were transformed into
the easily leachable mineral phases, like ZnO phase, calcium ferrite (including Ca2Fe2O5,
CaFe3O5, and Ca2Fe4O7) and calcium silicate (including CaSi2O5, Ca3SiO5, CaSiO3, and
Ca2SiO4). Meanwhile, the unique selective heating characteristic of microwave heating
induces thermal stress formed between the valuable minerals and gangues, and the thermal
stress renders the mineral inclusion particles dissociate to long and significant cracks.
Meanwhile, the cracks contribute to increasing the reaction area and accelerating the
diffusion efficiency, further promoting the improvement of leaching efficiency of zinc
from ZMR.

4. Conclusions

In this work, an enhanced Zn leaching approach from zinc-containing metallurgical
residues was proposed, by introducing a microwave heating approach into the CaO activa-
tion pretreatment process to realise the conversion of refractory ore phases into the easily
leachable ore phase. The main findings were depicted as follows:

(1) The influences of CaO addition, activation temperature and activation time on the
Zn leaching efficiency were studied in the NH3-CH3COONH4-H2O system. The pre-
ferred microwave calcium activation pretreatment parameters were determined with
a zinc leaching rate of 91.67% under a roasting temperature of 400 ◦C, the activation
time of 20 min, and a CaO addition of 25%. Meanwhile, the Zn leaching efficiencies
under microwave roasting were all higher than those by conventional roasting.

(2) XRD and SEM-EDS analysis indicated that under microwave calcification pretreat-
ment, the refractory mineral zinc silicate (Zn2SiO4) and zinc ferrite (ZnFe2O4) were
converted into the easily leachable mineral phases, like zinc oxide, calcium ferrite,
and calcium silicate. The diffraction peak of ZnS was weakened after microwave
activation, thus increasing the content of easily leachable mineral phase ZnO and
promoting the leaching of zinc. Moreover, microwave heating can shorten the process
temperature, manifested by the Ca(OH)2 decomposition temperature and CaCO3 for-
mation temperature decreased by 200 ◦C and 100 ◦C, respectively. Furthermore, the
selective heating characteristics of microwave heating render the mineral inclusion
particles dissociated into cracks, which increases the reaction area and the diffu-
sion efficiency, further enhancing the leaching process of zinc from zinc-containing
metallurgical residues.
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