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Abstract: The multi-pass deposited metals were prepared by metal-cored wire with low (2.5 wt%)
and high (4.0 wt%) Ni to research the effect of Ni on the bainite/martensite transformation. Results
showed that deposited metals exhibited a multiphase structure comprised of bainite, martensite and
residual austenite, which is not only explained from SEM/TEM, but also identified and quantified
each phase from crystallographic structure through XRD and EBSD. With Ni content increasing, the
fraction of martensite increases from 37% to 41%, and that of bainite decreases from 61% to 55%
accordingly because 4% Ni element narrows the temperature range of the bainite transformation
~20 ◦C. The 7.8% residual austenite exhibited block and sheet in the deposited metal with low
Ni, while the fraction of residual austenite was 3.26% as a film with high Ni, caused by different
transformation mechanisms of bainite and martensite. The tensile strengths of deposited metals were
1042 ± 10 MPa (2.5% Ni) and 1040 ± 5 MPa (4% Ni), respectively. The yield strength of deposited
metals with high Ni was 685 ± 18 MPa, which was higher than low Ni due to the high fraction
of martensite. The impact values of deposited metals with high Ni content decreased because the
volume fraction of bainite and residual austenite and area fraction of large-angle grain boundary
were lower.

Keywords: deposited metal; bainite; strength; toughness; nickel content

1. Introduction

High strength low-carbon steels with good toughness and welding properties are
appearing materials applied in mechanical engineering [1,2]. Usually, the improvement
of strength is related to damage in ductility, limiting structural applications of it without
the suitable welding material [3,4]. Thus, developing matching welding materials with
appropriate microstructure is necessary. One approach is to prepare the microstructure
comprised of bainite, martensite and residual austenite (RA) [5,6]. This microstructure
was proved to exhibit higher toughness than full martensite because bainite can separate
prior to austenite grain and refine the martensite [7]. Meanwhile, the RA is beneficial to
the ductility of materials. The deposited metal is prepared by fluxed-cored arc welding
(FCAW, welding process: 138), in which flux-cored wires are not only consumable but
also used as the electrode. This welding method [8,9] is widely used in particular in
shipbuilding, construction and machine industry as well as regeneration of machine
elements, technical devices, manufacturing and modification of surface layers, because of
higher welding efficiency, penetration depth, better arc stability, strong adaptability and
relative ease of welding. Pure metal powder wires were used in this experiment. The
welding wire is kept under strict conditions to prevent corrosion and moisture absorption
because it is not a seamless wire. Dirt and moisture inside and on the surface of the

Metals 2021, 11, 1971. https://doi.org/10.3390/met11121971 https://www.mdpi.com/journal/metals

https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0002-5851-9679
https://doi.org/10.3390/met11121971
https://doi.org/10.3390/met11121971
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/met11121971
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met11121971?type=check_update&version=1


Metals 2021, 11, 1971 2 of 14

flux-cored wire can get into the welding pool and later into all welded joint zones during
welding. This can result in a reduction in the performance of such a welded joint or
even its complete destruction [10]. In recent years, the metal-cored wire has been of
great importance and developed rapidly with the development of high efficiency and
good welding operations [11,12]. More importantly, the alloy elements in the metal-cored
wire can be adjusted according to the requirements. Thus, adjusting the composition
of the alloying elements in the metal-cored wire, such as Mn, Mo, Cr, Cu and Ni, is
the primary method used to form multiphase microstructure [13]. Among the alloying
elements, the Ni element can both improve strength and toughness. Ni can decrease the
bainite/martensite transformation temperature, strengthen via solid solution and refine
grain size [14]. Ni is an austenite stabilizing element and it can reduce ductile-to-brittle
transition temperature (DBTT), owing to the reduction of the interaction energy between
dislocation and interstitial atoms [15,16]. Xue et al. [17] found that the percentage of
ferrite and martensite of deposited metals increased significantly with the increase in
Ni content, while bainite decreased. Keehan et al. [18] found the existence of coalesced
bainite seriously deteriorated the impact toughness by adding 3.14%, 7.23% and 9.23% Ni.
Thus, the excessive Ni content will cause the massive martensite and bainite structures,
which preferentially provide paths for crack propagation and deteriorate toughness [19,20].
Therefore, the Ni content in the metal-cored wire is important.

The multiphase microstructure correlated with mechanical properties gives rise to nu-
merous studies. Rao et al. [21] found that the mixed microstructure included bainite led
to the improvement of toughness without reduction of the strength, compared with the
single martensitic. Tomita [22] proved that lower bainite appeared in the form of acicular,
dividing the prior austenite grain with martensite, which provided greater mechanical prop-
erties. However, the mechanical properties of upper bainite–martensite decrease. Parsa
Abbaszadeh [23] thought that the mixed microstructures containing 12–28% bainite showed
higher yield strength than single martensitic because there is a plastic constraint effect in-
duced by the surrounding relatively rigid martensite, leading to improved strength of bainite.
The research above serves to study the effects of multiphase on the mechanical properties.

The volume fraction of bainite, martensite and RA is important to the mechanical
properties of deposited metals. So, it is essential to identify and quantify them. The tradi-
tional optical microscopy (OM) based on color-etched is not adequate in the present case.
Because the color-etching mainly depends on partial carbon content [24]. Thus, the elec-
tron backscatter diffraction (EBSD) based on the crystallographic structure was employed.
Image quality (IQ) values were used to identify lattice defects such as grain boundaries,
dislocation, or substructures. The IQ value is high when the quality of the Kikuchi bands is
good [25]. Martensite and bainite have unlike degrees of the lattice distortion, which can
be translated into different IQ values although they are all BCC structures [26]. Compared
to bainite, martensite is shown with lower pattern quality. This method was successfully
applied in similar materials with the deposited metals [27].

In this study, the deposited metal was obtained by gas metal arc welding (GMAW).
The key challenge is identifying and quantitative analyzing the volume fraction of bainite,
martensite and RA, ulteriorly obtaining the metal-cored wire with high strength and good
toughness. The effect of Ni on phase transformation was systematically studied by Jmatpro
software. The volume fractions of bainite and martensite were quantitatively investigated
with the EBSD. The relationship between the fraction of bainite, martensite, and RA and
the properties of deposited metal was studied comprehensively.

2. Materials and Methods

The metal-cored wire in this experiment was designed by authors and made by a
certain factory. The diameter of the wire is 1.2 mm and filling rate is about 15%. They are
not seamless wires. The dimension of the steel sheath (99.6%) outside is 12 mm × 0.5 mm.
The flux inside is metal particles. The formation process of wires included four steps:
U-groove pressing formation, flux filling, rolling sealing and diameter reduction, as shown
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in Figure 1 [28]. The base metal used in this experiment was Q345 steel, which is used as
the substrate with no effect on sampling, playing a supporting role to prevent molten pool
flow and improve molding. The yield strength of Q345 is about 345 MPa with an elongation
of more than 22%. The chemical compositions of deposited metal measured by Optical
Emission Spectrometer DF-100 (Shenzhen Cepu Technology Co., LTD, Shenzhen, China)
are introduced in Table 1. As for the content of Ni, it should not be too high considering
the perspective of economic cost. It is mentioned by Mao [29] that when the Ni content
reaches 6%, thermal cracks will occur in the weld and seriously damage its mechanical
properties. On the other hand, the Ni content should not be too low to ensure the beneficial
effect of Ni element on impact toughness. Norstrom et al. [30] found that the ductile-brittle
transition temperature would decrease by 20 ◦C with an increase of 1% Ni. Thus, the
2.5 and 4% Ni wires were manufactured. The deposited metals with 2.5 wt% Ni and
4.0 wt% Ni were labeled as LN and HN, respectively. The deposited metals were prepared
by FCAW using a mixture of 80% Ar + 20% CO2 shielding gas. The welding machine
was Millermatic 350 (Miller Electric Manufacturing Co., Appleton, WI, USA). The welding
current was 220–250 A and arc voltage was 28–30 V. The welding speed was maintained
at 300 mm/min. The wire extension is about 14 mm. The flow rate of shielding gas is
about 20 L/min. The preheating and inter-pass temperature was 150 ◦C. The wire is dried
before welding.
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spectrometry (Oxford, Tokyo, Japan). The EDS was used to examine the oxides. For TEM, 
3.0 mm diameter disc specimens were wet ground to 50 µm in thickness. The TEM speci-
mens were prepared by twinjet polishing with 95 vol% alcohol and 5 vol% perchloric acid 
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Figure 1. Metal-cored wires formation process.

Table 1. Chemical compositions of deposited metal (wt%).

C Mn Si Ni Cr Mo S P O N Ti Al Fe

LN 0.080 1.55 0.50 2.43 0.84 0.72 0.0075 0.015 0.084 0.012 0.004 0.03 Bal
HN 0.074 1.28 0.51 4.29 0.65 0.62 0.009 0.015 0.080 0.008 0.004 0.029 Bal

Q345 ≤0.20 ≤1.70 ≤0.50 0.50 0.30 0.10 0.035 0.035 - 0.012 0.20 0.015 Bal

Microstructure investigations perpendicular to the welding direction were measured
by scanning electron microscopy JSM-7800F (JEOL, Tokyo, Japan), with an etching solution
consisting of 4% nitric acid alcohol. The transmission electron microscopy JEM-2100 (JEOL,
Tokyo, Japan) equipped with an ultra-thin-window Oxford energy-dispersive spectrometry
(Oxford, Tokyo, Japan). The EDS was used to examine the oxides. For TEM, 3.0 mm
diameter disc specimens were wet ground to 50 µm in thickness. The TEM specimens were
prepared by twinjet polishing with 95 vol% alcohol and 5 vol% perchloric acid solution.
The specimens used in electron backscattered diffraction EDAX-TSL (JEOL, Tokyo, Japan)
were electropolished by the 5 vol% perchloric acid alcohol solution (voltage of 30 V). The
EBSD data were obtained at an accelerating current of 13 A and a step size of 0.15 µm.

The specimens were also conducted by X-ray diffraction D8 Advanced (Bruker AXS,
Bruker, Germany) from 35◦ to 105◦ with Cu at the scanning rate of 0.01◦/min. The Rietveld
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refinement method was applied to calculate the fraction of RA by counting the integrated
intensities of (111), (200), (220), (311) austenite peaks and (110), (200), (211), (220) ferrite
peaks [29]. The method is expressed as follows:

Vγ = 1.4Iγ/(Iα + 1.4Iγ) (1)

where Iγ is the average integral strength of austenite diffraction peaks, Iα is the average
integral strength of ferrite diffraction peaks. The dislocation density was calculated by
fullwidth at half-maximum (FWHM) values with a modified Williamson–Hall (MWH)
method [31,32]. The MWH method is as follows:

∆K =
0.9
D

+

(
πAb2ρ

2

)1/2(
KC 1/2

)
+

(
πA′b

2
Q

2

)1/2(
K2C

)
(2)

where ∆K = (2cosθ(∆θ))/λ, K = 2sinθ/λ, θ is the diffraction angle, λ is wavelength of X-rays,
D is crystallite size, b is burgers vector (b = 0.2520 nm) [33], ρ is dislocation density and C is
average contrast factor of the dislocations, respectively.

The all-weld tensile specimens were machined longitudinally from the weld deposits.
Tensile testing was conducted at a strain rate of 0.5 mm/min on an electronic material
testing machine MTS Exceed E45 (MTS, Eden Prairie, MN, USA). The impact Charpy
V-notch specimens were notched perpendicularly to the welding direction, according to
ASTM E23 standard. The specimens were carried out at −20 ◦C on a JB-300B pendulum
with velocity of 5.2 m/s (SANS, Jinan, China). The impact oscilloscope was used to record
the crack initiation, propagation and total impact absorbing energy. Three tensile and
Charpy V-notch specimens were conducted for each condition. The sampling location and
size of specimens are shown in Figure 2. Butt welding was used and the gap between the
bottom groove is about 35 mm, ensuring that the influence of substrate on the deposited
metal was excluded during the sampling process. The specimens of microstructure were
taken from the capping weld bead in as-welded condition. The full-weld tensile/impact
sample is taken from the deposited metal between the substrate.

Metals 2021, 11, x FOR PEER REVIEW 4 of 15 
 

 

of 30 V). The EBSD data were obtained at an accelerating current of 13 A and a step size 
of 0.15 µm.  

The specimens were also conducted by X-ray diffraction D8 Advanced (Bruker AXS, 
Bruker, Germany) from 35° to 105° with Cu at the scanning rate of 0.01°/min. The Rietveld 
refinement method was applied to calculate the fraction of RA by counting the integrated 
intensities of (111), (200), (220), (311) austenite peaks and (110), (200), (211), (220) ferrite 
peaks [29]. The method is expressed as follows: 𝑉  =  1.4𝐼 (𝐼 + 1.4𝐼 )⁄  (1)

where Iγ is the average integral strength of austenite diffraction peaks, Iα is the average 
integral strength of ferrite diffraction peaks. The dislocation density was calculated by 
fullwidth at half-maximum (FWHM) values with a modified Williamson–Hall (MWH) 
method [31,32]. The MWH method is as follows: 

∆𝐾 =  0.9𝐷 + 𝜋𝐴𝑏 𝜌2 ⁄ 𝐾�̅� ⁄ + 𝜋𝐴 𝑄2 ⁄ (𝐾 �̅�) (2)

where ∆K = (2cosθ(∆θ))/λ, K = 2sinθ/λ, θ is the diffraction angle, λ is wavelength of X-rays, 
D is crystallite size, b is burgers vector (b = 0.2520 nm) [33], ρ is dislocation density and �̅� is average contrast factor of the dislocations, respectively. 

The all-weld tensile specimens were machined longitudinally from the weld depos-
its. Tensile testing was conducted at a strain rate of 0.5 mm/min on an electronic material 
testing machine MTS Exceed E45 (MTS, Minnesota, USA). The impact Charpy V-notch 
specimens were notched perpendicularly to the welding direction, according to ASTM 
E23 standard. The specimens were carried out at −20 °C on a JB-300B pendulum with ve-
locity of 5.2 m/s (SANS, Jinan, China). The impact oscilloscope was used to record the 
crack initiation, propagation and total impact absorbing energy. Three tensile and Charpy 
V-notch specimens were conducted for each condition. The sampling location and size of 
specimens are shown in Figure 2. Butt welding was used and the gap between the bottom 
groove is about 35 mm, ensuring that the influence of substrate on the deposited metal 
was excluded during the sampling process. The specimens of microstructure were taken 
from the capping weld bead in as-welded condition. The full-weld tensile/impact sample 
is taken from the deposited metal between the substrate. 

 
Figure 2. Sampling location (a) and size of tensile (b) and impact specimens (c) (mm). 

  

Figure 2. Sampling location (a) and size of tensile (b) and impact specimens (c) (mm).

3. Results
3.1. Microstructural Characterization

Figure 3 shows the SEM images of deposited metals. The specimens of microstructure
were taken from the capping weld bead in the as-welded condition. The fine microstructure
of deposited metal is a multiphase included bainite, martensite and RA. There are mainly
lath bainite and M-A constituents of the LN (Figure 3a). As for the HN, the microstructure
is bainite, lath martensite and M-A constituents (Figure 3b).
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Figure 3. SEM images of deposited metals. (a) LN, (b) HN.

The microstructure of deposited metals is observed by TEM, as exhibited in Figure 4.
There is the lathy microstructure of bainite/martensite, and RA distributes between the
laths and the tangled dislocation exists inside the laths. The orientation relationship
between RA and matrix calculated by selected area electron diffraction (SAED) is ap-
proximately consistent with Kurdjumov–Sachs (K-S) orientation [34]: [110]γ//[100]α and
(111)γ//(011)α. The bright- and dark-field images of RA are also observed (Figure 5).
The RA mainly exists in blocks and sheets of the LN, while it is thin films of the HN. No
cementite was observed in the LN or HN.

Figure 6 shows the inverse pole figure (IPF), image quality (IQ) with misorientation
angles, and distribution of equivalent grain size. There is the lathy structure with similar
crystallographic directions inside one prior austenite grain of the LN and HN. The black
parts are oxides that cannot be identified by electron beam resulting in the lowest IQ value
(Figure 6b,e). The grain boundaries with 2–5◦, 5–15◦ and 15–180◦ are represented as red,
green and blue lines, respectively. There are mainly small angle grain boundaries inside
the bainite/martensite. The grain boundaries between bainite, martensite and RA are
large-angle grain boundaries. The percentage of grain boundaries with a large angle (≥15◦)
of the LN is 61.80%, and that of the HN is 56.23%. Meanwhile, the equivalent grain size is
about 4.25 µm of the LN and HN.
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3.2. Mechanical Properties

The tensile properties of deposited metals are shown in Figure 7a. The tensile strengths
are 1042 ± 10 MPa of the LN and 1040 ± 5 MPa of the HN, and the 0.2% yield strength
is about 648 ± 20 MPa and 685 ± 18 MPa, respectively. Meanwhile, the elongation of
deposited metals is about 8%. The impact curves are shown in Figure 7b. The impact energy
is 46.5 ± 2.8 J at −20 ◦C of the LN. As for the HN, the value of toughness is 38.8 ± 2.5 J.
The total impact energy decreases with the increase in Ni content.
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Figure 7. Tensile properties (a) and impact curves (b) of deposited metals.

The impact fracture is observed in Figure 8. The fracture morphology is dimple
rupture of the LN and quasi-cleavage of the HN, indicating ductile and quasi-cleavage
fracture. With the increase in Ni, the fracture morphology of deposited metals presents a
transition from toughness to brittleness. The cleavage surface shows a river pattern, and
the cracks start near the circular oxide particles for the HN (Figure 8b). Energy spectrum
detection reveals that the composition of oxides is Mn, Si, Al and O (Figure 9). Since oxides
are products of voids and microcracks, the toughness is usually reduced by the formation
of oxides [35]. Compared with similar materials, the lower toughness value is caused by
the high oxygen content of deposited metal, which is about 800 ppm.
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4. Discussion
4.1. Identification of Multiphase and Effect of Ni on Phase Transformation

The multiphase microstructure was analyzed by SEM and TEM before (Figures 3–5),
there it was verified by misorientation angles (Figure 10). The misorientation angle between
α-Fe bainite/martensite and RA is about 45◦ [36]. Meanwhile, the 50–60◦ misorientation
angles are grain boundaries of bainite and martensite. The authors [37] have pointed out
that the misorientation angle between bainite and prior austenite in the N-W relationship
is approximately 53–54◦<110> and that between martensite and prior austenite in the
K-S relationship is 60◦<111>. Thus, the crystallographic morphology of deposited metals
consists of bainite, martensite and RA.
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The image quality (IQ) values are calculated to quantify the volume fraction of bainite
and martensite (Figure 11). The IQ, which is lower than the threshold value determined
by a Gaussian fitting, is carried out on the green curve which is segmented as martensite
and the red line represents bainite. The smallest peak represents the oxides and null values
which cannot be detected by EBSD. The fraction of martensite and bainite can be deduced
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by integrating the curves. The results show that the volume fraction of martensite increases
from 37% to 41%, while that of bainite decreases from 61% to 55% with the content of
Ni increasing.
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In order to explain the influence of Ni content on bainite/martensite transformation
of deposited metal, the continuous cooling transition (CCT) diagram was simulated by
Jmatpro software (Figure 12). The cooling rate calculated by the Rosenthal 3D equation [38]
at 500 ◦C during the welding process is about 26.3 ◦C/s. With the increase in Ni content,
the CCT curve of bainite transformation shifts to the lower right. The temperature range
of bainite changes from 82.0 ◦C to 60.2 ◦C (Table 2). Thus, there is a shorter range of
bainite transformation during welding of the HN and the temperature range of marten-
site almost does not change. Therefore, the high Ni content narrows the temperature
range of bainite transformation, lessening the volume fraction of bainite and improving
martensite transformation.
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Table 2. Phase transition temperature of deposited metal.

Deposited Metals Bs/◦C Ms/◦C Mf/◦C ∆T(Bs-Ms)/◦C

LN 502.3 353.1 238.1 149.2
HN 481.6 334.9 218.2 146.7

LN(26 ◦C/s) 435.1 353.1 238.1 82.0
HN(26 ◦C/s) 395.1 334.9 218.2 60.2

The XRD of deposited metals (Figure 13) shows that the microstructure is α-Fe and a
certain volume fraction of RA, which is calculated by (Equation (1)) is 7.80% of the LN and
3.26% of the HN. The fraction of RA decreases with the increase in Ni content. Combining
bainite and martensite transformation mechanisms, the formation, volume fraction and
shapes of RA are studied in detail. Firstly, the transformation of bainite is a process of
carbon emission [39]. Then the carbon atoms are enriched in untransformed austenite
by long-distance diffusion, which increases the stability and promotes the formation of
RA. So, there are blocky and sheet RA formed during bainite transformation. Secondly,
the martensite transformation is a shearing transformation. The carbon atoms exist at a
supersaturated state inside martensite and nickel is especially useful in stabilizing austenite,
thereby forming film RA. Meanwhile, the volume fraction of bainite reduces from 61% to
55% (Figure 11), and the volume fraction of RA decreases from 7.80% to 3.26% with the
increase in Ni content. Furtherly, the RA exists as different forms of deposited metals. The
RA is mainly a block and sheet of deposited metal with low Ni, while it is a thin film of that
with high Ni (Figure 5). Therefore, the RA is easily produced during bainite transformation
and positively correlated with the volume fraction of bainite.
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4.2. Strengthening Model of Deposited Metals

For deposited metals, the tensile strength is similar with different Ni content. It can be
seen from Figure 4 that the microstructure morphology exists in the lathy structure, and
the width of the lath is similar, ~500 nm. Relevant studies [40] show that when the carbon
concentration is close to zero, the strength difference between martensite and bainite also
approaches zero. Therefore, there is little difference between the deposited metals in terms
of tensile strength. The yield strength of the HN is higher than that of the LN. However,
the yield strength of martensite and bainite is not within a certain range for quantitative
analysis. Therefore, the strengthening mechanism of deposited metals can be quantified
through the solid solution, grain boundary, dislocation density, etc. This is discussed below.
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The solid solution strengthening can be predicted according to the empirical formula
(Equation (3)) [41]. The Ni and carbon elements are not included. Kennett et al. [32] believe
that Ni has no substantial strengthening effect on the bainite/martensite structure, and it
does not need to be considered in the solid solution strengthening. For the ferrite, carbon
plays a significant role in solid solution strengthening, but for bainite/martensite tissue,
the role of carbon is mainly to lead to dislocation strengthening, so it can be ignored in the
solid solution strengthening.

σss= 32Mn + 678P + 83Si + 39Cu + 11Mo− 31Cr (3)

where σss is the solid solution strength, the fraction of elements is the percentage of weight.
The Hall–Patch relationship (Equation (4)) is used to calculate the grain boundary

strengthening on the material.
σHP = Kd−1/2 (4)

where K is the Hall–Petch constant of low-carbon steel, 0.2 MPa·m1/2 [42]; d is the equiva-
lent grain size, about 4.25 µm.

The dislocation density of deposited metals calculated by (Equation (2)) is 2.65 × 1014 m−2

of the LN and 3.28 × 1014 m−2 of the HN, respectively. The dislocation strengthening (σdis)
can be estimated by the Taylor equation [43] as below:

σdis = αMGb
√

ρ (5)

where α is the Taylor constant, α = 0.4; M is the average Taylor factor, M = 2.77 [44]; G is the
shear modulus, G = 80 Gpa [45]; ρ is dislocation density.

The contributions of each strengthening constituent are shown in Figure 14. The yield
strength of α-Fe is about 53 MPa [46]. In this experiment, the σothers included α-Fe strength
and other strengths not discussed is totally about 110 Mpa. The value of solid solution
strengthening is ~80 MPa. The strengthening values of grain boundary are both ~97 MPa.
The values of dislocation density strengthening are 358 MPa of the LN and 398 MPa of
the HN, respectively. The dislocation density within martensite is higher than that of
bainite, which is transformed at lower temperatures with high carbon content. Finally,
the improvement of yield strength of the HN (41% martensite) is mainly attributed to the
increase in dislocation density.
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4.3. Toughness of Deposited Metals

The Charpy V-notch impact test shows that the toughness of the LN is better than
the HN. It will be explained from the following three points: bainite, RA and large-
angle grain boundary. Firstly, the impact energy of the LN is improved by the increase
in the volume fraction of bainite (Figure 11). For multiphase microstructure, the crack
propagating inside martensite will be obtuse when meeting flexible bainite. The combined
deformation of bainite and martensite gives full play to the role of crack arrest and stress
relief. Secondly, the volume fraction of RA is 7.80% of the LN, while it is 3.26% of the
HN. Many researchers [47,48] have reported that the presence of RA is a significant role
in improving toughness. During deformation, soft austenite can release internal stress
and inhibit crack initiation. Then, the large misorientation angles (about 45◦) between
bainite/martensite and austenite boundary can consume more energy, effectively impede
fracture propagation and promote toughness. Moreover, the transformation-induced
plasticity effect of RA is an important mechanism for increasing toughness [49]. Finally, the
area fraction of grain boundaries with large-angle (≥15◦) is 61.80% of the LN and 56.23%
of the HN (Figure 6). The higher area fraction of misorientation angles (≥15◦) indicates
that more grain boundaries are favorable to change the direction of crack propagation, and
more energy is consumed in the process of crack propagation [50].

The new welding material is mainly considered to match 1000 MPa grade high strength
low alloy steel. The B+M+RA multiphase microstructure is mainly obtained by suitable
composition design. At the same time, preheating before welding is used to reduce the
cooling rate of deposited metal, reduce the welding residual stress and eliminate cold crack.
The stability of the arc is good in the welding process. In the process of composition design,
the alloy transition coefficient has been obtained accurately and the ideal composition
ratio has been acquired. At present, the high oxygen content of welding material leads to
poor toughness. In order to reduce oxygen content, the improvement of the composition
of welding materials is necessary, and the structure and performance of welding joints
prepared by this new welding wire will be studied further.

5. Conclusions

This work investigates multiphase microstructure and mechanical properties of de-
posited metal prepared by metal-cored wire. The influence of Ni on phase transformation
and the corresponding mechanical properties is discussed in detail. The following conclu-
sions can be drawn:

• The microstructures of Ni-addition deposited metals are multiphases composed of
bainite, martensite and residual austenite. The volume fraction of bainite decreases
from 61% to 55%, and that of martensite increases from 37% to 41%, while the content
of Ni increases from 2.5% to 4.0% because the high Ni content obviously decreases the
temperature range of the bainite transformation.

• The residual austenite exists as different forms of deposited metals. The residual
austenite is mainly a block and sheet of deposited metal with low Ni, while it is a thin
film with high Ni. The volume fraction of residual austenite decreases from 7.8% to
3.26% with the increase in Ni content. Meanwhile, the volume fraction of residual
austenite is positively correlated with that of bainite.

• The tensile strength is ~1040 MPa of deposited metals. The increase in yield strength
is mainly due to the high dislocation density of deposited metals with high Ni, which
have 41% martensite. The toughness of deposited metals decreases with the increase
in Ni content, which is positively related to the volume fraction of bainite, residual
austenite and grain boundary of large-angle.
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