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Abstract: In a complex industrial environment, it is difficult to obtain hot rolled strip steel surface
defect images. Moreover, there is a lack of effective identification methods. In response to this, this
paper implements accurate classification of strip steel surface defects based on generative adversarial
network and attention mechanism. Firstly, a novel WGAN model is proposed to generate new surface
defect images from random noises. By expanding the number of samples from 1360 to 3773, the
generated images can be further used for training classification algorithm. Secondly, a Multi-SE-
ResNet34 model integrating attention mechanism is proposed to identify defects. The accuracy rate
on the test set is 99.20%, which is 6.71%, 4.56%, 1.88%, 0.54% and 1.34% higher than AlexNet, VGG16,
ShuffleNet v2 1x, ResNet34, and ResNet50, respectively. Finally, a visual comparison of the features
extracted by different models using Grad-CAM reveals that the proposed model is more calibrated
for feature extraction. Therefore, it can be concluded that the proposed methods provide a significant
reference for data augmentation and classification of strip steel surface defects.

Keywords: hot rolled strip steel; defect classification; generative adversarial network; attention
mechanism; deep learning

1. Introduction

As one of the main products of the steel industry, hot rolled strip steel is widely used
in automobile manufacturing, aerospace and light industry [1]. Surface quality is one of
the key indicators of strip steel’s market competitiveness. Due to the influence of raw
materials, rolling process and external environment, the strip steel surface will inevitably
appear oxide scale, inclusion, scratch and other defects in the production process, which not
only seriously affects the appearance, but also reduces the fatigue resistance. At the same
time, these shortcomings cannot be completely overcome by improving the process [2,3].
Therefore, the classification of surface defects can provide an important reference for the
production process. Through the corresponding tuning, the purpose of further improving
the yield rate and reducing production costs is achieved.

The traditional surface defect detection mainly relies on manual visual inspection [4].
Although the implementation of this method is relatively simple, it is difficult to detect
small defects with the continuous acceleration of the production line. In addition, long-
term manual work will lead to visual fatigue and affect physical and mental health. Many
researchers have used machine learning algorithms to overcome the drawbacks of manual
visual inspection. Kim et al. [5] developed a K-Nearest Neighbor (KNN) classifier for eight
defects with a classification performance of about 85%. Karthikeyan et al. [6] proposed a
texture-based approach, where discrete wavelet transform based local configuration pattern
features were given as input to a KNN classifier with an overall accuracy of 96.7%. Martins
et al. [7] adopted principal component analysis to extract features from the defect images
and used self-organizing maps to classify six types of defects obtained in the ArcelorMittal
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mill with an overall accuracy of 87%. Bulnes et al. [8] proposed a non-invasive system
based on computer vision, which uses a neural network for classification and a genetic
algorithm to determine the optimal values of the parameters. This method improves
flexibility and the whole process can be executed quickly. Hu et al. [9] extracted geometric
features, shape features, texture features and grey-scale features from defect images and
their corresponding binary images. A classification model was developed by combining
a hybrid chromosome genetic algorithm and a support vector machine (SVM) classifier,
achieving a higher average prediction accuracy than that of the traditional SVM-based
model. Jiang et al. [10] proposed an adaptive classifier with Bayesian kernel. Firstly,
abundant features were introduced to cover detailed information of defects, and then a
series of SVMs were constructed by using the random subspace of features. Finally, an
improved Bayesian classifier was trained by fusing the results of basic SVMs, which has a
strong adaptive capability. Zaghdoudi et al. [11] proposed an efficient system which for
the first time used binary Gabor pattern feature descriptors to extract local texture features,
and experimental results on the NEU defect database demonstrated the effectiveness of the
method. The defect classification scheme based on machine learning has achieved certain
results, which can guide the actual production. However, the expression ability of defect
features extracted by the above method is limited and vulnerable to subjective experience,
which often leads to low classification accuracy. In addition, new detection tasks need to
redesign new algorithms, which is difficult to realize the migration of algorithms.

In the past few years, with the improvement of computing power and the establish-
ment of large-scale datasets, deep learning-based classification methods have shown better
performance compared to traditional recognition methods. Yi et al. [12] proposed an end-to-
end recognition system based on symmetric surround saliency map and deep convolutional
neural network (CNN). The excellent detection performance for seven types of strip steel
surface defects is demonstrated. Fu et al. [13] proposed a compact and effective CNN model
using pre-trained SqueezeNet as the backbone to achieve high accuracy on a diversity-
enhanced steel surface defect dataset containing severe nonuniform illumination, camera
noise and motion blur. Liu et al. [14] proposed a classification method based on deep CNN,
adding an identity mapping to GoogLeNet and using this network to detect defects (such
as scar, burrs, inclusion) with an accuracy of 98.57%. Konovalenko et al. [15] proposed an
automated method based on ResNet50, which allows inspection with specific efficiency and
speed parameters. The overall accuracy on the test set was 96.91%, proving that the residual
neural network has excellent recognition performance and can be used as an effective tool.
Wang et al. [16] proposed a VGG16-ADB network. Using VGG16 as the benchmark model,
reducing system consumption and memory usage by decreasing the depth and width of the
network structure, and adding a batch normalization layer to speed up convergence, which
outperformed other classification models in terms of accuracy and speed. Wan et al. [17]
proposed a complete process based on improved gray-scale projection algorithm, ROI
image enhancement algorithm, and transfer learning. The fast screening, feature extraction,
category balancing, and classification of defect images was achieved, and the recognition
accuracy reached 97.8%. The deep learning-based classification algorithms for strip steel
surface defects has been effective, but there are still shortcomings in the current research.
On the one hand, the performance of deep learning model mainly depends on the size and
quality of training samples [18]. Nevertheless, it is difficult to obtain sufficient number
of defect samples in complex industrial scenes, so expanding the data set has become an
urgent problem to be solved. On the other hand, attention mechanism has been proved to
enable the model to focus on more valuable information, which is conducive to improving
the recognition accuracy [19,20]. However, the current research rarely introduces attention
mechanism into the classification algorithm of strip steel surface defects.

Based on Generative Adversarial Network(GAN) and attention mechanism, accu-
rate classification of strip steel surface defects is realized. Firstly, a novel Wasserstein
GAN(WGAN) model is proposed for data augmentation. Secondly, a Multi-SE-ResNet34
model is proposed and used for defect classification. Comparative experiments verify the
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excellent performance of the proposed model. Finally, the features extracted by the pro-
posed model are visualised, demonstrating robustness and calibration for the identification
of multiple defects. Our methods provide a reference for solving the small sample and
classification problems of strip steel surface defects.

The rest of this paper is structured as follows. The second part introduces related
theories and proposed methods. The third part gives the experimental results. The fourth
part explains the proposed method. The fifth part summarizes the full text.

2. Methodologies
2.1. GAN

The GAN [21] is an unsupervised deep learning model that can learn the distribution
of samples and generate new sample data without relying on prior assumptions. The
typical structure is shown in Figure 1. GAN optimizes generator and discriminator by
alternate iteration. G(z) tries to satisfy the probability distribution of the real sample
x, while discriminator D tries to distinguish between x and G(z). Through continuous
confrontation training, the generator and discriminator finally reach Nash equilibrium.

Data X
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> Dlscr(lg\)mator » True/False?
Noise vector .| Generator | G(2) A |
) ©) : |
| I
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Figure 1. GAN structure.

For the original GAN, Jensen-Shannon (JS) divergence is used to measure the gap
between the generated sample and the real sample. In the process of seeking Nash equi-
librium, model collapse or gradient disappearance will lead to the non-convergence of
the neural network. In WGAN, JS distance is replaced by Wasserstein distance [22]. The
replacement of loss function brings the following advantages: the problem of unstable
GAN training is completely solved, and it is no longer necessary to carefully balance the
training degree of generator and discriminator; the problem of collapse mode is solved
to ensure the diversity of generated samples; the design of network architecture becomes
simple, which is conducive to the combination with CNN to realize image generation. The
Wasserstein distance is defined as:

W(P,P) = inf Ep sl — 1
(Pr, Pg) 56H1(11137’Pg) xa~slllx =yl 1)

where P, and P, represent the data distribution of the real sample and the generated
sample; H(Pr, Pg) represents the set of joint probability distribution J with P, and Pg as the
marginal distribution; W(Pr, Pg) represents the distance of x to y required to fit Py to P;.
The Kantorovich-Rubinstein dual form of W(Pr, Pg) is adopted in the actual calculation, as
shown in Equation (2).

W(Py, Pg) = ufﬁqi 1 Exop [f(x)] = Ex~p,[f (x)] @)

IlfllL < 1 means that f(x) satisfies the 1-Lipschitz condition. WGAN uses weight
clipping to limit the weight of the discriminator network to a fixed range to approximate
the Wasserstein distance. The generator network is optimized to minimize the Wasserstein
distance, thereby effectively narrowing the distribution of generated samples and real
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samples. The loss functions of generator and discriminator are defined as Lossg and Lossp,
respectively, as shown in Equations (3) and (4).

Lossg = —Ex~p,[D()] €)
Lossp = Exp,[D(x)] — Ex~p,[D(x)] @)

2.2. Squeeze-and-Excitation Block

Squeeze-and-excitation block (SE block) [23] is shown in Figure 2. By learning the
weights of the feature maps, effective channels are amplified and invalid or less effective
channels are suppressed, thereby achieving the purpose of improving the accuracy of
the model.
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Figure 2. SE block.

The height, width, and channel number of the input feature map u, are H, W and C,
respectively. Through squeeze and global average pooling algorithm, the output feature
map is transformed from H x W x Cto 1 x 1 x C, as shown in Equation (5).

1 XéE
z¢ = Fog(uc) = WxH Z; Z;uc(l,]) ®)
i=1j=

where Z. represents the output feature map, and (i, j) represents the coordinate position
on the feature map. Through excitation, two fully connected layers W; and W, are utilised
to merge the information of the channels. The dimension of Wy is set to 1 x 1 X % to
reduce the computational effort, where r represents reduction ratio. The dimension of W,
is restored to 1 x 1 x C. Finally, the channel weight v is obtained, as shown in Equation (6).

0= ng(ZC,WZ‘) = (S(WQO'(lec)) (6)

where ¢ is ReLU activation function and ¢ is Sigmoid activation function. The adjustment
parameters between the channels are multiplied by the original feature map to realize the
recalibration, as shown in Equation (7).

X = Fycale (uC/ Uc) = UV (7)

where v, represents the weight parameter of the c th feature map, X, represents the adjusted
feature map.

2.3. Feature Visualization

The features extracted by deep convolutional networks are highly abstract, which is
difficult to visually display the information of interest. With the deepening of research,
Gradient-weighted Class Activation Mapping (Grad-CAM) [24] has gradually become a
powerful visualization tool. Grad-CAM is able to present the features of most interest to
the model in the form of a heat map, which calculates the weights of the features primarily
by employing a global average of the gradients.
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The gradient of the model score for category C is first calculated for a particular
convolutional layer, while for the gradient information obtained by the above process, the
importance weights of the neurons are obtained by averaging the pixel values over each
channel dimension, as shown in Equation (8).

& o aSC

== : ®)
Z‘i ]Zi aA;cj

where Z is the number of pixels in the feature map, S, is the classification score for category
C. c1 X cp represents the dimension of the feature map. A;'( j Tepresents the pixel value of
the k th row and j th column of the i th feature map, and «af is the weight of class C relative
to the 7 th channel of the feature map output by the last convolution layer. The weighted
average is executed and then passed through the ReLU function to obtain the Grad-CAM
feature map. The formula is shown in Equation (9).

L° = ReLU (Z ocfAi> ©9)

where L¢ represents the activated heat map of class C and A’ represents the i th feature map.

2.4. Our Methods
2.4.1. A Novel WGAN Model

A novel WGAN model is proposed and used for data augmentation of strip steel sur-
face defect images, as shown in Figure 3. The implementation of the discriminator is similar
to that of a general CNN [25]. The activation functions between discriminator convolutional
layers all use LeakyReLU. It should be noted that the Sigmoid function is not used in the last
layer. The input of the generator is a 128-dimensional random noise vector conforming to
the standard normal distribution. Between levels, batch normalization is used to accelerate
convergence and slow down overfitting. The tanh function is used to activate the output
layer, and the ReLU function is used to activate the remaining layers. With the transposed
convolution, the number of channels gradually decreases and the dimensions continue to
increase, so that the three-channel pseudo image is finally generated.

Fake image

[Fake ] «—

e

Training set

Figure 3. The proposed WGAN model.

By modifying the dimension of the last layer of the generator to 128 x 128, the
generated image can directly maintain the same size as the original image, which facilitates
subsequent classification research.
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2.4.2. Multi-SE-ResNet34 Model

Based on current experience, increasing the depth of network can improve network
performance. However, the degradation phenomenon that occurs during the back prop-
agation of the error gradient may cause difficulties in network convergence. In the deep
residual network (ResNet) proposed by He et al. [26] in 2015, the addition of identity
mapping solves the problem that deep network models are difficult to train. In the last few
years, ResNet has been widely used in various classification tasks [27-30] with strong capa-
bilities. On this basis, a Multi-SE-ResNet34 model combined with the attention mechanism
is proposed, and the structure is shown in Figure 4.

Conv2_x Conv3_x Conv4_x Conv5_x

v
Max pooling

=3
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Figure 4. The proposed Multi-SE-ResNet34 model.

Multi-SE-ResNet34 is an improvement of ResNet34, which is mainly composed of four
different types of Basic block-SE modules. This module embeds SE block in each residual
unit. From Conv2_x to Conv5_x, there are 3, 4, 6, and 3 Basic block-SEs, and all Basic
block-SEs use a 3 x 3 convolution kernel. As the depth of the model increases, the number
of convolution kernels keeps consistent with ResNet34. Moreover, two additional SE blocks
are added outside the residual structure, which are located after the first convolutional layer
and before the average pooling layer. Due to the attention mechanism, the performance of
the proposed model is better than that of the basic ResNet34, which will give support in
the discussion.

2.4.3. Overall Process

The overall process of our methods is shown in Figure 5. First, the WGAN model is
constructed for data augmentation. The generated image and the original image together
form a new data set. Second, the enhanced data set is divided into training set, validation
set and test set. The function of the test set lies in the evaluation of performance and the
output of classification results.

y

Dataset partitioning

Data augmentation

Y

Source dataset

Output < Perf_o_r mance < Model training
verification

A

Figure 5. Overall flow of the proposed method.
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3. Experiments and Results

The experiment is based on the following hardware and software environment: Win-
dows10 operating system of Microsoft, Intel(R) Core (TM) i7-11800H CPU, NVIDIA GeForce
RTX 3060 Laptop GPU, NVIDIA CUDA-11.1.1 and cuDNN-11.2, Pytorch v1.8.0 deep learn-
ing framework.

3.1. Introduction to the Data Set

The X-SDD data set [31] contains 1360 strip steel surface defect images in 7 categories.
The size of each image is 128 x 128 pixels, and the format is 3-channel JPG. Several samples
of each defect are shown in Figure 6. For the convenience of description, the 7 types of
images are marked with tags of 0, 1, 2, 3, 4, 5, and 6.

Figure 6. Seven kinds of strip steel surface defect image samples in X-SDD data set, including

(0) finishing roll printing; (1) iron sheet ash; (2) oxide scale of plate system; (3) oxide scale of
temperature system; (4) red iron; (5) slag inclusion; (6) surface scratch.

3.2. Image Generation

After training the discriminator five times, the generator is trained once. Both the
generation network and the discriminant network use RMSProp algorithm to update
parameters, including learning rate of 0.00005, clipping parameter of 0.01, batch size of 32,
and epoch of 7000. The strip steel surface defect images generated by the proposed WGAN
model at different stages are shown in Figure 7.

It can be seen that when the number of iterations is 500, the generated image contains
more meaningless information. At this point, the discriminator can easily distinguish
false samples. When the number of iterations reaches 2000, the generator gradually learns
the data distribution of the real image. At this point, the generated image has a rough
outline of the defect. However, a lot of texture information is lost and blurred visually.
After 7000 epochs, the generated image is close to the real image, with clear outline and
distribution of defects. Unlike linear transformations such as rotation and scaling, the
generated image guarantees the diversity of features. The total number of samples increases
from 1360 to 3773 after data augmentation. The specific number of each type of defect is
shown in Table 1.

Table 1. Number of defective images.

Category 0 1 2 3 4 5 6

Original 203 122 63 203 397 238 134
Enhanced 589 517 498 530 595 488 556
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Figure 7. Strip steel surface defect image samples generated by WGAN in different iterations.

3.3. Defect Classification

In the classification experiment, the data set after data augmentation is divided. First,
10% sample is randomly sampled to form a testing set. Then, the remaining images are
divided into training set and validation set with the ratio of 8:2. The number of images in
the training set, validation set, and testing set are 2722, 678 and 373, respectively. The input
image of Multi-SE-ResNet34 is set to a size of 224 x 224 and normalized with batch size of
16. The reduction ratio of SE block is set to 16. Stochastic gradient descent with momentum
is used for parameter update with the momentum factor of 0.9 and initial learning rate of
0.001. The learning rate is reduced to one-tenth of the original after 20 epochs. Moreover,
L2 regularization is used to prevent overfitting, with the weight decay coefficient of 0.0001.
Figure 8 shows the loss and accuracy curves. During the first 10 iterations, the loss drops
rapidly and the accuracy rises. As the learning rate decreases, the model tends to stabilize.
The loss approaches 0 after the iteration is completed.
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Figure 8. Curves of loss and accuracy during training.

In the test set, the classification performance of the model is evaluated. We chose
indicators such as Accuracy, Macro-Precision, Macro-Recall and Macro-F1. The above
indicators are given by Equations (10)—(13).

n_correct

Accuracy = ———— (10)

Macro — Precision = % li % (11)
Macro — Recall = % ﬁ: % (12)
Macro —F; = % li % (13)

where, n_correct is the number of samples correctly classified by the model; n_total is
the total number of samples; TP, FP, TN and FN represent true positive, false positive,
true negative, and false negative, respectively. N is the number of defect types. P and R
represent precision and recall.

The classification results are shown in Table 2. The generated confusion matrix is
shown in Figure 9. The accuracy of Multi-SE-ResNet34 is 99.20%, demonstrating the
robustness of our method for feature recognition of a wide range of strip steel surface
defects. According to the confusion matrix, defects 0, 1, 2, 4, and 5 can be identified 100%.
The accuracy of defect 6 is relatively low, and two images are classified as defect 4. Some of
the defects 4 have a slender distribution, which is similar to that of defects 6, which leads
to an increase in the difficulty of classification. On the whole, our method can accurately
classify 7 kinds of strip steel surface defects.

Table 2. Classification results.

Accuracy (%) Macro-Precision (%) Macro-Recall (%) Macro-F1 (%)
99.20 99.29 99.21 99.24
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Figure 9. Confusion matrix.

3.4. Grad-CAM Visualization

Seven defect images are randomly selected and used to generate visual heat maps
of each layer of Multi-SE-ResNet34, as shown in Figure 10. It can be clearly seen that the
number of layers in the network at the end of Convl is very shallow and the model extracts
few features. As the number of convolutional layers increases, the feature recognition
capability is enhanced, and the features learned by the model becomes rich at the end
of Conv4_x, but still insufficient to cover the whole defect. The model extracts enough
features at the end of Conv5_x, and at the same time, the area of interest is exactly where
the defects are located due to the addition of the attention module. It can be concluded that
our model has excellent recognition performance for all seven strip surface defects features.

Figure 10. Feature visualization heat maps.
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4. Discussions
4.1. The Impact of Sample Size on Classification Results

Classification using Multi-SE-ResNet34 on the source dataset yielded an accuracy of
93.98%. Nevertheless, the accuracy is improved by 5.22% after data augmentation, i.e.,
99.20%, which shows the classification performance is closely related to the number of sam-
ples. Although studies have pointed this out [32,33], there are few complete identification
cases. Therefore, our method generates realistic images and improves recognition accuracy,
providing an effective solution for the small sample size of strip steel surface defect images.

4.2. Comparison with Other Models

In order to further verify the remarkable performance of our method, the classical
models of AlexNet [34], VGG16 [35], ShuffleNet v2 1 x [36], ResNet34 and ResNet50 [26] are
selected for comparison using the enhanced dataset with the same hyperparameters. The
classification results of each model on the test set are shown in Table 3. It can be seen that our
method obtains the highest accuracy rate, which is 6.71%, 4.56%, 1.88%, 0.54% and 1.34%
higher than AlexNet, VGG16, ShuffleNet v2 1x, ResNet34, and ResNet50, respectively. At
the same time, our model is also optimal on three other evaluation indicators.

Table 3. Comparison of different models.

Model Accuracy (%) Macro-Precision (%) Macro-Recall (%) Macro-F1 (%)
AlexNet 92.49 92.82 92.15 92.19
VGG16 94.64 95.06 94.30 94.45
ShuffleNet v2 1x 97.32 97.38 97.26 97.30
ResNet34 98.66 98.68 98.59 98.61
ResNet50 97.86 97.88 97.72 97.77
Our method 99.20 99.29 99.21 99.24

Figure 11 shows the accuracy curves for the training set of each model. It can be
seen that after 10 iterations of training, the accuracy of all models except AlexNet exceeds
90%, with AlexNet having the lowest accuracy due to its shallow network layers. The
accuracy of each model increases over the first 20 epochs, reaching its maximum value and
stabilising after the learning rate is reduced; after the completion of iterations, all models
except AlexNet obtain an accuracy of over 99.41%. In terms of convergence speed, AlexNet
is the slowest, in contrast to ResNet34. The lower convergence speed of ShuffleNet than
VGG16 is attributed to the reduction in the number of parameters due to the lightweight
implementation, where the recognition ability is diminished. Our method achieves a
satisfactory convergence rate, comparable to that of ResNet50, but lower than that of
ResNet34. One possible reason is that the number of parameters increased with the addition
of multiple SE blocks, and fewer iterations are not sufficient to extract enough features.
However, our method has the highest accuracy and achieves a balance between recognition
effectiveness and number of parameters, which can be considered more advantageous.

The loss curves in the validation set of each model are shown in Figure 12. It can be
seen that both AlexNet and VGG16 have large fluctuations and are less stable. The curve
of ShuffleNet is the smoothest. There are several fluctuations in ResNet34 and ResNet50
where stability is compromised. The curve of our method is relatively smooth overall, with
only a few minor fluctuations that do not affect the decreasing course of loss. All models
converge after 20 iterations. At the end of training, the loss of our method is the lowest,
maintaining at 0.029. On the whole, a stable training process, the lowest loss value and the
highest accuracy have been obtained, therefore our method is optimal for the classification
of strip surface defects.
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Figure 11. Comparison of accuracy of each model training set.
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Figure 12. Comparison of loss of each model validation set.

4.3. Influence of Attention Mechanism on Feature Extraction

Heat maps of the strip surface defect features extracted by the last convolutional layer
of each model are generated to explore the influence of attention mechanism on feature
extraction, as shown in Figure 13. It can be seen that AlexNet struggles to extract features
effectively due to its shallow network layers. VGG16 simply stacks convolutional layers,
with no obvious improvement in feature extraction capability compared to AlexNet. The
features extracted by ShuffleNet increased but with a large amount of useless informa-
tion. In particular, despite the relatively deep depth of the ResNet50 network, it failed
to accurately extract features of defect 0 and defect 4. The performance of ResNet34 is
outstanding with an excellent feature extraction capability. Nevertheless, in comparison,
our method not only extracts sufficient features, but also reduces invalid information in
the background and locates feature regions more precisely, which verifies the comparison
results in Section 4.2. In other words, benefiting from the attention mechanism, our method
is more calibrated in terms of feature extraction.
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Figure 13. Visualization of feature extraction in the last convolution layer of each model.

5. Conclusions

1.

N

For the small sample size of strip steel surface defect images, a novel WGAN model is
proposed and used for data augmentation. The generated image has a resolution of
128 x 128 and the appearance is close to the real image, which can be directly used to
expand the original data set.

A Multi-SE-ResNet34 model combining channel attention mechanism is proposed and
used for defect classification with 99.20% accuracy. In addition, Multi-SE-ResNet34
outperforms the other models in terms of Macro-Precision, Macro-Recall and Macro-
F1. The training process of Multi-SE-ResNet34 is stable, and the validation set loss
tends to 0. Furthermore, there is no over-fitting phenomenon.

The Grad-CAM method is used to visually analyze the defect features extracted by
different models, which shows that the attention mechanism can make the model pay
attention to more valuable information and improve the classification accuracy. The
advantages of our method are further demonstrated.

In the future, we have the expectation of combining spatial attention and channel

attention to further improve the recognition rate and realize the lightweight of the network.
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