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Abstract: Corrosion resistance coating is fabricated using epoxy/glass flake (E/GF) composites and
is utilized to prolong the lifespan of cold-rolled steel (CRS) metal substrates. An in situ synthesis
approach was adopted to prepare the composite coating at different levels of synthesis parameters,
including a load of filler and coating thickness. In addition, this work shows the effects of the chemical
functionalization of the filler on the corrosion protection property of the epoxy/functional glass flake
(E/FGF) composite coatings. The effects of the modification of the filler, as well as the other synthesis
parameters, on the corrosion resistance property are evaluated using a potentiodynamic polarization
technique. Here, the corrosion resistance property is evaluated based on the observed current density.
The primary goal of this work is to present an accurate model of corrosion current density (CCD).
By using measured data, a precise model, which simulates the corrosion resistance properties of the
coatings, has been created by an adaptive network-based fuzzy inference system (ANFIS) in terms of
glass flake loading, chemical functionalization, and coating thickness. The obtained results revealed
good agreement between ANFIS-based modelling and the measured dataset. The root mean square
errors of the prediction model were 8.1391 × 10−8 and 0.0104 for training and testing, respectively.
The coefficient of determination (R2) values of the ANFIS output were found to be 1.0 and 0.9997 for
training and testing, respectively. To prove the superiority of the ANFIS-based model of CCD, the
achieved results were compared with an analysis of variance (ANOVA). ANOVA utilizes a linear
regression approach to get the model. Thanks to ANFIS, compared with ANOVA, the values of R2

are increased by 10% and 18.6% for the training and testing phases, respectively. Finally, the accuracy
of the ANFIS model of corrosion current density is validated experimentally.

Keywords: coatings; corrosion; ANFIS modelling; ANOVA

1. Introduction

Metallic corrosion delivers a significant impact on society and industries, as metals
interact with their surroundings and deteriorate. The total mitigation of corrosion might be
challenging. Therefore, researchers have considered different techniques to attenuate the
rate of corrosion reactions. These techniques include, but are limited to, the use of corrosion
resistance coatings and the incorporation of fillers to excel the corrosion resistance property
of the coating. The focus on the synthesis of composite coatings can be attributed to various
reasons, including the possibility of utilizing coatings in a wide range of applications, the
low maintenance cost, and the variety of deposition techniques [1–5]. In particular, epoxy
coating is widely utilized for corrosion protection purposes in a range of applications,
including pipeline, transportation, construction, and water treatment. Moreover, studies
have demonstrated that the corrosion protection property of epoxy composite coatings
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can be excelled by integrating different types of filler, including graphene, ZnCo-carbon
nanotube, and glass flake [6–9]. In particular, the low cost and the advanced barrier
property of glass flake triggers the need to further investigate the possibility of improving
the corrosion protection ability of glass flake composite coatings. This study focused on
examining the chance of boosting corrosion protection of epoxy glass flake composites by
chemical modification of the filler to improve the interaction between the filler and the
hosting polymer. In addition, artificial intelligent tools have been utilized to model and
optimize the performance of the prepared composite coatings.

Artificial intelligence (AI) tools, for example, artificial neural networks, fuzzy, etc.,
have great roles in the development of many engineering systems. One highly recom-
mended technique is fuzzy logic (FL), which still holds a competitive position among
other techniques. An advantage of using FL in the system’s modelling is its ability to
handle data with uncertainty. This uncertainty could happen either due to errors in the
measurement instruments or because the data is superimposed with noise. Another crucial
merit of using FL is the efficiency in modelling complex systems even if it has nonlinearity
in the input–output relationship. The Adaptive Network-based Fuzzy Inference Systems
(ANFISs) are the integration between fuzzy and neural networks [10,11]. ANFIS achieved
a high accuracy in modelling various applications, for example, corrosion protection [12].
Alhumade et al. [12] succeeded in decreasing current density by 7.52% using ANFIS mod-
elling and optimization in comparison with experimental data. They determined the
optimal parameters of a load of graphene, the thickness of the coating, and the mixing time.
Moreover, artificial intelligence has been used to model the pitting risk and corrosion rate
of steel [13]. The lowest mean error is 1.26% for predicting corrosion rate and 5.60% for
pitting risk. Sheikh et al. [14], based on acoustic emission and machine learning, proposed
a methodology to predict corrosion and the severity level.

To the knowledge of the authors, this is the first time that a comparison between
ANOVAs, a traditional method, and ANFIS, an artificial intelligence (AI) modelling ap-
proach, has been used to model the corrosion current density of coatings. Therefore, the
key objective of the current work is to establish an accurate model of corrosion current
density (CCD) based on ANFIS modelling, as an important step to improve the corrosion
mitigation property of E/FGF coatings. By using measured data, the ANFIS-based model
has been designed to model corrosion current density in terms of load of filler, type of filler,
and coating thickness. To confirm the superiority of ANFIS-based modelling of CCD, the
achieved results are compared with an ANOVA.

The rest of the work is arranged as follows: an experimental work explanation is
presented in Section 2. Section 3 describes the suggested approach. The main findings are
examined in Section 4. Lastly, in Section 5, the conclusions are summarized.

2. Experimental Work
2.1. Materials

Cold-rolled steel metal substrate (CRS, McMaster-Carr, Elmhurst, IL, USA) was pol-
ished gradually using 400–6000 grits polishing paper, cleaned with acetone and distilled
water, and dried before being utilized as substrate. Bisphenol A diglycidyl ether (BADGE,
Sigma Aldrich, St. Louis, MO, USA) was utilized as an epoxy resin, while Poly (propylene
glycol) bis (2-aminopropyl ether) (B230, Sigma Aldrich) was utilized as hardener. (3-
Aminopropyl) triethoxysilane (Sigma Aldrich) was utilized for the chemical modification
of glass flake. All materials were used as received except for the filler.

2.2. Synthesis of FGF

GF was added to 10 mL of 1 M ammonium hydroxide solution sitting at 5 ◦C in an
ice bath. The mixer was stirred for 30 min before slowly adding 3 mL of (3-Aminopropyl)
triethoxysilane. The final mixer was stirred in the ice bath for 30 min, followed by stirring
for 12 h at room temperature. The FGF was collected using vacuum filtration and the excess
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(3-Aminopropyl) triethoxysilane was washed away with 40 mL of ethanol. Finally, the
collected FGF particles were neutralized using distilled water.

2.3. Composite Preparation

Composite coatings were prepared by dispersing the various loads of the pristine and
functional filler in the epoxy resin. The mixture was stirred and bath sonicated for 1 h
each before an appropriate amount of hardener was added to the mixture and stirred for
30 min. The composites were spin coated (SC 100, Smart Coater) on cleaned CRS substrates
and cured at 50 ◦C for 4 h. After curing, the thickness of the coating was measured using
scanning electron microscopy (SEM) (Zeiss LEO 1550) with a cross-sectional holder. The
load of the filler is reported as the weight percentage (wt%) of the total weight of the
composite. For instance, the composite coating with 10 wt% glass flake was prepared using
200 mg of glass flake, 0.5 B230, and 1.5 g BADGE.

2.4. Characterization

The IR spectra of GF, FGF, and composite materials were recorded using FTIR (Ten-
sor 27, Bruker, Billerica, MA, USA). The observed FTIR spectra were utilized to confirm the
chemical functionalization of GF, as well as the curing of the composites. In addition, the
curing of the composite materials was examined using XRD (Rigaku, Tokyo, Japan), where
the patterns were recorded from 2θ = 3◦ to 90◦ at scan rate of 0.24◦/min and 0.02◦ step size.

2.5. Polarization Measurements

The corrosion resistance property of the coating was evaluated through polarization
measurements to generate Tafel plots using a VSP-300 workstation (Uniscan instruments
Ltd., Buxton, UK) and EC-Lab software (Bio-Logic, Clay, France). A three-electrode config-
uration corrosion cell was used to conduct electrochemical measurements. Here, the coated
samples were utilized as the working electrode, graphite rods as counter electrodes, and a
silver/silver chloride electrode as a reference electrode in a temperature-controlled 3.5%
NaCl solution as electrolyte. The potential of the working electrode was allowed to stabilize
before the measurement was carried out in triplicate to collect the corrosion current density
(Icorr). Here, measurements were carried out by scanning the working electrode potential at
the range of −0.5 to 0.5 V around the open circuit potential using a scan rate of 0.02 V/min.
The corrosion current densities were extracted by extrapolating the linear portion of the
anodic and the cathodic curves in the Tafel plots using EC-Lab software.

3. Proposed Modelling of Corrosion Current Density

The proposed methodology includes both ANOVA and ANFIS-based modelling. By
using the measured data, ANOVA and ANFIS models, which model the corrosion resistance
properties of the coatings, have been created.

3.1. ANOVA Model of Corrosion Current Density

To create the corrosion current density (CCD) model using an ANOVA, Design Expert
software was used. Table 1 presents the numerical values for the corrosion current density-
based ANOVA model. An ANOVA can be applied for evaluating the relative significance
of several factors in the existence of difficult interactions. It is a powerful method to test
multiple-process variables. ANOVAs create a polynomial model that characterizes and
predicts the data. It ensures no lack of fit due to surface curvature and perfect interac-
tions between independent variables. The following relation can define the second-order
quadratic polynomial model.

Y = B0 +
k

∑
i=1

Bixi +
k

∑
i=1

Biix2
i + ∑ ∑

i<j
Bijxixj (1)
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where Y denotes the predicted output response; B0, Bi, Bii, and Bij denote the regression
coefficients; k denotes the factors numbers; and x are the factors.

Table 1. Synthesis parameters for E/GF and E/FGF composite coatings.

Run A: Load of Filler
(wt%) B: Type of Filler C: Coating Thickness

(+/−5 µm) Icorr (µA/cm2)

1 10 GF 50 0.418
2 10 FGF 50 0.261
3 10 GF 100 0.311
4 10 FGF 100 0.144
5 15 GF 50 0.386
6 15 FGF 50 0.175
7 15 GF 100 0.215
8 15 FGF 100 0.096
9 20 GF 50 0.328
10 20 FGF 50 0.105
11 20 GF 100 0.121
12 20 FGF 100 0.072

3.2. ANFIS Model of Corrosion Protection System

Unlike mathematical equations that describe the relation between the inputs and the
output, fuzzy systems formulate this relationship as IF (antecedent)—THEN (consequence)
rules. Usually, these rules are built either by experts or from the measured data. There
are two methods to obtain the rules from the data: grid partitioning (GP) and subtractive
clustering (SC). The latter is recommended because it creates the minimum number of
rules. Fuzzy rules are classified according to the rule’s form into two types: Mamdani-Type
and Sugeno-Type. In both types, the antecedent represents a logical combination of the
inputs and their fuzzy mapping. On the other hand, the consequence, which represents
the output, is either fuzzy mapping or a function of the inputs. Fortunately, to handle very
complex systems, this function can be linear or non-linear. Examples of the two types of
rules are shown in Equations (2) and (3), respectively

IF a1 is MFA1 AND a2 is MFA2 THEN b is MFB (2)

IF a1 is MFA1 AND a2 is MFA2 THEN b = f (a1, a2) (3)

where MFA1 and MFA2 denote two input membership functions, respectively; MFB denotes
the membership function of the output; and f (a1, a2) is a function of the two inputs.

The choice of the rule’s type is application-dependent. Usually, the Mamdani-type is
recommended in control applications while the Sugeno-type is recommended in modelling
applications.

As soon as each rule produces its output, these outputs are aggregated together to
produce one final fuzzy output. Then, it is defuzzified to produce its corresponding crisp
value. The defuzzification method is selected according to the rule’s type. In the case
of Mamdani-types, the centre of area (COA) is the best nomination, while the weighted
average (Wavg) is recommended in the case of Sugeno-types [15,16]. The setup and
formulation of fuzzy rules are typically made by a specialist. The whole system’s output y
at a certain input sample x can be aggregated by the weighted average Wtaver method as
presented in the following relation.

y(x) =
∑n

i=1 wi.yi(x)
∑n

i=1 wi
(4)

where wi and yi are the weight and output of the rule i, respectively; and n is the number
of rules.
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4. Results and Discussion
4.1. Experimental Results

The FTIR spectra of GF presents absorption bands of silica, such as the peak at 794 cm−1

(Si-O-Si), peaks at 452 and 1048 cm−1 (Si-O), and the moisture peak at 1430 cm−1 [17], as
depicted in Figure 1.

Metals 2022, 12, x FOR PEER REVIEW 5 of 12 
 

 

𝑦(𝑥) = ∑ 𝑤. 𝑦(𝑥)ୀଵ∑ 𝑤ୀଵ  (4)

where 𝑤 and 𝑦 are the weight and output of the rule i, respectively; and n is the num-
ber of rules. 

4. Results and Discussion 
4.1. Experimental Results 

The FTIR spectra of GF presents absorption bands of silica, such as the peak at 794 
cm−1 (Si-O-Si), peaks at 452 and 1048 cm−1 (Si-O), and the moisture peak at 1430 cm−1 [17], 
as depicted in Figure 1. 

  

  

Figure 1. FTIR spectra of GF, FGF, E/GF, and E/FGF. 

The successful synthesis of FGF is confirmed by the appearance of new absorption 
peaks, such as the peak at 1457 cm−1 and the peak at 1100–1126 cm−1, which corresponds 
to the attachment of NH2 to the (3-Aminopropyl) triethoxysilane coupling agent and the 
Si-O-C bond that bridges the NH2 functional group to the GF [18], as depicted in Figure 
1. FTIR was also used to examine E/GF and E/FGF composites. Various characteristic 

500 1000 1500 2000

GF

500 1000 1500 2000

FGF

400 1400 2400 3400 4400

E/GF

400 1400 2400 3400 4400

E/FGF

Figure 1. FTIR spectra of GF, FGF, E/GF, and E/FGF.

The successful synthesis of FGF is confirmed by the appearance of new absorption
peaks, such as the peak at 1457 cm−1 and the peak at 1100–1126 cm−1, which corresponds
to the attachment of NH2 to the (3-Aminopropyl) triethoxysilane coupling agent and the
Si-O-C bond that bridges the NH2 functional group to the GF [18], as depicted in Figure 1.
FTIR was also used to examine E/GF and E/FGF composites. Various characteristic peaks
were identified in the spectra, including the peaks at 1508 cm−1 and 1609 cm−1 (C–C
skeletal stretching), and at 915 cm−1 (epoxide ring). Moreover, the successful curing of the
epoxy can be confirmed by the characteristic peak at 3380 cm−1, which represents -OH
stretching. In addition, the curing of epoxy composites was confirmed using the XRD
technique, where typical diffraction peaks for epoxy composites were observed around
2θ of 10 to 30◦ for all the composites, as depicted in Figure 2, which is ascribed to the
homogeneously amorphous morphology of epoxy.
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The corrosion current densities reported from the polarization measurements were
studied to compare the corrosion mitigation performances of the various coatings, as
reported in Table 1. The results indicate that for the same type of filler, increasing the
load and/or the coating’s thickness will enhance the corrosion resistance property of the
coating. For instance, such influence can be observed as a drop in the corrosion current
density in Sample 3 and 5 in comparison to Sample 1. However, it was interesting to
notice the significant impact of chemical functionalization of the filler on the corrosion
protection property of the coating. For example, the utilization of FGF in Sample 2 clearly
attenuated the corrosion current density reported for Sample 1. Moreover, the reported
results in Table 1 indicate that the functionalization of the filler will deliver further corrosion
mitigation coating than either increasing the load of the GF or the coating’s thickness. This
can be seen by comparing the corrosion current densities for Samples 2 and 9 or Samples 2
and 3, respectively. The positive influence of FGF on the corrosion resistance property can
be attributed to the dispersion of the filler in the composites, which prolong the paths for
corrosive agents to reach the surface of the coated metal.

4.2. ANOVA-Based Modelling Results

Table 2 presents the data for the corrosion current density-based ANOVA model. To
be clear, A, B, and C are used to define the load of filler, type of filler, and coating thickness,
respectively. Considering Table 2, the F-value of 37.79 reinforces the significance of the
model. The p-values less than 0.05 show the model terms are significant. In the case study,
A, B, and C were significant. The next equation can be used to calculate the CCD.

Icorr = 0.6655 − 0.0127A − 0.154333B − 0.002380C (5)

The statistical analysis of the CCD-based ANOVA model is presented in Table 3.
The predicted and Adjusted R2 values were 0.8426 and 0.9094, respectively. The root
mean square error (RMSE) and mean square error (MSE) values were 0.4683 and 0.2193,
respectively. The ratio of adequate signal was 19.31, denoting an adequate signal. Such a
model may be applied to navigate the design space.
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Table 2. ANOVA-based model of corrosion current density.

Source Sum of
Squares df Mean

Square F-Value p-Value

Model 0.1462 3 0.0487 37.79 <0.0001 significant
A (Load of Filler, wt%) 0.0323 1 0.0323 25.02 0.0011

B (Type of Filler) 0.0715 1 0.0715 55.42 <0.0001
C (Coating Thickness, µm) 0.0425 1 0.0425 32.95 0.0004

Residual 0.0103 8 0.0013
Cor Total 0.1565 11

Table 3. The statistical analysis of the CCD-based ANOVA model.

ANOVA Model of CCD

Std. Dev. 0.0359 R2 0.9341

MSE 0.2193 Adjusted R2 0.9094

C.V.% 16.37 Predicted R2 0.8426

RMSE 0.4683 Adeq Precision 19.3102

The predicted versus actual values for the corrosion current density model is shown
in Figure 3. As explained in Figure 3, the actual values are the experimental data, and
the predicted ones are estimated by the ANOVA model. One can note the data are dis-
tributed close to the diagonal. This indicates the correlation between the predicted and the
actual datasets.
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4.3. ANFIS-Based Modelling Results

To enhance the corrosion protection property, three parameters (glass flake loading,
chemical functionalization, and coating thickness) were considered. Twelve experiments
were carried out. The minimum obtained current density was 0.072. Based on these
experimental data, in this paper, an ANFIS-based model was developed. The datasets are
divided into two parts: 70% (training) and 30% (testing).

For the ANFIS-based model, the rule-base list was designed, applying a ‘subtractive
clustering’ approach. The ANFIS model ended up with eight rules. The modelling proce-
dure was conducted using the 12 datasets and trained for 10 epochs. The accuracy of the
ANFIS-based model was evaluated using MSE, RMSE, and R2. The statistical assessment
of the ANFIS model is presented in Table 4.
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Table 4. The statistical assessment of the ANFIS model.

MSE RMSE R2

Training Testing All Training Testing All Training Testing All

6.6244 ×
10−15

1.0848 ×
10−4

3.6161 ×
10−5

8.1391 ×
10−8 0.0104 0.0060 1.000 0.9997 0.9979

The MSEs values were 6.6244 × 10−15, 1.0848 × 10−4, and 3.6161 × 10−5 for train-
ing, testing, and total datasets, respectively. On the other hand, the RMSEs values were
8.1391 × 10−8, 0.0104, and 0.006 for training, testing, and total datasets, respectively. The
R2 values were 1.00, 0.9997, and 0.9979 for training, testing, and total datasets, respectively.
Therefore, throughout the training stage, the R2 increased from 0.9094 when applying an
ANOVA to 1.000 when applying ANFIS (10% increase). Furthermore, throughout the test-
ing stage, the R2 was increased from 0.8426 to 0.9997 (18.6% increase). This reinforces the
model’s precision for tracking the data. Figure 4 demonstrates a comparison between the
ANFIS-based model and experimental datasets. It seems obvious from the graph that the
ANFIS-based model is typical with measured datasets, specifically for the testing datasets,
which indicates that the ANFIS-based model is consistent.
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Figure 5 shows the 3D surface of the ANFIS model. In fact, the plotting of the 3D
surface with contours helps to investigate the relation between the inputs and the output
appropriately. For more illustrations, Figure 5 presents the 3D surfaces for every two-input
combination. The FL membership functions of inputs are presented in Figure 6.
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Modelling precision was also examined to guarantee the performance of the ANFIS-
based model for any different input datasets. To assess the prediction precision, the
predictions of the ANFIS-based model were mapped versus the experimental datasets,
as shown in Figure 7. Figure 7 illustrates that the ANFIS-based model predictions were
distributed over the diagonal line, which is 100% precision.
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4.4. Model Validation

An additional experiment was carried out to validate the model. The glass flake
composites were prepared and evaluated according to the procedure described before.
The composites were prepared using 240 mg of FGF, 0.5 B230, and 1.5 g BADGE, and the
polarization result is depicted in Figure 8. The synthesis variables and the corrosion current
density for the validation run is presented in Table 5. Referring to Table 5, the consistency
of the ANFIS model of corrosion current density was demonstrated. The RMSE value was
0.08, which is an acceptable value.
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Table 5. Model validation results.

Method GF (Glass Flake
Loading, wt%)

CF (Chemical
Functionalization)

TH (Coating
Thickness, µm)

Icorr
(µA/cm2) RMSE

ANFIS model 12 1 75 0.248 0.08
Measured data 12 1 75 0.241 -

5. Conclusions

Modelling the corrosion current density (CCD) as a first stage to improve the corrosion
resistance properties of coatings, by identifying the best synthesis parameters, including
the coating thickness, chemical functionalization, and glass flake loading, was the key
objective of this paper. Using the experimental data, a precise ANFIS-based model was
designed to simulate the corrosion current density. The modelling results reinforced the
model precision for tracking the datasets and proved the superiority of ANFIS. The MSEs
values were 6.6244 × 10−15, 1.0848 × 10−4, and 3.6161 × 10−5 for training, testing, and
total data, respectively. On the other hand, RMSEs values were 8.1391 × 10−8, 0.0104, and
0.006 for training, testing, and total data, respectively. R2 values were 1.00, 0.9997, and
0.9979 for training, testing, and total datasets, respectively. To verify the superiority of the
ANFIS-based model, the results were compared with the ANOVA model. Throughout the
training stage, the R2 increased from 0.9094 when applying the ANOVA to 1.000 when
applying ANFIS (10% increase). Furthermore, during the testing phase, R2 increased from
0.8426 to 0.9997 (18.6% increase). The RMSE values were 8.1391 × 10−8, 0.0104, and 0.006,
for training, testing, and all datasets for ANFIS-based modelling of CCD, respectively.
Conversely, the RMSE value was 0.4683 when applying ANOVA-based modelling. This
confirms the superiority of ANFIS compared with the ANOVA in modelling the corrosion
current density. Finally, the ANFIS model of corrosion current density has been validated
experimentally, and the validation results demonstrated the consistency of the model.

Author Contributions: All authors collaborated and contributed equally to this work. All authors
have read and agreed to the published version of the manuscript.

Funding: This project was funded by the Deanship of Scientific Research (DSR) at King Abdu-
laziz University, Jeddah, Saudi Arabia, under Grant No. (G 423-135-1442). The authors, therefore,
acknowledge the DSR for technical and financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge the support provided by King Abdullah City for
Atomic and Renewable Energy (K.A.CARE) under K.A.CARE-King Abdulaziz University Collab-
oration Program. The authors are also thankful to Deanship of Scientific Research (DSR) at King
Abdulaziz University, Jeddah, Saudi Arabia, for financial support under Grant No. (G 423-135-1442).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Casanova, L.; La Padula, M.; Pedeferri, M.; Diamanti, M.V.; Ormellese, M. An insight into the evolution of corrosion resistant

coatings on titanium during bipolar plasma electrolytic oxidation in sulfuric acid. Electrochim. Acta 2021, 379, 138190. [CrossRef]
2. Al Zoubi, W.; Kim, M.J.; Kim, Y.G.; Ko, Y.G. Dual-functional crosslinked polymer-inorganic materials for robust electrochemical

performance and antibacterial activity. Chem. Eng. J. 2020, 392, 123654. [CrossRef]
3. Cheng, Y.; Matykina, E.; Skeldon, P.; Thompson, G. Characterization of plasma electrolytic oxidation coatings on Zircaloy-4

formed in different electrolytes with AC current regime. Electrochim. Acta 2011, 56, 8467–8476. [CrossRef]
4. Al Zoubi, W.; Kim, M.J.; Kim, Y.G.; Ko, Y.G. Enhanced chemical stability and boosted photoactivity by transition metal doped-

crosslinked polymer-inorganic materials. J. Mol. Liq. 2020, 303, 112700. [CrossRef]
5. Al Zoubi, W.; Allaf, A.W.; Assfour, B.; Ko, Y.G. Toward two-dimensional hybrid organic-inorganic materials based on a I-PE/UHV-

PVD system for exceptional corrosion protection. Appl. Mater. Today 2021, 24, 101142. [CrossRef]

http://doi.org/10.1016/j.electacta.2021.138190
http://doi.org/10.1016/j.cej.2019.123654
http://doi.org/10.1016/j.electacta.2011.07.034
http://doi.org/10.1016/j.molliq.2020.112700
http://doi.org/10.1016/j.apmt.2021.101142


Metals 2022, 12, 392 12 of 12

6. Ying, L.; Wu, Y.; Nie, C.; Wu, C.; Wang, G. Improvement of the Tribological Properties and Corrosion Resistance of Epoxy–PTFE
Composite Coating by Nanoparticle Modification. Coatings 2021, 11, 10. [CrossRef]

7. Ma, L.; Wang, X.; Wang, J.; Zhang, J.; Yin, C.; Fan, L.; Zhang, D. Graphene oxide-cerium oxide hybrids for enhancement of
mechanical properties and corrosion resistance of epoxy coatings. J. Mater. Sci. 2021, 56, 10108–10123. [CrossRef]

8. Alhumade, H.; Nogueira, R.; Yu, A.; Elkamel, A.; Simon, L.; Abdala, A. Role of surface functionalization on corrosion resistance
and thermal stability of epoxy/glass flake composite coating on cold rolled steel. Prog. Org. Coat. 2018, 122, 180–188. [CrossRef]

9. Arora, S.; Sharma, B.; Srivastava, C. ZnCo-carbon nanotube composite coating with enhanced corrosion resistance behavior. Surf.
Coat. Technol. 2020, 398, 126083. [CrossRef]

10. Ehsani, M.; Khonakdar, H.; Ghadami, A. Assessment of morphological, thermal, and viscoelastic properties of epoxy vinyl ester
coating composites: Role of glass flake and mixing method. Prog. Org. Coat. 2012, 76, 238–243. [CrossRef]

11. Suleymani, M.; Bemani, A. Application of ANFIS-PSO algorithm as a novel method for estimation of higher heating value of
biomass. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 288–293. [CrossRef]

12. Alhumade, H.; Rezk, H.; Nassef, A.M.; Al-Dhaifallah, M. Fuzzy Logic Based-Modeling and Parameter Optimization for Improving
the Corrosion Protection of Stainless Steel 304 by Epoxy-Graphene Composite. IEEE Access 2019, 7, 100899–100909. [CrossRef]

13. Chou, J.-S.; Ngo, N.-T.; Chong, W.K. The use of artificial intelligence combiners for modeling steel pitting risk and corrosion rate.
Eng. Appl. Artif. Intell. 2017, 65, 471–483. [CrossRef]

14. Sheikh, M.F.; Kamal, K.; Rafique, F.; Sabir, S.; Zaheer, H.; Khan, K. Corrosion detection and severity level prediction using acoustic
emission and machine learning based approach. Ain Shams Eng. J. 2021, 12, 3891–3903. [CrossRef]

15. Valdez, F.; Vazquez, J.C.; Melin, P.; Castillo, O. Comparative study of the use of fuzzy logic in improving particle swarm
optimization variants for mathematical functions using co-evolution. Appl. Soft Comput. 2017, 52, 1070–1083. [CrossRef]

16. Gaxiola, F.; Melin, P.; Valdez, F.; Castro, J.R.; Castillo, O. Optimization of type-2 fuzzy weights in backpropagation learning for
neural networks using GAs and PSO. Appl. Soft Comput. 2016, 38, 860–871. [CrossRef]

17. Manna, J.; Roy, B.; Sharma, P. Efficient hydrogen generation from sodium borohydride hydrolysis using silica sulfuric acid
catalyst. J. Power Sources 2015, 275, 727–733. [CrossRef]

18. Li, Z.; Wang, R.; Young, R.; Deng, L.; Yang, F.; Hao, L.; Jiao, W.; Liu, W. Control of the functionality of graphene oxide for its
application in epoxy nanocomposites. Polymer 2013, 54, 6437–6446. [CrossRef]

http://doi.org/10.3390/coatings11010010
http://doi.org/10.1007/s10853-021-05932-z
http://doi.org/10.1016/j.porgcoat.2018.01.030
http://doi.org/10.1016/j.surfcoat.2020.126083
http://doi.org/10.1016/j.porgcoat.2012.09.010
http://doi.org/10.1080/15567036.2017.1413453
http://doi.org/10.1109/ACCESS.2019.2930902
http://doi.org/10.1016/j.engappai.2016.09.008
http://doi.org/10.1016/j.asej.2021.03.024
http://doi.org/10.1016/j.asoc.2016.09.024
http://doi.org/10.1016/j.asoc.2015.10.027
http://doi.org/10.1016/j.jpowsour.2014.11.040
http://doi.org/10.1016/j.polymer.2013.09.054

	Introduction 
	Experimental Work 
	Materials 
	Synthesis of FGF 
	Composite Preparation 
	Characterization 
	Polarization Measurements 

	Proposed Modelling of Corrosion Current Density 
	ANOVA Model of Corrosion Current Density 
	ANFIS Model of Corrosion Protection System 

	Results and Discussion 
	Experimental Results 
	ANOVA-Based Modelling Results 
	ANFIS-Based Modelling Results 
	Model Validation 

	Conclusions 
	References

