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Abstract: Corrosion is a major cause of the loss of hermeticity in oil and gas pipelines. Corrosion
defects affect the remaining life of in-service pipelines and can lead to failures, ruptures, hydrocarbon
leakage, product loss, interruptions, environmental damage, economic losses, or, in the worst cases,
fatalities. The existence of localized corrosion defects is a significant issue in pipeline integrity analysis,
mainly because these structures are commonly buried and cover large extensions, amounting to
hundreds or even thousands of miles; thus, it is difficult to size and locate all minor but possibly
deep defects. Consequently, probabilistic and statistical modeling methods have been widely used
to assess the integrity of corroded pipelines. Statistical modeling methods used to estimate the
remaining life of the pipeline have focused on three main aspects: applications to estimate the defect
depths and rates of corrosion, Bayesian applications in pipeline integrity to update the probability
distribution for corrosion defects (depth, length, and spatial distribution), and pipeline reliability
estimations. This paper reviews several methods proposed in the literature for these issues as well
as their applications in real life. In addition, some of the present and future challenges related to
preventing corrosion in the oil and gas pipeline industry are described.

Keywords: corrosion defect; pipeline; oil and gas; probability and statistics; modeling; carbon steel

1. Introduction

A shift in the global energy system is desirable to alleviate the negative impacts of
global climate change, taking advantage of the cost reduction that has occurred in renewable
energies (between 40 and 50%) [1]. This shift could help avoid the deterioration of the
quality of life of millions of people. However, fossil fuels are indispensable for economic
growth in many countries. Some studies have indicated that the oil demand will probably
peak in the second part of the next decade (2030–2040) but will be highly demanded in
developing countries for more time [2]. Therefore, it can be concluded that crude oil, its
derivatives, and natural gas will remain important in the energetic matrix, especially in
emerging countries.

Pipelines are the most lucrative method of transporting gas and liquid hydrocar-
bons [3,4]. Thus, it is important to generate methodologies and technologies that reduce
leaks and ruptures in these structures, keeping them in safe operating conditions. There
is approximately 3.5 million km of oil and gas pipelines worldwide [5,6]. These pipelines
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usually fail because of corrosion deterioration, defects in welding, dents, third-party dam-
age, cracking, and other reasons. The authors of [6] showed that in Canada, the United
Kingdom, Europe, and the United States, a major reason for pipeline failures is corrosion
damage. The European Gas Pipeline Incident Data Group has recognized that the damage
caused by corrosion mechanisms has increased in recent years, from 16.7 to 26.6% [7].
Because most of these leaks could be caused by a localized corrosion mechanism [8], it is of
significance to use all the available techniques to study the impact of localized corrosion
defects in pipeline operations. For instance, in British Columbia, Canada, approximately
1 million cubic meters of natural gas leaked owing to pipeline damage in 2012 [8]. In
addition to the threat that corrosion is for structural integrity, the costs derived from this
have not yet been particularly studied for the pipeline industry worldwide; however, ac-
cording to a report published by NACE in 2016, the estimated global cost of corrosion is
approximately USD 2.5 trillion [9].

Probability and statistics have been a significant tool to study the impact of pipeline
and vessel corrosion since the 1930s [10], and the first study that incorporated the concept
of “corrosion probability” was conducted in 1933 [10]. Two decades later, other important
studies that applied statistical concepts were performed by Romanoff in 1957 [11], applying
the concept of linear regression (the process used by Romanoff [11] is detailed later in
this paper in Section 3), and Aziz in 1956 [12], using probability density functions to
study the pitting corrosion phenomenon on aluminum. A major reason for the use of
probability and statistics is the random nature of the corrosion phenomenon owing to
the lack of homogeneity of the metals, differences in the chemical composition of the
environment, changes in the temperature, variations in the pipeline direction, drop in
pressure, intermittent cathodic protection, and coating disbondment. Usually, in the
petroleum industry, it is necessary to estimate the remaining life of pipelines, and a solution
that apparently sounds logical would be to search previous studies for the corrosion rate of
this material in contact with a specific environment to perform this estimation. However, it
is difficult to extrapolate this bibliographic corrosion rate to a service pipeline because of the
aforementioned reasons and the different corrosion mechanisms that can be undergone [13].
Consequently, it is essential for corrosion specialists and technologists to study in detail the
corrosion probability, which is usually of practical significance.

Several pipeline corrosion studies have been conducted using probability and statistics
as a tool to manage structural integrity, thereby reducing the risk of leaks and ruptures.
In this context, the present review summarizes the most used and recognized statistical
techniques applied in oil and gas pipelines and some exemplifications of these. In addition,
the basics for these statistical techniques are explained in each section with the purpose of
simplifying the information search for future specialists.

To describe some applications of statistics and probability techniques in oil and gas
pipelines that undergo damage from localized corrosion defects, this study is divided into
the following sections:

• Electrochemical background for the statistical modeling of localized corrosion defects.
The details, background, and electrochemical concepts needed to model localized
corrosion defects are explained. Similarly, the chemical and physical factors that
influence the growth of corrosion defects are described. In addition, the applications of
statistics are explained to better understand the electrochemical nature of the localized
corrosion phenomenon.

• Estimation of corrosion defect depths and corrosion rates. Quantification of the
uncertainty of the localized corrosion defect depth and rate assist in the estimation
of the thickness of the wall of the pipeline with accuracy and precision and, thus, the
remaining life of these structures [14–16]. Consequently, in this section, the use of
different statistical techniques as tools for estimation is explained.

• Bayesian applications in pipeline integrity to update the probability distributions of
corrosion defect characteristics (depth, length, and spatial distribution). This statistical
technique can be applied to estimate the depth of the corrosion defect, corrosion
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rate, and the sample size required to estimate the depth of corrosion defect and
other damage caused by different corrosion mechanisms [17–20]. In this section, an
application that used Bayesian inference is detailed.

• Pipeline reliability estimations. Reliability analysis has become a cornerstone in
pipeline integrity management to mitigate the threats provoked by different corro-
sion mechanisms. The reliability of corroded pipelines is usually assessed by prob-
abilistic tools that should consider the unavoidable uncertainties associated with
the sizing of corrosion defects, the pipe manufacturing process that influences the
material mechanical characteristics, pipe dimensioning, and working conditions of
these pipelines [16,21–23]. In this section, several examples of pipeline reliability
estimation are shown to broadcast the scope of probability and statistics in pipeline
integrity management.

• Future challenges for the application of probability and statistics in corroded oil and
gas pipelines. The challenge of the application of probability and statistical techniques
is discussed to motivate their use or at least gradually reduce the risk caused by
corrosion defects in pipelines that transport hydrocarbons.

2. Electrochemical Background for Statistical Modeling of Localized Corrosion Defects

Oil and gas pipelines that are manufactured from low-carbon steel suffer localized
corrosion attacks that can provoke leaks [6,8,24,25]. Usually, this localized corrosion phe-
nomenon is mainly caused by pitting corrosion and coating defects or coating disbandment
in buried pipes [26]. In steels, pitting corrosion occurs when the surface areas of the anodic
and cathodic sites differ [27]. This difference could be caused by differential aeration cells or
dissimilar soils in underground pipelines [28]. The pitting corrosion rates in underground
pipelines were frequently higher than those in other areas. In pitting corrosion, the amount
of metal lost is small because the phenomenon originates from a relatively small area,
causing insidious damage. Cavities caused by pitting corrosion can show different shapes,
as shown in Figure 1 in the studies conducted by Bhandari et al. [29]. However, depth
has a more significant influence on failure pressure pipelines [22]; therefore, estimating
the future corrosion defect depth rate is important to plan future repairs and reduce the
risk in operating pipelines. Pitting corrosion is an electrochemical process that involves
four stages.

The first stage is passive film breakdown [30] (passive film refers to the formation of an
ultrathin film of corrosion products (usually known as rust for iron or carbon steel) on the
surface of the material that works as an obstacle to further oxidation [30]). Agar and Hoar
began to investigate the passive film-breaking theory in the 1940s [31]. Pitting corrosion
occurs when there is a breakdown of the surface films exposed to corrosive environments.
This breakdown can provide sites for pit nucleation; therefore, these breakdown sites are
more vulnerable to cavities. The polarization curve, illustrated in Figure 1, allows the
estimation of the susceptibility of the material to pitting corrosion. In this polarization
curve, the pitting potential (Epit), that is, the potential at which pits could be formed, can be
determined. It is the potential at which the salt of an ion in any solution is in equilibrium
with the metal oxide [32]. A greater Epit for a metal in a specific environment indicates
higher resistance to pitting [33]. Similarly, the repassivation potential (Erp) occurs during
the repetition of a previous passivation process. This electrochemical process is used to
prevent the corrosion of metals by reducing chemical reactivity. Repassivation reiterates
the process of passivation after a period because the protective film has worn away [34].
Figure 1 also illustrates the localization of the repassivation potential in the polarization
curve. In any situation where the potential is located between Epit and Erp, pitting corrosion
can occur [33].
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The second stage is pit initiation. Pit initiation is usually influenced by material defects
that could result from the manufacturing process, such as low quality of raw materials, lack
of control variables, and installation problems. Some factors provoke the initiation of pits,
such as damage to the oxide film, environmental characteristics, or film discontinuities [35].

The third stage is metastable pitting. These pits initiate and grow for a period before
repassivation and dying [36]. Pits that stop growing and repassivate can be recognized as
metastable. Electrochemical studies on localized corrosion processes indicate that dissolu-
tions of MnS inclusions can play an important role in metastable pitting [37]. Metastable
pits, such as the early growth of initiated pits, continue to live to become stable growing
pits [38].

The fourth stage is pit propagation and growth. Pit propagation and growth is the
stage where the growth of some of the initiated pits occurs and their rate of growth can
increase or stabilize [37]. Some conditions must be met for this stage to be achieved; for
example, the pitting potential must exceed the repassivation potential, an aggressive ion
must be present (especially halogen ions), and a notorious breakdown of the protective
film must occur [39].

Conversely, disbonded coating on carbon steel pipelines is another common cause
that provokes localized corrosion. Disbondment is a common failure mode in pipeline
coatings [40]. Disbonding is created by a non-adequate coating process, naturally existing
crevices in a certain coating, differential soil stresses, or an overpotential in a cathodic
protection system. These flaws in coated pipelines are called “holidays” and are responsible
for the appearance of localized corrosion defects. Localized corrosion defects (by pitting or
by coating disbondment) are always influenced by physical heterogeneities of the material
and the environment or by changes in the chemical composition of the environment [33].
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It is well known that passive film breakdown can occur in the presence of active anionic
species. One of these species is chlorides. There is a multitude of corrosion reactions;
however, the main and most common reactions are as follows [41]:

Oxidation: Fe→ Fe+2 + 2e− (1)

Fe2+ → Fe3+ + e− (2)

Reduction: 2H+ + 2e− → H2 (acidic solutions) (3)

O2 + 4H+ + 4e− → 2H2O (4)

O2 + 2H2O + 4e− → 4OH− (neutral or basic solutions) (5)

Many factors influence the kinetics of localized corrosion defect growth. The main
factors are as follows:

• Temperature. The higher the temperature, the higher the corrosion rate because of the
resulting accelerated electrochemical reactions. Nonetheless, under some conditions,
the effect of temperature on protective layer formation is multivariate because with a
significant increase in temperature, protective films are formed faster and reduce the
deterioration [42].

• pH. Frequently, the acidity or basicity of the environment has been recognized as the
variable that exerts more influence on pitting corrosion deterioration [12,43]. Because
the effect of pH on the corrosion rate is not completely understood and depends on
the environment, it is not feasible to conclude that the relationship with the corrosion
rate is always inversely proportional. In some studies, it was observed that the value
of the breakdown film potential (Eb) [44] (in electrochemical techniques, breakdown
potential is the surface potential at which the surface’s passive film breaks down [42])
is almost flat within a large range of pH values [45].

• Chemical composition. Some ions that encourage localized corrosion deterioration,
such as halides (mainly chlorides), can form salts at low pH at the bottom of the
pit [42,46]. However, other ions, such as bicarbonate, carbonate, and sulfate, discour-
age the growth of localized corrosion defects [42,46].

• Fluid velocity. For metals such as steel, there is a critical velocity beyond which
the corrosion rate is high. It is important to remember that when the flow velocity
increases, the protective layers detach from the surface, indicating that the corrosion
rate increases as the velocity increases [42,47,48].

• Biological factors. Microbiologically influenced corrosion has been reported to cause
approximately 40% of all internal corrosion incidents in oil pipelines [49,50]. Sulfate-
reducing bacteria are recognized as the major bacteria that cause corrosion. These
bacteria are anaerobic and can degrade organic compounds to produce sulfides [51].

• Metallurgical factors. Some characteristics of steel can influence the growth of localized
corrosion defects, such as inclusion density, alloy composition, surface finish, grain
size, and grain boundary [29].

• Dissolved gases in the environment. The fluids transmitted by oil and gas pipelines
contain dissolved gases such as carbon dioxide (CO2), oxygen (O2), and hydrogen
sulfide (H2S). Carbon dioxide reacts with water and leads to the formation of carbonic
acid (H2CO3), which decreases the pH of the fluid, making it more aggressive and
deteriorating the metal surface. Nevertheless, carbonic acid dissociates in hydrogen
and bicarbonate ions, and the bicarbonate ion can reduce the corrosion rate. Therefore,
the influence of carbonic acid on the corrosion rate depends on the amount present and
the interaction with other ions and the physical variables involved [42,46]. Oxygen
is also present in the hydrocarbons that are transmitted by pipelines and is also
present in soils surrounding these structures. This means oxygen has an influence
on both external and internal corrosion in pipelines because it increases corrosion
rates [42]. The corrosion rate of local anodes depends on the cathode reaction; therefore,
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depolarization is faster with an increase in oxygen concentration at the cathode [45].
H2S is also found in oil and gas. This gas is approximately 3 times more soluble than
CO2. H2S can also reduce pH, such as CO2, resulting in a higher corrosion rate [41].

Other factors can influence the localized corrosion rate, such as pollutants, fouling,
atmospheric effects, or capacity of an alloy to resist pitting (pitting resistance equiva-
lent); however, these factors can be considered to be dependent on the aforementioned
main variables.

Because a considerable number of variables are involved in the growth of defects
caused by localized corrosion, some of which do not have a clear type of influence, and
because there are several stages in the growth of these defects, it is common to use statistical
and probabilistic techniques to study the phenomenon. As Aziz mentioned in [12], the
randomness of the pitting corrosion phenomenon is because of the factors mentioned above
and other minor factors (microscopic faults of the metal, weak spots in the oxide film,
or ion diffusion in the electrolyte) acting in a random fashion and producing erratic but
predictable results.

The random nature of localized corrosion using electrochemical techniques has been
studied. The pitting potential is usually measured to determine the susceptibility of any
metal to pitting corrosion. If the experiment is performed M times, it is feasible to obtain
a potential pitting distribution with Epit1, Epit2, . . . , Epiti, . . . , Epitm, which allows the
determination of the distribution function of the probability of the pitting potential. For
example, Shibata and Takeyama [52] proposed the use of a multichannel pitting corro-
sion device to measure the pitting potential and induction time (pit initiation time) for
12 specimens at the same time (Figure 2). These authors used stainless steel samples
immersed in NaCl solution to perform the experiments. They observed that the pitting
potential under this condition can be fitted to a normal distribution, and the induction
time histogram has a right-skewed characteristic. Shibata and Takeyama [52], using the
information obtained from this experiment and assuming the pit generation process has
the Markov property, observed that the linear dependence of the pit generation rate on the
potentials suggest that it has more influence on pitting corrosion and the breakdown of
passive film than electrochemical reactions. In contrast, Gabrielli et al. studied the proba-
bility distribution of the induction times with 100 samples [53]. They fitted the observed
data to a lognormal distribution (right-skewed distribution) with excellent accuracy [53].
The prepitting stage can be modeled by a birth and death process [53], using the following
differential equation:

dp(t, n)
dt

= −(λ+ nµ)p(t, n) + (n + 1)µp(t, n + 1) + λp(t, n− 1) (6)

where λ is the birth rate of the pits, µ is the death rate, and n is the number of pits generated
at time t.

Therefore, the use of both statistics and electrochemical techniques helps to better
understand the nature of the corrosion mechanism; however, the direct application of these
in oil and gas pipelines is challenging because the sample is not under control and the
metal structure is in contact with numerous variables added to those already indicated.

In recent decades, newer electrochemical techniques, such as electrochemical impedance
spectroscopy (EIS) or electrochemical noise, have been used to study the different corrosion
mechanisms. However, statistical approaches that consider the information generated from
these studies are missing. This issue could be taken into account for future studies.
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3. Applications of Probabilistic and Statistical Methods to Approximate Localized
Corrosion Defect Depth and Rate in Pipelines

To study localized corrosion using electrochemical techniques, it is necessary to control
the sample size, chemical and physical characteristics of the environment, and potential
supply. This makes it impossible to use electrochemical techniques in steel pipelines, which
are usually buried in different soils. In addition, the pipelines suffer repairs, and some
sections are replaced with new pipes. This alters the homogeneity of pipeline metallurgy.
Accordingly, statistics and probabilistic methods have been used to model and estimate
the localized corrosion defect depth and its corrosion rate. The recognition of the random
nature of the corrosion started in the 1930s; however, detailed studies on corrosion damage
using probabilistic and statistical methods only began after three pioneering studies that
were published in the 1950s. These three studies, which were led by Lewis, Romanoff,
and Aziz [11,12,54], observed that the corrosion rate has a random nature, recognizing
that a considerable number of variables always exist that cannot be controlled or their
control would be uneconomical. Lewis focused on the explanation of the sample size and
estimation of the mean using the normal distribution.

Conversely, in [11], several studies on the corrosion of buried metallic samples are
condensed. Romanoff proposed a model of pit growth using the following power law:

ymax(t) = Atb (7)

where ymax is the depth of the deepest pit at time t and A and b are the parameters to be
determined. Romanoff used the characteristics of the deepest pit in a sample. In studies
on mechanical integrity, it is recognized that the deepest pit is the most dangerous defect
because this tiny defect, which is very difficult to detect, can provoke leaks. From this
power law (Equation (7)) and taking logarithms, it is possible to obtain a straight-line
equation to obtain the values of A and b. After this process, it is possible to plot the power
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law and estimate the maximum pitting depth in the future. Figure 3 shows the behavior of
the power law (Equation (7)) for different soils in the United States, using the information
described in Table 18 in [11]. From Figure 3, it can be observed that parameter A (mils)
works as a scale parameter, and b works as a shape parameter.
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Another classic important study was done by Aziz [12], where he focused on studies
of pitting corrosion phenomena using a probability interpretation because of the lack
of reproducibility in some previous experiments. Aziz observed that the maximum pit
depth can be studied using the statistical theory of extreme values, fitting the histogram
of maximum pit depths generated in an aluminum alloy immersed in tap water to an
asymptotic distribution. Gumbel distribution was chosen because it can represent a skewed
distribution with a long tail, reproducing the maximum histogram of the pit depth. The
Gumbel distribution function (probability density function (PDF)) is represented by the
following mathematical expression:

f (x) =
1
..
σ

e−
y−..

µ
..
σ
−e
− y−..

µ
..
σ (8)

where y is a random variable (in this case, maximum pit depth),
..
µ is the location parameter,

and
..
σ is a scale parameter. Gumbel distribution is a skewed distribution; it is shown in

Figure 4 for different values (the values of location and scale parameter were taken from [55],
where block maxima and peak over threshold approaches to extremes have been applied to
pitting corrosion data from the immersion test for line pipe steel) of

..
µ and

..
σ. The maximum

pit depth exhibits a linear behavior in the logarithm of the exposed area. Thus, it is possible
to extrapolate pitting data obtained from small samples to large-scale installations.
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Figure 4. Histograms generated using Monte Carlo simulations for different values of location and
scale parameters of Gumbel PDF. The parameters values are taken from Table 4 data from [55].

Advances in Regression Models

Parameters A and b from the power-law model used by Romanoff [11] are influenced
by the soil’s physical and chemical characteristics. From this viewpoint, [56] proposed the
relation of these parameters (A and b) to soil properties and determined a practical approach
to estimate the pitting defect depth in buried samples of carbon steels and ferrous metals
obtained by the National Bureau of Standards (NBS). They related parameter A with the
soil’s pH using linear regression analysis and found two mathematical expressions: one for
acidic soils and the other for alkaline soils; these are represented in Equations (9) and (10),
respectively.

Aa = 5.74(9.9− pH) (9)

Ab = 5.05(2pH− 10.3) (10)

Parameter b was related to both the clay content (CL) and moisture content (θ) of
the soil. The linear model that allows the computation of this parameter b is shown in
Equation (11).

b = a1θ + a2CL + a3 (11)

After the study done by Mughabghab and Sullivan [56], it can be inferred that there
is a correlation between the maximum pit depth and soil characteristics. Kajiyama and
Koyama [57] investigated the correlation between soil characteristics and the maximum
pit depth in a buried pipe and the correlation among the same soil characteristics. These
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authors observed a considerable correlation between pH, soil specific gravity, and pipe-to-
soil potential with the maximum pit depth. Kajiyama and Koyama showed that several soil
parameters are worth studying and should be included in a model. In the present century,
and because the corrosion rate of steel and iron pipes depends on the corrosiveness of soils,
Katano et al. [58] proposed using a regression model that includes 20 variables. This model
is not linear and is represented by (12):

ymax(t) = Exp(α0 + ∑p
j=1 αjxj)tb (12)

where α and b are regression coefficients, and the methodology to determine these parame-
ters was developed using the maximum likelihood estimator. It was observed that soil type,
preparation history of the land, soil resistivity, pH, redox potential, and sulfide content
were the variables that significantly influenced the pit growth.

Race et al. [59] proposed another model in which a model to estimate the corrosion
rate in pipelines was developed. This model considers the coating type, coating condition,
coating age, cathodic protection effectiveness (availability and maintenance), soil type,
specific corrosion rate for specific soils, and inspection factor. Race’s model, a scoring
model, is not detailed in this study because it is not a regression model, but it is the first
model that incorporates the two most recognized and used methods to reduce pipeline
corrosion damage: coating and cathodic protection. This scoring model includes the effects
of the tool technology used to inspect the pipeline.

Papavinasam et al. [42] developed a statistical model that is worth analyzing. They
built a model that incorporates pipeline construction parameters (pipe diameter, pipe
wall thickness, and pipe inclination) and 11 operational parameters (production rates of
oil, water, gas, solid, temperature, total pressure, partial pressures of hydrogen sulfide,
carbon dioxide, concentrations of sulfate, bicarbonate, and chloride). Hence, according to
Papavinasam et al. [42], the pitting corrosion rate using the operational parameters of oil
and gas pipelines can be calculated using Equation (13):

{[∑(−0.33θ + 55) + (0.51W + 12.13) + (0.19Wss + 64) + (50 + 25Rsolid)+

(0.57T + 20) + (−0.081Ptot + 88) +
(
−0.54PH2S + 67

)
+
(
−0.013Csul f ate+

57) +
(
−0.63OCO2 + 74

)
+ (−0.014Cbicarbon + 81) + (0.0007Cchloride+

9.2) + CRgen
]

/12}x1/t

(13)

One advantage of this model is that it is applicable to both sweet (corrosion primarily
caused by dissolved CO2 is usually called “sweet” corrosion [60]) and sour conditions
(corrosion caused by the combined presence of dissolved CO2 and hydrogen sulfide (H2S)
or only H2S is referred to as “sour” corrosion [60]) [60]. Papavinasam’s model was validated
using data obtained from seven operating fields, making it highly applicable.

The damage caused by corrosion in pipelines can be subjected to both external and
internal factors, and because of the difference in environments, a particular model should
be used for each. For both external and internal localized corrosion, it is feasible to use
a power law, as shown in Equation (12). In this sense, Velázquez et al. [14,46] used a
nonlinear regression technique with a combinatory methodology to find a model that
can estimate the external corrosion defect depth [14] and the internal corrosion defect
depth [46]. The first step to model the external corrosion in buried pipelines is to establish
which variables need to be included because of soil corrosion. The variables considered
by Velázquez et al. in 2009 [14] to model the corrosion defect growth in buried oil and gas
pipelines are redox potential, pH, pipe-to-soil potential, soil resistivity, water content, soil
density, chloride content, bicarbonate content, sulfate content, and coating type. Coatings
were categorized into five categories according to their type: fusion-bonded epoxy, coal
tar, wrapped polyolefin tape, asphalt enamel, and non-coated or bare pipe. All the data
and information of these variables, including the maximum pit depth, were collected by
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field studies performed previously in oil and gas pipelines located in Mexico (Velázquez
et al. shared all data and information that they used to developed their statistical model
in [61]). The coating categorization and its scores were the same as those proposed by
Race et al. [49]. After defining the variables to study, Velázquez et al. [14] established the
influence of the predictor variables on the parameters of the well-known power-law model
(A and b), expressed as linear combinations of the soil and pipe variables:

ymax(t) = A(t− tsd)
b (14)

ymax(t) = (α0 + ∑p
j=1 αjxj)(t− tsd)

(β0+∑
q
k=1 βkxk) (15)

where xj and xk symbolize the j-th and k-th predictor variables, αj and βk are the regression
coefficients for this predictor, and tsd is the pit initiation time.

Velázquez et al. [14,61] observed different types of soils in the zone where the pipeline
inspections were performed. The most frequent were clay, clay loam, and sandy clay loam.
For each soil category, a regression analysis was performed for each of the 1024 potential
combinations for the distribution of predictor variables between A and b. This process was
also performed for all the soils found. The best model obtained was chosen based on the
highest coefficient of determination (R2). The model has the following parameters:

A = α0 + α1rp + α2 pH + α3re + α4cc + α5bc + α6sc (16)

b = β0 + β1 pp + β2wc + β3bd + β4ct (17)

where rp is the redox potential, pH is the soil pH, re is the resistivity, cc is the chloride
content, bc is the bicarbonate content, sc is the sulfate content, pp is the pipe-to-soil potential,
wc is the water content, bd is the soil bulk density, and ct is the coating type. Parameters αi
and βi are regression parameters, and their values are listed in Table 7 in [14].

In addition to estimating the maximum corrosion defect depth in a buried pipeline,
the model developed by Velázquez et al. [14] can be used to perform a sensitivity analysis.
In this analysis, it was observed that the variables that exert more influence on corrosion
defect growth are pH, pipe-to-soil potential, pipeline coating type, soil bulk density, water
content, and chloride content, in that order. Table 8 of [14] shows the average values for the
parameter of the power law (A and b), and for the sake of illustration, Figure 5 shows the
schematic of the pitting growth rate at typical conditions, showing the aggressiveness of
the clay soils.

The same methodology used to develop a model to estimate the growth of an external
defect in buried pipelines proposed by Velázquez et al. [14] was applied to model the
internal corrosion defect growth in pipelines that transmit produced waters. This is shown
in another study [46] using immersion tests in the laboratory of pipeline steel samples
under a synthetic oilfield-produced water environment. The independent variables in-
cluded modeling of the localized corrosion growth as follows: pH, redox potential (orp),
conductivity (Ω), partial pressure of CO2 (pco), carbonate content (cac), sulfate content
(soc), chloride content (clc), acid acetic content (acc), temperature (T), pit initiation time
(tsd), and immersion time (t). A regression analysis was performed for each of the 512
possible combinations for the distribution of the nine variables that characterized the test.
The best regression model among these 512 analyses was selected based on the highest
value of the coefficient of determination (R2) and is expressed as follows:

ymax(t) = Exp(α0 + α1Ω + α2 pco + α3soc + α4clc + α5acc + α6orp)(t− tsd)
(β0+β1 pH+β2cac+β3T) (18)

where αi and β j are regression parameters that are shown in Table 5 in the study done by
Velazquez and coworkers [46]. A sensitivity analysis was also performed to determine
which variable exerted a greater influence on the internal corrosion defect growth caused
by oilfield-produced water. The variables that exert more influence are pH, temperature,
conductivity, redox potential, and carbonate ion content. For the sake of schematization,
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the internal pitting corrosion growth under the average conditions of the synthetic oilfield-
produced water is shown in Figure 6. Meanwhile, Figure 7 shows an image obtained by
scanning electron microscopy (SEM), where the localized corrosion defect generated after
immersion test of steel coupons in synthetic-produced water can have a diameter of several
hundreds of micrometers. Figure 8 shows an image that exemplifies the damage caused by
localized corrosion defects in a pipeline that transports oilfield-produced water.
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An important characteristic of these two models developed by Velazquez et al. is that
they include the pit initiation time (tsd), which is a value to be determined by regression
analysis. The values of tsd indicated that the pit growth never starts immediately when the
metal is in contact with the corrosive environment; it has an incubation period.
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Using field data from wellheads, C. Ossai [62] proposed linear regression models to
estimate the internal corrosion rate as a function of the operational parameters. The results
for these models are shown in Equation (19a–d):

CR = α11 + β11T + β12PCO2 + β13Vm + β14 pH (19a)

CR = α21 + β21T + β22PCO2 + β23V (19b)

CR = α31 + β31T + β31PCO2 + β32Vm (19c)

CR = α41 + β41T + β42PCO2 (19d)

where CR is the corrosion rate, T is temperature, PCO2 is the partial pressure of CO2, Vm
is the mixed velocity of the fluid flowing through the wellhead, V is the flow velocity of
crude oil, and pH is the pH value, whereas αij and βij are the regression coefficients shown
in Table 5 in Ossai’s study [62]. This study led by Ossai, which was validated with field
data, showed that approximately 26% of wellhead corrosion was provoked by the afore-
mentioned operating parameters. Other variables such as organic acids, microbiological
corrosion, erosion, condensation, and turbulence could be responsible for the rest of the
corrosion damage.

Other applications of regression models in corroded oil and gas pipelines exist; how-
ever, the corrosion rate is only considered as an independent variable. For example, the
regression model developed by K. Zakikhani and coworkers [63], where the corrosion rate
and corrosion mechanism are input variables to estimate the time of pipeline failure, is
quite useful for maintenance management. Al-Fakih et al. [64], performed an example
in which the assessment of mild steel corrosion in 1 M hydrochloric acid used as an in-
hibitor was studied and the corrosion rate was considered an independent variable in the
regression model.

The advantage of regression models is that it is simple for engineers to use this
methodology to estimate the future corrosion defect depths in pipelines. It is not necessary
to have deep mathematical knowledge to understand the application. On the other hand,
the main disadvantage is that it cannot reproduce the random nature of the pitting corrosion
phenomenon despite using a significant amount of data.

The possible future outlook from different viewpoints in regression analysis should
include independent variables such as alloying element content in the steel, pipeline time
commissioning, a more sophisticated method to determine the pit initiation time, and the
slope of the soil on the section of pipe studied.

4. Stochastic and Random Walk Models

A couple of pioneering studies that used the stochastic nature of the localized corrosion
defects in oil and gas pipelines were led by Howard Finley [65,66] using statistics of
extremes in the 1960s. Nevertheless, Provan and Rodriguez III [67] proposed modeling the
pitting corrosion growth as a Markov process two decades later. A stochastic process is
called a Markov process if the present state of the process makes its future independent
of the past. To model using Markov process theory, a metal plate can be divided into N
discrete Markov states. The corrosion defect depth at time (t) is represented by a discrete
random variable D(t) such that P{D(t) = i} = pi(t) with i = 1, 2, . . . , N. Similarly, the
transition probability can be defined as the probability of a transition from state i to j during
the time interval τ to t:

P{Dτ+t(t) = j|Dτ(t) = i} = pij(τ, t) (20)

Provan and Rodriguez in 1989 modeled pitting growth without considering the pit
generation process and proposed an expression for the intensities λi(t) of the process with
no physical meaning. Provan and Rodriguez did not discuss the method used to solve



Metals 2022, 12, 576 15 of 40

the Kolmogorov differential equations (Equation (21)), which is necessary to reproduce
their results.

dpij(t)
dt

=

{
λj−1(t)pi,j−1(t)− λj(t)pi,j(t)

λi(t)pi,i(t)
(21)

where λj = λj(1 + λt)/(1 + λtk).
Subsequently, using Equation (22), it is feasible to determine the probability of remain-

ing in the state.
pi(t) = ∑j

i=1 pij(τ, t)pi(τ) (22)

The model developed by Provan and Rodriguez [67] is based on the following as-
sumptions for the transition scheme:

If the maximum pit depth on a certain area of observation is in state j − 1 at time
(t, t + ∆t), it grows to state j with likelihood λ(j− 1)[(1 + λt)/(1 + λtk)]∆t, where λ and k
depend on the characteristics of the corrosion environment.

The probability of increasing by more than one state in this interval is 0(∆t).
In Part II of the research conducted by Rodriguez and Provan [68], they highlighted the

application of their stochastic model, using the Markov process, to estimate the reliability of
deteriorating structures such as an oil pipeline system (the details of Part II of the research
done by Rodriguez and Provan [68] are provided in the latter part of this study).

Another application of the Markov process theory in oil pipelines was presented by
Hong [69], who used an analytical solution to the system of Kolmogorov’s differential
equations (Equation (21)) for the same homogeneous continuous type of Markov process
and determine the process probability transition matrix to assess the probability of pipeline
failure. Hong modeled the generation of new corrosion defects by a Poisson process and
considered the uncertainty in defect detection by nondestructive inspection tools. Hong
also explored the relationship between the maximum pit depth and load resistance ratio.

Another application of Markov process theory in oil and gas pipelines was proposed
by S.A. Timashev and coworkers [70] in the first decade of the 21st century. They expressed
a new model based on the use of a continuous-time, discrete-state pure birth homogeneous
Markov process to stochastically describe the growth of localized corrosion defects. Tima-
shev’s research aimed to calculate the conditional probability of pipeline failure and to
optimize the maintenance of operating pipelines. In their model, the intensities of the pro-
cess were calculated by iteratively solving the proposed system of Kolmogorov’s forward
equations. Despite the significant contribution of Timashev et al. [70], some limitations
were observed in their proposed model:

The relative complexity of the iterative method applied to estimate the transition
intensities (λi) requires that the pipe wall thickness be divided into a few Markov states.

The use of time-independent transition rates (λi) suggests that their estimated values
represent the average of the time-dependent intensities λi(t) over the selected period. The
time homogeneity condition implies that the elapsed time of corrosion damage in a given
state is exponentially distributed. This also implies that the corrosion growth rate is treated
implicitly as a constant, whereas the corrosion depth is treated as a linear function of the
exposure time. Because of the nonlinearity of the localized corrosion defect process, these
assumptions remain true only if the estimations are made for long exposure times over
relatively short time spans.

Finally, the solution to the Kolmogorov equations applies only to a specific condition
of a pipeline that undergoes repeated in-line inspections with the same technology.

In a more recent study, F. Caleyo and coworkers [71] also modeled the pitting cor-
rosion growth in buried oil and gas pipelines considering a continuous-time and non-
homogeneous linear growth (pure birth) Markov process. For a Markov process defined by
the system of Equation (21), the conditional probability of transition from the m-th to the
n-th state (n ≥ m) in the interval (t0, t), that is, P{D(t) = n|D(t0) = m} = pmn(t0, t), can
be obtained as follows [72]:
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pmn(t0, t) =
(

n− 1
m− 1

)
e−{ρ(t)−ρ(t0)}m

(
1− e−{ρ(t)−ρ(t0)}

)n−m
(23)

where

ρ(t) =
∫ t

0
λ
(
t′
)
dt′ (24)

The identification of the transition probability function can be achieved by correlating
the mean of the stochastic pit depth with the experimentally obtained deterministic mean.
The stochastic mean can be expressed as follows [73]:

M(t) = nieρ(t−ti) (25)

In contrast, the deterministic mean of the maximum pit depth at time t can be repre-
sented by the power-law model and can be written using Equation (14) [14]:

D(t) = A(t− tsd)
b (26)

where tsd is the starting time of pitting corrosion.
Equating Equations (25) and (26), the function ρ(t) can be computed as follows:

ρ(t) = ln(A(t− tsd)
b) (27)

Therefore, the probability parameter ps = e−{ρ(t)−ρ(t0)} described in Equation (23) can
be expressed as follows:

ps =

(
t0 − tsd
t− tsd

)b
(28)

If the transition probability function (Equation (23)) is known, then the distribution of
the pit depth in the future can be estimated using Equation (22).

The observed probability distribution of the pit depth at t0 was used as the initial
corrosion damage distribution, pm(t0). The transition probability function pmn(t0, t), which
is completely identified if the function ρ(t) is known, would be accessible if a predictive
model is available to relate the parameters tsd and m in mathematical expression (28) to
the physical and chemical characteristics of the soil [14,61]. This means that from the
measurements of the in-line inspection and with the characterization of the local soil, it
would be possible to determine the evolution of the pitting corrosion depth. Caleyo and
colleagues illustrated the application of their Markov chain model using information from
in-line inspections, as shown in Figure 9.

Timashev and Bushinskaya [74] described the growth of corrosion defects by Markov
processes of pure birth and pure death type. These authors proposed a solution for the
differential equation systems (21), which can be written as follows:

Pi(t) = ∑i
j=1 µijexp

{
−λjt

}
(1 = 1, . . . , M), (29)

where 

µ11 = p∗1

µij =


µ

i−1,j
λi−1

λi−λj
,i 6=j

p∗i −∑i−1
q=1 µiq, i = j, i ≤ k

−∑i−1
q=1 µiq, i = j, i ≥ k

(30)
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Figure 9. Results of the Markov chain modeling of pitting corrosion evolution from two recurrent
inspections according to the research work led by Caleyo and Velázquez. Modified and turned into
color using information presented in [71].

The unknown intensities λi (i = 2, 3, . . . , M) are computed numerically by sequentially
solving equations

Pi(t1) = pi = ∑i
j=1 µijexp

[
−λj(t1)

]
(31)

where pi =
ni(t1)
N(t1)

, i = 2, . . . , M; ni(t1) is the number of defects whose depths are in the i-th
interval and N(t1) is the total number of defects detected in a pipeline at the initial time
t = t1.

Therefore, the model developed by S.A. Timashev and A.V. Bushinskaya [74] exem-
plified the application of this stochastic model to a pipeline to obtain satisfactory results.
However, the solution of this model is purely based on mathematics and does not consider
the variables involved in pipeline corrosion damage.

H. Wang et al. [75] proposed a novel methodology in which a hidden Markov field
model and clustering methods were applied. This proposal is a statistical model in which it
is assumed that the system to be modeled is a Markov process with unknown parameters.
The purpose is to determine the unknown (or hidden, and hence the name) parameters
of the string from the observable parameters. This methodology covers the conventional
finite mixture model such that the spatial correlation of external corrosion sites can be
considered. The methodology has been proven to classify corrosion defects using soil
properties (resistivity; redox potential; and ionic content such as chloride, bicarbonate,
carbonate, and sulfate) from field studies and location information from in-line inspections.
The categorization performed revealed hidden patterns of corrosion damage in different
segments along an oil pipeline. A stochastic simulation was used to test the proposed
clustering approach. Wang’s methodology was applied to an in-service pipeline to obtain
acceptable results. The clustering analysis helps in showing the pattern of the soil properties
and categorizing the corrosion defects by looking for homogeneous segments from a
heterogeneous random field of soil properties. The incorporation of soil test and in-line
inspection data is evidenced to be a better outline, which can be incorporated into a
clustering-based inspection strategy that can improve maintenance policy.
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Ossai et al. recently conducted a study that applied Markov process theory [76]. They
developed a continuous-time non-homogeneous linear growth pure birth Markov model to
corroded pipelines. The transition probability determined by Ossai et al. (2016) is described
in Equation (32):

pn0,n(t0,t) =
(n− 1)!

(n0 − 1)!(n− n0)!

(
t0 − tsd
t− tsd

)n0
(

t− t0

t− tsd

)n−n0

(32)

where pn0,n(t0,t) is the transition probability of moving from state n0 to n in the time interval
(t0, t). If the initial distribution of the corrosion defect depth is known using Equations (22)
and (33), it is possible to estimate the future distribution of corrosion defect depths.

Ossai et al. generated a vector of random values of internal localized corrosion defect
depths in pipelines, which were obtained using a linear multivariate regression model.
This regression model considered some operational conditions of the fluid transmitted as
independent variables, such as temperature, partial pressure of CO2, flow rate, and pH.
This linear regression model is expressed as follows:

ymax(t) = (β0 + ∑m
i=1 βixi)(ti − tsd) (33)

where ymax(t) is the maximum corrosion defect depth, xi are the operational parameters,
tsd is the initiation time of the corrosion defect, and βi is the coefficient of the operational
variables. The model expressed in Equation (33) considers that the corrosion rate has a
linear behavior over time. A random number of 5000 runs were generated using the real
operation conditions of the in-service pipelines. Using the information obtained from
the simulated pit depth and the Poisson square wave process, Ossai et al. estimated the
pipeline failure time and corrosion defect initiation time tsd. After the simulation and
estimation of the coefficients and initiation time, the transition probability function given
in Equation (32) can be calculated. This Markov predicted model was tested with field data
in both onshore and offshore oil and gas pipelines, and the results agreed. The transition
probability function proposed by Ossai et al. is also a function of the defect initiation time,
similar to the suggestion by Caleyo et al. [71] and described in Equation (23).

Other studies exist that used the Markov process theory to model pitting corrosion;
however, these were performed using immersion tests in the laboratory. For example,
Valor et al. [77] modeled the pitting corrosion, both initiation and growth, by stochastic
theory using data from other authors [67,69,78,79]. The results obtained in this model were
compared with the results of previous studies.

In another study published in 2010, Valor et al. applied the Markov chain model
proposed by Caleyo et al. [71] to estimate the pitting corrosion depths generated in im-
mersion tests on pipeline steel coupons. This means Markov theory is quite useful and
applicable for both laboratory tests and in-service corroded oil and gas pipelines, as well as
for research in materials engineering [80].

Other statistical techniques are used to model the growth of corrosion defects in
pipelines as a random walk. Rafael Amaya-Gómez et al. [81] modeled the growth of
corrosion defects based on a mixed Lévy process. This model combined the gamma and
compound Poisson processes. They divided the corrosion degradation phenomena into
three categories: (a) shock-based process, (b) progressive degradation, and (c) combined
degradation. A shock-based degradation process occurs when discrete amounts of the
system’s capacity are detached at distinct points in time owing to impulsive and inde-
pendent events (e.g., localized corrosion defects). These shocks are expected to randomly
occur over time because of some mechanisms and two stochastic processes which define
them: (a) interval time between shocks and (b) the damage of each shock. A special case of
a shock mechanism is a compound Poisson process, and the interval time is distributed
exponentially. The authors considered the shocks following a Poisson process with a rate λ.
The progressive degradation process results from the ability to be uninterruptedly reduced
at a rate that may change over time. The degradation model selected by Amaya-Gómez
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et al. [81] was the gamma process. A gamma-process-based approach was proposed for
use in degradation problems by van Noortwijk [82], and its application was further ana-
lyzed by S. Kuniewski et al. [83] and by J.C. Velázquez et al. [84]. The gamma process is
stochastic with independent gamma-distributed growth, making it permanently random
and monotonic. The gamma process with shape function ν(t) > 0 and scale parameter
ζ(t) > 0 is a continuous-time stochastic process with the following characteristics:

y (0) = 0 with probability of 1;
y (t) − y (r)∼ga(·|ν(t)− ν(r), ζ );
y (t) exhibits independent increments;

where ga(·|ν, ζ ) is the gamma PDF with shape parameter ν and scale parameter ζ, recalling
that the random variable is the depth of the corrosion defect y. The gamma probability
density function is expressed using Equation (34):

ga(y|ν, ν) =
ζν

Γ(ν)
yα−1exp{−ζy} (34)

where Γ(ν) is the gamma function.
Finally, a combined degradation includes the gamma and compound Poisson pro-

cesses. In addition, some of the main stochastic approaches used to model the degradation
process associated with corrosion are presented. The mixed process used by Amaya-Gómez
et al. is a Lévy process approach.

Amaya-Gómez et al. [81] conducted the first study that used the Gamma process to
model pipeline degradation using a real case, including the maintenance cost, which is
quite useful for the manager of a pipeline company.

In general terms, both stochastic models and random walks models have the advantage
that can reproduce with high confidence the random nature of the localized corrosion defect
growth. In addition, these kinds of models can incorporate the physical and chemical
characteristics of the environment that is in contact with the pipeline. Therefore, it is
feasible to estimate the maximum corrosion defect depths, which are the defects that
threaten the pipeline’s mechanical integrity. A limitation of these models is that specialized
knowledge in stochastic processes and programming skills are necessary for their usage.

The current status and future outlook for stochastic and random walk models are
covered in the present review. However, a key point in pitting corrosion modeling that
is missing is to consider the stochastic nature of the pit starting time, which could bring
great benefits.

5. Other Examples of the Use of Statistics in the Prediction of the Lives of Oil and
Gas Pipelines

Other examples of estimating the life of a pipeline other than the aforementioned
models exist. A recommended book detailing the mathematical principles involved in the
estimations of the remaining life of pipes and vessels is titled Introduction to Life Prediction
of Industrial Plant Materials [85]. This book explains how to handle the corrosion data for
several deterioration mechanisms using extreme statistics starting from statistics theory.
Moreover, to acquire knowledge on the recent applications of statistics in this topic, more
industrial examples, or at least a new discussion of the well-known techniques, previous
studies should be consulted. In this context, some studies are listed below to exemplify
some uses of probability and statistics in the prediction of the life of oil and gas pipelines:

• “Probability Distribution of Pitting Corrosion Depth and Rate in Underground Pipelines:
A Monte Carlo Study” by F. Caleyo et al. [15]. In this study, the probability distri-
butions of the external-corrosion pit depth and pit growth rate were investigated in
buried pipelines in a range of Mexican soils using Monte Carlo simulations. Informa-
tion from previous studies [14,61] and the regression model already discussed were
used to determine the best fit to the pitting depth and rate data for different future
times. The distributions studied were Gumbel, Weibull, Fréchet, and generalized
extreme values [86] (Gumbel, Weibull, and Fréchet distributions are special cases
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from generalized extreme value distribution [86]; the mathematical expression that
represents GEVD is shown in the latter part of this paper). It was observed that the
means, variances, and shape parameters of these distributions differ significantly
between soil types, and they were not completely constant for different exposure times.
These differences developed more substantially as exposure time increased. However,
after long exposure times, the distribution of the corrosion rate achieved a relatively
constant yet slightly decreasing mean and variance. The probabilistic corrosion rate
distributions provided in this study can be used to accurately estimate the reliability
evolution of oil and gas pipelines rather than reclining the conservative average pit
growth rates in existing studies. The predicted probability function that describes the
distribution of the pit depth, computed by Caleyo et al. [15], is as follows:

f (y) f t =
∫ ∞

0
g(v) fii(x− vδ)lastdv (35)

where f (y) f t is the estimated PDF of the depth of the corrosion pit at a later time t + δ,
g(v) is the PDF of the corrosion rate, δ is the time elapsed between two inspections,
and fii(x)last is the function determined in the final inspection.

• “Stochastic Modelling of Corrosion Damage Propagation in Active Sites from Field
Inspection Data” by Alamilla and Sosa [16]. In this study, the PDF of the depths of
corrosion damage of pipeline systems was computed, and four models to calculate
the velocities of corrosion damage at localized defects were proposed. Each of these
models is described as follows:

I. A model that considers the generation of corrosion defects following a Poisson
process was proposed. The corrosion rate is expressed as follows:

f (v)i =
dmi
v2 fXi (t1 − dmiv−1) (36)

where f (v) is the PDF for the corrosion rate, dm is the measurement of the depth
of the corrosion defect, t is the time of inspection, and fX is expressed as follows:

fXi (x) =
n
t1

(
n− 1
i− 1

)(
x
t1

)n−i(
1− x

t1

)i−1
(37)

where n is the number of measurements of depths of corrosion defects.
II. In the second model, it was considered that two inspections were performed in

oil and gas pipelines at different time instants and the defects were identifiable
in both inspection reports. In addition, the generation of corrosion defects was
not considered. The corrosion rate is estimated to have less variability. In this
case, the corrosion rate is represented as follows:

fV(v) =
1
n ∑n

i=1

[
φVi (0)

]1−IVi
[
∆t ϕVi (v∆t)

]IVi (38)

where ϕVi is the normal PDF, with mean µi = d1i − d0i and standard deviation

σi =
(
σ2

ε1
− σ2

ε2

)1/2; σεi
is the standard deviation of the measurements; φVi (0) is

the normal cumulative function of ϕVi (·) at v = 0; ∆t = t1− t0; IVi is the indicator
of the i-th corrosion defect that is equal to 1 if 0 < d < w0 and equal to 0 if d = 0;
and w0 is considered as the initial thickness of the pipe wall.

III. Because the main disadvantage of the second model is the identification of
corrosion defects in two consecutive inspections, a third model considers the PDF
of the depths of corrosion defect of a pipeline system fD(d(t1)) and fD(d(t0)),
related to inspections in t1 and t0, respectively. This third model, proposed by
Alamilla and Sosa, is expressed as follows:
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fV(v) =
1

n0n1
∑n1

i=1 ∑n2
j=1

[
φVij(0)

]1−IVi [∆t ϕVi (v∆t)
]IVi (39)

where n0 and n1 are the number of corrosion defects reported in each inspection.
IV. The fourth model is based on Bayes’ theorem, and it is used to update the

propagation function (corrosion rate function) by including new measurements
from sequential inspections. The updated propagation function is expressed
as follows:

f ′′V(v) ∝ fV(v)

([
φVi (0)

]1−IV

[
∆t

∫ w0

0
fD1(v∆t + x) fD0(x)dx

]IV
)

(40)

where f ′′V is the updated probability function of the corrosion rate.

• “Modelling Steel Corrosion Damage in Soil Environment” by Alamilla et al. [87]. A
model to estimate the propagation of the localized corrosion damage in buried oil and
gas pipelines was developed considering the physical and chemical soil characteristics.
This model offers a satisfactory description of the evolution of corrosion damage and
minimizes most of the inconveniences of the power law used (Equation (7)). The
variability of the depths of corrosion defects was satisfactorily represented by the
Gumbel PDF. The depth of the corrosion defect can be estimated as follows:

y(t) = vpt +
v0 − vp

q0
[1− exp(−q0t)] (41)

where v0 = v(0), q0 is a constant to be determined, and vp can be determined
as follows:

vp = C0exp[−(q1 pH + q2re + q3rp + q4 pp] (42)

where C0 is the scale factor and qi are constants related to the soil characteristics. To
calibrate this model, Alamilla et al. [87] used a Mexican database, a National Bureau
of Standards database, and the New York database.

• “Stochastic Process Corrosion Growth Models for Pipeline Reliability” by Felipe
Alexander Vargas Bazán and André Teófilo Beck [88]. A nonlinear model was pro-
posed, in which the corrosion rate was studied as a Poisson square wave process.
Instead of proposing a parameterized stochastic process by considering the parame-
ters of the power-law equation as random variables, the proportionality factor of the
power-law function (Equation (7)) is exhibited as a Poisson square wave process. This
tolerates temporal uncertainty in the growth of corrosion defect to be characterized
but continues to grow. The authors defined four models for the growth of corrosion
defects. The models are listed in Table 1.
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Table 1. Characteristics of the four models used by Bazán and Beck [88].

Model Characteristic Distributions Used Description

Linear random variable • Growth rate • Gamma

It is a simple representation of the corrosion defect rate (v) as a random
variable. It can be estimated as follows:

y(t) = y0 + v∆t (43)

where y(t) is the defect depth to be estimated, y0 is a previous defect depth,
v is the corrosion rate, and ∆t is the interval

Linear stochastic process
• Growth rate pulse heights
• Growth rate pulse durations

• Gamma
• Exponential

The authors proposed modeling the growth rate of the corrosion defect as a
Poisson square wave process with stationary and independent increments
(pulse heights). The pulse height (Yi) and time durations (tbi = ti+1 − ti)
are both characterized as random variables. The pulse durations are
described as an exponential random variable with parameter λ.
Conversely, pulse heights are represented using a gamma distribution. The
following equation describes this process:

y(ti+1) = y(ti) + Yi(ti+1 − ti) (44)

for i = 1, 2, . . . , n.

Nonlinear random variable
• Proportionality factor
• Exponent factor

• Gamma
• Lognormal

In this case, the authors used the power-law model proposed by Velázquez
et al. [14] and Caleyo et al. [15] (Equation (14)). Bazán and Beck modeled
considering both the proportional and exponential factors as random
variables, considering the initiation time of 2.88 years. The proportionality
factor is supposed to follow a gamma distribution. The exponent is
supposed to follow a lognormal distribution.
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Table 1. Cont.

Model Characteristic Distributions Used Description

Nonlinear stochastic process

• Proportionality factor pulse heights
• Proportionality factor pulse durations
• Exponential factor

• Gamma
• Exponential
• Lognormal

This model emerges as a combination of the nonlinear random variable
model and the linear stochastic process model. The proportional factor of
the power law (see Equation (14)) is represented by a Poisson square wave
process, with pulse height Yi and durations tbi. Both exponential and
gamma distributions are used to represent the arrival and new pulses and
pulse intensities, respectively. Similarly, the lognormal distribution is used
to represent the exponential factor of the power law. The increment in the
size of corrosion defect is given as follows:

y(ti+1) = y(ti) + Yi

[
(ti+1 − t0)

b − (ti − t0)
b
]

(45)

for i = 1, 2, . . . , n.
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The nonlinear stochastic process model provided the best result after applying these
four models to an in-service pipeline.

• “The Negative Binomial Distribution as a Model for External Corrosion Defect Counts
in Buried Pipelines” by Valor et al. [89]. In this study, the statistical analysis of real
corrosion information from 50 buried oil and gas pipelines operating in Mexico led
to the conclusion that the negative binomial (NB) distribution provides a correct
description of corrosion defect counts, and the authors discussed the origin of this
distribution for this phenomenon. Therefore, the corrosion defect count or corrosion
defect density is a random variable that is independent and identically distributed,
considering the number of corrosion defects per unit area. The causes determining
NB as the distribution for defect counts are associated with three processes: gamma–
Poisson mixture, compound Poisson process, and Roger’s process. Unlike other
studies, where the number of corrosion defects is modeled as a Poisson process, the
defects are randomly distributed and do not interact with each other, and the NB
distribution allows representation of cluster corrosion defects that are more realistic
in buried pipelines because of the heterogeneous conditions of the soil. Here, the NB
distribution NB(µ, κ) is given as follows:

PNB(x) =
Γ(κ+ x)
x!Γ(k)

(
1 +

µ

κ

)x
(

µ

µ+ κ

)n
(46)

where Γ(·) is the gamma function and µ and κ are the location and shape parameters,
respectively. Another parameterization of NB takes the following form:

PNB(x) =
Γ(n + x)
x!Γ(n)

(1− p)x pn (47)

where n = κ and p = κ/(κ+ µ).

After the statistical analysis of 50 buried oil and gas pipelines, it was shown that
the Poisson distribution should be rejected as a correct model to represent the external
corrosion defect count because the defects appear in clustered patterns. Valor et al. [89]
also demonstrated that the gamma–Poisson process leads to an NB distribution that offers
a good fit to the vertical defect count data. It was confirmed that the compound Poisson
process is also a source of NB distribution. This occurs because the number of external
defects in clusters of fixed lengths that are randomly distributed on the pipeline follows
a logarithmic series distribution, whereas the spaces between clusters are represented
by an exponential distribution. According to Valor et al. [89], it is feasible to postulate
that Roger’s clustered process is responsible for the observed NB distribution of external
corrosion defect counts. Roger’s process could explain that the birth of a new pit increases
the likelihood that new pits originate in the surrounding area, leading to the creation of
new clusters.

Once the characteristics of localized corrosion observed data have been fitted to theo-
retical probability density functions, it is feasible to estimate future corrosion defect depths
(Caleyo et al. [15,16]), predict the actual corrosion defect counts (Valor et al. [89]), or com-
pare the different corrosion rate models (Bazán and Beck [88]). With this theoretical function
already fitted, one can simplify the analysis besides estimating the future characteristics of
the corrosion defects in a pipeline.

6. Pipeline Reliability Estimations

Practically, all pipeline reliability estimations for corroded pipelines consider as a
major assumption the randomness of load and resistance parameters established by the
limit state function (LSF) [22,90]:

z = p f − pop (48)
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where z is positive for safe corrosion defects (p f > pop) and negative for unsafe defects, p f
is the pipeline failure pressure, and pop is the working pressure. The LSF depends on the
same variables as p f . Thus, a complete form of the LSF can be defined by the following
expression [22]:

z1

(
p f , t

)
= p f (DD, th, YS or UTS, y(t), l(t))− pop (49)

where D is the pipeline diameter, th is the pipe wall thickness, YS is the material yield
strength, UTS is the ultimate tensile strength, y is the depth of the corrosion effect, and l is
the length of the corrosion defect. Because of the corrosion defects, characteristics evolve
over time; therefore, these two variables are, in turn, a function of time.

A second limit state function can be defined as the difference between 80% of the
thickness of the pipe wall (maximum allowable value) and the depth of corrosion defect.
This is represented as follows [22]:

z2(y, t) = 0.8th− y(t) (50)

For localized corrosion defects that are presented in a pipeline, Equation (49) gives the
limit state function for a local burst failure; meanwhile, Equation (50) indicates the limit
state function for perforation. The composite failure probability (total probability of failure)
can be estimated using Equation (51) [22,91]:

zT(t) = z1(p f , t) + z2(y, t)− z1(p f , t)z2(y, t) (51)

For an oil and gas pipeline with n independent corrosion defects, the probability of
pipeline failure can be computed as follows [22]:

PFpipe = 1− (1− zT1(t))(1− zT2(t)) . . . (1− zTn(t)) (52)

One methodology to estimate the probability of pipeline failure is the Monte Carlo
method. Therefore, using a simulation method (i.e., the inverse CDF method [92], which
consists in finding a random number from the inverse of a cumulative distribution func-
tion [92]: Y = F−1

π (u)), it is feasible to find a random number for each independent variable
involved in Equations (50) and (51) and compute these two limit state functions. Other
pioneering work in estimating pipeline reliability using the Monte Carlo method was
performed by Caleyo et al. [22], where the results obtained by this method were compared
with the outcomes found by the first-order second-moment (FOSM) method and first-order
method (FOM). These three algorithms (Monte Carlo, FOSM, and FOM) produced similar
results. Caleyo et al. [22] assessed the effect of different pressure models (e.g., B31G, modi-
fied B31G, Shell-92, DNV-92, and Batelle), and observed that for long periods, the Shell-92
and B31G models presented the highest and the lowest failure probabilities, respectively.

The Monte Carlo algorithm was also used by Valor et al. in 2013 to estimate the
reliability evolution in an underground pipeline. Reliability evolution is needed because
corrosion defects grow and consequently change their dimensions. Valor et al. [93] com-
pared different distributions of corrosion rates derived from various corrosion growth
models and their influence on reliability estimations. The distributions used are based
on the NACE-recommended corrosion rate, corrosion rate derived from the linear cor-
rosion rate model, time-dependent and time-independent corrosion rates, and corrosion
rate derived from the Markov chain model discussed in the present review and detailed
in [71]. The details of the distribution of each corrosion rate used are described as follows
to estimate the depth of corrosion defects from previous in-line inspection information:

• Single-value corrosion rate. Valor et al. used the NACE-recommended value for the
corrosion rate in pipelines, which is 0.4 mm/year [94]. This value of corrosion rate
was used for each defect found in the in-line inspection to obtain future pit depths.
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• Linear rate model. It is assumed that each depth of corrosion defect evolves at the
same rate at any moment. The corrosion rate of the corrosion defects can be calculated
using the following equation:

.
y(t) =

y(t1)

t1
(53)

where y(t1) is the depth of corrosion defect measured at the first inspection and t1
is the full life until the first inspection. To use this value, the initial defect depth
y(tini) is influenced by the corrosion rate expressed by Equation (53) and the time
elapsed between the two inspections. The obtained defect depth was represented by a
histogram to yield a PDF.

• Time-dependent generalized extreme value distribution (GEVD) model. This model
uses a time-varying corrosion rate distribution proposed by Caleyo et al. [15], which
was also discussed in the present study. Caleyo et al. showed that the localized
corrosion growth rate in underground pipelines could be represented by a GEVD [86]:

G(ν) = exp
{
−
[

1 + ζ

(
ν− .

µ
.
σ

)]}
(54)

where ζ,
.
µ, and

.
σ are the shape, scale, and location parameters, respectively. The

values of these parameters change over time.
• Time-independent GEVD model. This is similar to the preceding model, excluding the

fact that the GEVD parameters of the GEV distribution are assumed as constants and
equal to the parameters at the time of the previous inspection.

For the time-dependent and time-independent GEVD models, the convolution math-
ematical expression represented by Equation (35) was used to estimate the depths of
future defects.

Markov model. This model was also described in a previous section of this paper and
was developed by Caleyo et al. [71]. To use this Markov model, only the distribution of the
initial depth of the pit and soil characteristics must be known. The soil characteristics are
necessary because the parameter b from Equation (26) needs to be determined (parameter b
is the exponent shown in Equation (14) and is a function of some soil characteristics accord-
ing to J.C. Velázquez et al. [14]). These soil characteristics are the pipe-to-soil potential, soil
water content, soil bulk density, and pipeline coating type. From Equations (14) and (23), it
was feasible to obtain another equation to determine the distribution of the corrosion rate:

f (b; t0, t) = ∑N
m=1 pm(t0)

(
m + b(t− t0)− 1

b(t− t0)

)(
t0 − tsd
t− tsd

)bm
[

1−
(

t0 − tsd
t− tsd

)b
]b(t−t0)

(t− t0) (55)

where N is the total of Markov states and t0 corresponds to the time at which pm(t0) is
observed or the time of the initial inspection.

Valor et al. [93] used information provided for an in-line inspection performed in 1996
in a service pipeline. The defect depths found in this inspection were influenced by each
aforementioned model, and the results were compared with a second inspection performed
10 years later. The results obtained after applying these five models are shown in Figure 10.

Because reliability estimations evolve, Valor et al. [93] estimated the reliability of the
pipeline using a PCORR model and the same methodology proposed by Caleyo et al. [22]
using the Monte Carlo algorithm.

The annual probability of failure is estimated as follows:

PoFann
i
(
tj, tj+1

)
=

PoFann
i
(
tj+1

)
− PoFann

i
(
tj
)

1− PoFann
i
(
tj
) (56)

where tj represents the specific year under analysis.
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Figure 10. Exemplification of corrosion defect depth distributions obtained by five theoretical mod-
els and their comparison with empirical data obtained by ILI. This figure was modified (histogram 
bin width and colors in lines and bins were changed) using data from research conducted by Valor 
and coworkers reprinted with permission from ref. [93]. Copyright 2022 Elsevier. 
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Figure 10. Exemplification of corrosion defect depth distributions obtained by five theoretical models
and their comparison with empirical data obtained by ILI. This figure was modified (histogram bin
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If the corrosion defects are considered to be independent, the upper bound of the
annual probability of failure for the entire pipeline can be estimated using the following
expression:

PoF
(
tj, tj+1

)
= 1−∏

i

[
1− PoFann

i
(
tj, tj+1

)]
(57)

In addition, the pipeline’s annual failure index
.
λ at the end of the j-th year can be

computed as follows:
.
λ
(
tj, tj+1

)
=

∑
Nde f
i=1 PoFann

i
(
tj, tj+1

)
lpipe

(58)

where lpipe is the length of the pipeline (km). Hence,
.
λ has units of failure per kilometer per

year. Valor et al. [93] estimated the evolution of the failure index for the studied pipeline.
They found that the time-independent GEVD model generated the most conservative an-
nual failure index. Conversely, the single-value corrosion rate estimated a less conservative
annual failure index. The annual failure index obtained for all models studied by Valor
et al. is shown in Figure 11.

Valor et al. [93] concluded that the Markov model proved to be the best choice among
the five models selected to estimate the evolution of pipeline reliability.

In addition, Caleyo et al. conducted a study that used the Monte Carlo algorithm,
titled “On the Estimation of the Probability of Failure of Single Corrosion Defects in Oil and
Gas Pipelines” [95], where they used the data on real-scale burst tests published by Pipeline
Research Council International to estimate the probability of failure of pipe sections. All
these pipe sections failed during the test, meaning the probability of failure associated with
each defect should be sufficiently large or close to 1. Nevertheless, there are several cases in
which the probability of failure is too small to be considered a risk. Therefore, the authors
recommend interpreting the estimation of the probability of failure with extreme caution
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because they observed the probability of failure values to be exceptionally low, especially
in failure models that employed UTS as an independent variable.

Metals 2022, 11, x FOR PEER REVIEW 28 of 39 
 

 

𝜆ሶ൫𝑡, 𝑡ାଵ൯ = ∑ ிೌ ൫௧ೕ,௧ೕశభ൯ಿసభ    (58)

where 𝑙 is the length of the pipeline (km). Hence, 𝜆ሶ has units of failure per kilometer 
per year. Valor et al. [93] estimated the evolution of the failure index for the studied pipe-
line. They found that the time-independent GEVD model generated the most conservative 
annual failure index. Conversely, the single-value corrosion rate estimated a less con-
servative annual failure index. The annual failure index obtained for all models studied 
by Valor et al. is shown in Figure 11. 

 
Figure 11. Evolution of the failure index in the pipeline studied and inspected by ILI and the pre-
diction using five corrosion models. This figure was modified (color in lines was changed) using 
data from research conducted by Valor and coworkers reprinted with permission from ref. [93] Cop-
yright 2022 Elsevier. 

Valor et al. [93] concluded that the Markov model proved to be the best choice among 
the five models selected to estimate the evolution of pipeline reliability. 

In addition, Caleyo et al. conducted a study that used the Monte Carlo algorithm, 
titled “On the Estimation of the Probability of Failure of Single Corrosion Defects in Oil 
and Gas Pipelines” [95], where they used the data on real-scale burst tests published by 
Pipeline Research Council International to estimate the probability of failure of pipe sec-
tions. All these pipe sections failed during the test, meaning the probability of failure as-
sociated with each defect should be sufficiently large or close to 1. Nevertheless, there are 
several cases in which the probability of failure is too small to be considered a risk. There-
fore, the authors recommend interpreting the estimation of the probability of failure with 
extreme caution because they observed the probability of failure values to be exception-
ally low, especially in failure models that employed UTS as an independent variable. 

Recently, González-Arevalo et al. [23] aged pipeline steel using an artificial method 
to determine the changes in the mechanical properties of pipeline steel. Subsequently, 
they estimated the failure pressure of the pipeline for pipe sections by considering the 
changes in the mechanical properties owing to material aging. They observed that the 
changes in the probability of pipeline failure estimation could be considerable because of 
the changes in steel aging. Figure 12 illustrates these changes for a pipe section with a 
single defect for different models for estimating the probability of pipeline failure. The 

14 16 18 20 22 24 26 28 30
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Fa
ilu

re
 in

de
x

Time (years)

 Single value NACE
 Linear growth
 Markov
 TD-GEVD
 TI-GEVD

Figure 11. Evolution of the failure index in the pipeline studied and inspected by ILI and the
prediction using five corrosion models. This figure was modified (color in lines was changed) using
data from research conducted by Valor and coworkers reprinted with permission from ref. [93]
Copyright 2022 Elsevier.

Recently, González-Arevalo et al. [23] aged pipeline steel using an artificial method
to determine the changes in the mechanical properties of pipeline steel. Subsequently,
they estimated the failure pressure of the pipeline for pipe sections by considering the
changes in the mechanical properties owing to material aging. They observed that the
changes in the probability of pipeline failure estimation could be considerable because of
the changes in steel aging. Figure 12 illustrates these changes for a pipe section with a
single defect for different models for estimating the probability of pipeline failure. The
models for estimating pipeline failure pressure used by González-Arevalo et al. [23] are
presented in Table 2. Other studies discussed in this paper also include some of these
models to be performed [22,93,95].

Monte Carlo simulation outperforms other methods in estimating the pipeline prob-
ability of failure in that it is a technique of greater mathematical simplicity, it takes into
account the randomness of each independent variable involved, and it is relatively easy to
update the calculation algorithm if necessary. Likewise, it can be complemented with other
methods such as the convolution of random variables, obtaining satisfactory results from a
reliability engineering point of view.
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Table 2. Pipeline failure pressure models.

Model and References Authors Expression Bulging Factor

ASME B31G-1984 [96] ASME

If L2

DDth ≤ 20,

Pb = 1.11 2thσy
DD

(
1− 2y

3th

1− 2y
3tM

)
If L2

DDth > 20,

Pb = 1.11 2thσy
DD

(
1− y

th
1− y

thM

) M =

√
1 + 0.6275 L2

DDt − 0.003375
(

L2

DDth

)2

ASME B31G-1991 [97] ASME

If L2

DDth ≤ 20,

Pb = 1.11 2thσy
DD

(
1− 2y

3th

1− 2y
3thM

)
If L2

DDth > 20,

Pb = 1.11 2tσy
DD
(
1− y

th
) M =

√
1 +

(
0.8 L2

DDth

)

ASME B31G-2009 [98,99] ASME Pb = 1.11 2σyth
DD

(
1−0.85 y

th
1−0.85 y

thM

) If L2

Dt ≤ 50,

M =
√

1 + 0.6275 L2

DDth − 0.003375 L4

DD2th2

If L2

Dt > 50
M = 3.3 + 0.032 L2

DDth

Modified ASME B31G [100]
ASME

J.F. Kiefner
P.H. Vieth

Pb =
2(σy+68.95 MPa)th

DD

(
1−0.85 y

th
1−0.85 y

thM

) If L2

Dth ≤ 50,

M =
√

1 + 0.6275 L2

DDth − 0.003375 L4

DD2th2

If L2

Dth > 50

M = 3.3 + 0.032 L2

Dth

Shell-92 [101]

Shell
F.J. Klever
G. Steward

C.A.C. van der Valk
Pb = 1.8tσu

DD

(
1− y

th
1− y

tM

)
M =

√
1 + 0.805 L2

DDth
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Table 2. Cont.

Model and References Authors Expression Bulging Factor

PCORR [102,103]
Batelle

B.N. Leis
D.R. Stephens

Pb = 2tσu
DD
(
1− y

th M
)

M = 1− exp
(
−0.157 L√

DD(th−y)/2

)
DNV RP F101 [104] Det Norske Veritas (Norway)

BG Technology (Canada) Pb = 2tσu
DD−t

(
1− y

th
1− y

tM

)
M =

√
1 + 0.31 L2

DDth

API RP 579 [105] API Pb = 2tσu
0.9DD

(
1− y

th
1− y

tM

)
M =

√
1 + 0.31 L2

DDth

FITNET FFS [106]
European Fitness for Service

Network
E. Seib et al.

Pb = 2thσu(1/2)65/σy

DD−t

(
1− y

th
1− y

tM

)
M =

√
1 + 0.8 L2

DDth

For the expressions shown in Table 2, the variables involved are burst pressure (Pb), pipe wall thickness (th), pipe diameter (DD), corrosion defect depth (y), corrosion defect length (L),
steel UTS (σu), and steel yield strength (σy).
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7. Bayesian Data Analysis in Corroded Oil and Gas Pipelines

In oil and gas pipelines, all information on the inspection is not available, especially if
the pipelines are non-piggables [107] (a non-piggable pipeline is a pipeline or section of
pipeline in which it is not possible to send a pig device to perform an in-line inspection;
a pipeline may be non-piggable because of extreme bends or changes in diameter [107]).
In such pipelines, statistical techniques are of paramount importance because they allow
estimation of the reliability and the remaining life with a certain confidence level. Bayesian
data analysis (BDA) allows the computation of the probability of any particular value
for a model parameter, addressing issues that could only be studied indirectly using the
traditional statistical approach through the practice of random variable statistics. BDA
handles situations where incomplete information is available, providing a liable and desired
extension of the real information for extensive use. Therefore, this section explains the
application of BDA to non-piggable pipeline systems in Mexico. The results of this study are
presented in two papers [17,18], and the results are summarized to illustrate its application
in oil and gas pipelines. First, Valor et al. led an extensive field survey in gathering
pipeline systems [18]. This first part of the work helped in determining true values for
the density of corrosion defects and for the sizing of the corrosion defects (length and
depth). Similarly, the development of a statistical analysis of the characteristics of the
studied pipeline was feasible (pipe diameter, pipeline length, and thickness of the pipe
wall). Information on the depth and length of the corrosion defect was fitted to a GEVD
(Equation (54)). The histograms of the measured depth and length of corrosion defect
are shown in Figure 3a,b in [18]. The results of the use of the Kolmogorov–Smirnov (K-S)
test confirmed the correctness of the selection of this distribution. A similar process was
performed to determine the corrosion defect density. The number of defects per unit length
of the pipeline was estimated by statistically studying the number of defects found in each
ditch dug in the analyzed pipelines. The results show that the corrosion defect density
per ditch is distributed as an NB distribution (Equation (47)). The parameters for the GEV
distribution for the length and depth of corrosion defect, as well as the parameter for NB
distribution, are shown in Table 3.

Table 3. Parameters of the fitted distributions for corrosion defect depth, length, and density of
defects in the zone studied in Mexico [18].

Characteristic Units Distribution
Parameters

.
µ

.
σ ζ

Depth %PWT (pipe wall thickness percent) GEV 18.50 8.86 0.078

Length m GEV 0.095 0.195 0.753

Defect density Per ditch Negative binomial
n p

0.208 0.21

The goal of finding the probability distribution that represents the histogram of the
length, depth of corrosion defect, and spatial density is to obtain sufficient information
to use Bayes’ rule. This rule needs information on the statistics of the variable studied as
input; this expression is detailed in Equation (59):

Po( θ|X) =
L(X|θ )π(θ)∫

θ L(X|θ )π(θ)dθ
(59)

where π(θ) is the prior distribution, X refers to the observed data, L(X|θ ) is the likeli-
hood function to produce the strength of belief in parameter value θ (vector of parame-
ters {θi}) when the observed data X (vector of observed data {xi}) are considered, and
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∫
θ L(X|θ )π(θ)dθ is the marginal likelihood and represents the probability that the data

follow the selected model under marginalization over all parameter values.
If the prior distribution of parameter θi is defined by the vector of parameters αi, they

are the hyperparameters of θi.
If the number of ditches in the inspected pipeline is nD, the number of defects detected

at the kth ditch is nK, and the observed defects in all these ditches sum up to nT , which can
be written as follows:

L(Y|θD ) =
nT

∏
1=1

fD
(
yi
∣∣ .
µ,

.
σ, ζ
)

(60)

L(l|θl ) =
nT

∏
1=1

fΛ
(
li
∣∣ .
µ,

.
σ, ζ
)

(61)

L(N|θl ) =
nT

∏
1=1

fN(nk|n, p) (62)

Equations (60) and (61) represent the PDFs of the depth and length of corrosion defects,
respectively. In contrast, Equation (62) represents the PDF of the corrosion defect density.
The prior distributions used in this study were based on previous experiences in other
studies [14,15,71]. Normal and uniform priors were considered by the authors within a
specific interval. The mean (µ) and variance

(
σ2) of these prior distributions are treated as

hyperparameters of θi; that is, αi =
{

µ, σ2} [17].
After the posterior distributions of θ were estimated, the probability of unobserved

data can be feasibly predicted. If the data are expected to have a distribution M, then
obtaining the predictive distribution Pp(x̂|X, α) of the unobserved data is likely. This
predictive distribution can be estimated using the following mathematical expressions:

Pp(x̂|X, α) =
∫

θ
Mx(x|θ)Po(θ|X, α)dθ (63)

Therefore, the predictive distributions for the depth, length, and density of corrosion
defects can be estimated using the following equations:

Pp(d̂|Y, αY) =
∫

θD

fD(x|θY)Po(θD|Y, αD)dθY; (64)

Pp(l̂|l, αl) =
∫

θl

fD(x|θl)Po(θl|l, αl)dθl; (65)

Pp(n̂|n, αn) =
∫

θn
fD(x|θn)Po(θn|n, αn)dθn; (66)

The distributions obtained by these mathematical expressions constitute the final
and most important result of the Bayesian methodology for the analysis of external cor-
rosion defect data in the underground non-piggable pipelines studied by Valor [18] and
Caleyo [17].

Considering the assumptions explained earlier on the independence of the variables
of interest, the implementation of the proposed Bayesian methodology was based on the
solution of three separate, moderately simple problems: one for depth (three parameters, six
hyperparameters), another for length (idem), and the last for density (two parameters, four
hyperparameters). To solve this problem, a numerical method called GRID was employed.
This method is explained in the book titled Doing Bayesian Data Analysis [108].

This Bayesian methodology was applied to two pipeline systems to validate the
process. Information is collected by an in-line inspection in a pipeline (PA) and inspections
performed in a gathering pipeline (PB). Satisfactory results were obtained in both cases.
These outcomes are shown in Figure 4 in [17]. In this figure, it can be observed that the
predictive distribution obtained using BDA is close to the simulated empirical defects and
all empirical (observed) defects. To assess the effectiveness of the results obtained using
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BDA, they were compared with simulated empirical defects and all empirical (observed)
defects using the Kolmogorov–Smirnov test and chi-squared test. The p-value of these
tests is higher than 0.15 in all cases, meaning there is a high probability of accepting the
hypothesis that the distribution obtained using BDA represents all corrosion defects present
in the pipeline. Similar results were obtained when the corrosion defects presented in the
gathering pipeline (PB) were analyzed using BDA; the distribution obtained was close
to the simulated empirical defects and all empirical (observed) defects. In addition, the
p-values for the Kolmogorov–Smirnov test and the chi-squared test are quite significant,
indicating strong evidence towards the BDA methodology.

Another application of this Bayesian methodology is described by Valor et al. [18],
where a pipeline failure rate is estimated by both the Markov model (Figure 4a in [17])
already described in this review [71] and a Bayesian updating (Figure 4b in [17]). The
studied pipeline had a length, diameter, and a nominal wall thickness of 2.132 km, 20.32 cm,
and 0.704 cm, respectively; the steel used in construction was API-5L-X52, and it was
commissioned in 1985. The expected working pressure was 14 kg/cm2. This pipeline was
called A3L23 by the authors and underwent sampling inspection in 2009 within a total
of 112 excavated ditches; 264 external corrosion defects were found. The failure indices
of the A3L23 pipeline were also estimated using the corrosion defect depth, length, and
density probability distributions obtained by sampling inspection; the final distribution for
each characteristic was obtained using BDA, and the estimated parameters are shown in
Table 4. In Figure 4a,b in [17], it can be observed that the estimations obtained using these
two methods (Markov chain model and Bayesian updating) agree, with values in the same
order of magnitude. This point indicates the suitability of the proposed reliability approach
for a single, non-piggable pipeline using the defect size and density distributions estimated
from previous information.

Table 4. Bayes-estimated parameters of the length and depth of corrosion defect and defect density
in the studied pipeline [18].

Defect Characteristic Units Fitted Distribution
Parameters

.
µ

.
σ ζ

Depth %PWT GEV 17.01 8.02 0.12

Length m GEV 0.078 0.086 1.11

n p

Density Per ditch Negative binomial 0.35 0.13

In general terms, Bayesian statistics is useful when the amount of available data
about localized corrosion defect characteristics is not significant; therefore, this technique
is advantageous for estimating reliability in non-piggable pipelines. Another advantage
is that it is feasible to update the information as the number of inspections increases. On
the other hand, a disadvantage of this method is that it is necessary to know the prior
distributions of the variable to be studied to apply BDA.

A possible future outlook about Bayesian inference could consider the changes in
mechanical properties that the pipeline undergoes because of the steel aging. Using BDA,
it is possible to estimate the actual values of yield strength and UTS in a pipeline that has
been in service for a long time.

8. The Future Challenge for the Application of Probability and Statistics in Corroded
Oil and Gas Pipelines

After all the aforementioned applications of probability and statistics in corroded oil
and gas pipelines, the future challenge can be described as follows:
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I. It would be interesting to study other electrochemical variables using statistical tech-
niques. An example is the determination of whether the icorr or Epit of a steel sample
in a corrosive environment exhibits stochastic behavior. This could help in deter-
mining the limits with a certain degree of confidence for some conditions where the
corrosion rate could exist or the pitting potential could occur. Similarly, it would be
necessary to correlate and model the pit initiation time using both electrochemical
and statistical techniques for pipeline steels under aggressive environments. It is
necessary to orient some studies using electrochemical impedance spectroscopy or
electrochemical noise to obtain information that can help to model the pit initiation
and the pit growth stochastically.

II. The randomness of the pit initiation time is another parameter that should be studied
and modeled. Velazquez et al. [14] determined different values of pit initiation time
for each type of soil studied. In that study, the pit initiation time was found to be a
regression parameter; therefore, it is considered a deterministic value. Nonetheless,
determining whether this pit initiation time can also have characteristics of random-
ness and modeling this randomness would be applicable to estimating the remaining
life of the pipeline because these corrosion defects do not initiate at the same time the
pipeline makes contact with the soil.

III. Further, finding a more accurate approach to determine the corrosion rate distribution
in a pipeline using the information provided by consecutive in-line inspection (ILI)
is worth mentioning. Many kilometers of oil and gas pipelines are inspected by ILI;
however, it is difficult to determine the corrosion rate using this information because
the technologies used in both inspections could be different, and the methods to
calibrate the devices used differ; locating the same corrosion defects in two consecutive
inspections can be a daunting task due to differences in the resolution of the devices
used in each inspection, even if they are of the same technology.

IV. Notwithstanding the evidence that the mechanical properties of pipeline steels change
because of the aging of the material, as demonstrated by González-Arévalo et al. [23],
there are no studies that use real-life information of aged and corroded pipelines to
estimate their reliability. This may be because it is very difficult to monitor changes in
the mechanical properties of an in-service pipeline. However, this estimation can help
compute the failure probability with greater accuracy.

V. BDA has been used in corroded pipelines to successfully estimate the remaining
life and the failure probability. However, this statistical technique is not used for
other factors related to pipeline deterioration, such as coating disbondment, cathodic
protection, ECDA, conditions of fluid transmission, or even stray currents. This
technique can be used to study all the phenomena involved in pipeline corrosion.

VI. New approaches using machine learning techniques and probability concepts have
been developed recently by Ossai [109]. These techniques will be widely used in years
to come because they can include the independent variables that provoke the localized
corrosion deterioration (temperature, chemical composition, fluid velocity, etc.) and
represent the phenomenon’s stochastic nature. One advantage of these approaches is
that they can manage a vast amount of data with great flexibility.

9. Conclusions

Localized corrosion in oil and gas pipelines is a complicated phenomenon that involves
several parameters such as the chemical composition of the steel, inclusion density, chemical
composition of the environment that surrounds the pipe or of the fluid transmitted, coating
type, stray currents, operation, and design of the cathodic protection system. Because
of the numerous variables involved, the study of the phenomena as being of a random
nature using probability and statistics has been proposed since the 1930s. From this study,
the conclusions on the applications of probability and statistics in corroded pipelines are
as follows:
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• Pitting corrosion can be studied using the knowledge of probability and statistics,
both in laboratory tests (electrochemical and immersion) and in-service pipelines.
In electrochemical tests, the most studied variable is the corrosion potential (Ecorr);
however, there is a lack of deeper analysis of other characteristics, such as pitting
or passive potential, to demonstrate their randomness. Conversely, several studies
demonstrate by immersion tests the randomness of the pitting corrosion defect depth,
not only in low-carbon steel (pipeline material) but also in other alloys. Usually, the
deeper pitting corrosion defect depths measured after the immersion test can be fitted
to a Gumbel distribution or GEVD with high confidence. For buried pipelines, the
external depths of corrosion defect can also be fitted with high confidence in a GEVD.

• Regression analysis has been widely used to model the growth of localized corrosion
defects with a sufficient confidence level. This type of statistical modeling has been
used to predict the growth of external corrosion defects in buried pipelines and in
solutions that simulate oilfield-produced water. Regression analysis is advantageous
in that the physical and chemical characteristics of the environment that is in contact
with the pipe can be incorporated into the model. Similarly, the initiation time of the
corrosion defect can be included and a deterministic value can be obtained.

• Markov chain models have been successfully used to model the stochastic nature of
localized corrosion defects in both immersion tests and oil and gas pipelines. In all
cases, the Kolmogorov differential equations are the bases of the solutions in these
models. These models correctly represent the shape, kurtosis, and skewness of the
observed data histogram in pipeline inspections. In these models, it is also feasible to
incorporate the chemical and physical characteristics of the environment in contact
with the pipeline, meaning it is not only a purely mathematical model but also possible
to establish a sound chemical and physical correlation between the characteristics of
the corrosion defect and the properties of the environment.

• Both stochastic models and distributions fitted from observed data can be used to
estimate the reliability of oil and gas pipelines. The accurate estimation of the depths
of future corrosion defects drives a suitable pipeline reliability estimation, thus achiev-
ing better risk management because it is possible to channel resources at the most
appropriate time.

• The Monte Carlo simulation approach was used to forecast the long-term distribution
of the pitting corrosion rate and pipeline reliability estimation. This method has
become quite popular because of the increasing computing power that allows complex
simulations to be performed in a short time.

• Bayesian data analysis provides a useful tool for the estimation of the probability
distributions of the corrosion defect depth, length, and density. This statistical method
helps to estimate the conditions of the corrosion defect characteristics in oil and gas
pipelines as long as there is prior information on probability distribution and some
observed data in the inspections. BDA can be particularly useful in non-piggable
pipelines because it is not feasible from the economic point of view to dig up an entire
pipeline and carry out an inspection using a portable flaw detector. These pipelines are
usually partially inspected; therefore, it is indispensable to infer the total damage of
the structure. Using BDA, it is feasible to estimate the non-piggable pipeline reliability
and in this way optimize resources in the maintenance plan.

Author Contributions: Conceptualization, J.C.V. and E.H.-S.; methodology, J.C.V. and G.T.; software,
A.C.-T.; formal analysis, J.C.V. and S.C.-C.; investigation, J.C.V. and M.D.-C.; resources, J.C.V. and
E.H.-S.; data curation, J.C.V. and E.H.-S.; writing—original draft preparation, J.C.V. and E.H.-S.;
writing—review and editing, J.C.V. and E.H.-S.; project administration, J.C.V. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by research Grant 20221070 of Instituto Politécnico Nacional
in Mexico.



Metals 2022, 12, 576 37 of 40

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: The comments provided by the reviewers are deeply appreciated.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. British Petroleum. Energy Outlook 2020 Edition. Available online: https://www.bp.com/content/dam/bp/business-sites/en/

global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2020.pdf (accessed on 1 November 2021).
2. Velázquez, J.C.; González-Arévalo, N.E.; Diaz-Cruz, M.; Cervantes-Tobón, A.; Herrera-Hernandez, H.; Hernández-Sánchez, E.

Failure pressure estimation for an aged and corroded oil and gas pipeline: A finite element study. J. Nat. Gas Sci. Eng. 2022, 101,
104532. [CrossRef]

3. Pootakham, T.; Kumar, A. Bio-oil transport by pipeline: A techno-economic assessment. Bioresour. Technol. 2010, 101, 7137–7143.
[CrossRef]

4. Bell, H.S. Petroleum Transportation Handbook, 1st ed.; McGraw-Hill: New York, NY, USA, 1963.
5. CIA The World Factbook. Available online: https://www.cia.gov/the-world-factbook/ (accessed on 5 November 2021).
6. Lu, H.; Iseley, T.; Behbahani, S.; Fu, L. Leakage detection techniques for oil and gas pipelines: State-of-the-art. Tunn. Undergr.

Space Technol. 2020, 98, 103249. [CrossRef]
7. EGIG 11th Report of the European Gas Pipeline Incident Data Group. Available online: https://www.egig.eu/reports (accessed

on 15 December 2021).
8. Caleyo, F.; Alfonso, L.; Alcántara, J.; Hallen, J.M. On the Estimation of Failure Rates of Multiple Pipeline Systems. J. Press. Vessel

Technol. 2008, 130, 021704. [CrossRef]
9. Koch, G.; Varney, J.; Thompson, N.; Moghissi, O.; Gould, M.; Payer, J. International Measures of Prevention, Application, and Economics

of Corrosion Technologies Study; NACE International: Houston, TX, USA, 2016.
10. Evans, U.R.; Mears, R.B.; Queneau, P.E. Corrosion-velocity and corrosion-probability. Engineering 1933, 136, 689.
11. Romanoff, M. Underground Corrosion; US Government Printing Office: Washington, DC, USA, 1957.
12. Aziz, P.M. Application of the Statistical Theory of Extreme Values To the Analysis of Maximum Pit Depth Data for Aluminum.

Corrosion 1956, 12, 35–46. [CrossRef]
13. American Petroleum Institute. API Recommended Practice 571, Damage Mechanisms Affecting Fixed Equipment in the Refining

Industries, 2nd ed.; American Petroleum Institute: Washington, DC, USA, 2011.
14. Velázquez, J.C.; Caleyo, F.; Valor, A.; Hallen, J.M. Predictive Model for Pitting Corrosion in Buried Oil and Gas Pipelines. Corrosion

2009, 65, 332–342. [CrossRef]
15. Caleyo, F.; Velázquez, J.C.; Valor, A.; Hallen, J.M. Probability distribution of pitting corrosion depth and rate in underground

pipelines: A Monte Carlo study. Corros. Sci. 2009, 51, 1925–1934. [CrossRef]
16. Alamilla, J.L.; Sosa, E. Stochastic modelling of corrosion damage propagation in active sites from field inspection data. Corros. Sci.

2008, 50, 1811–1819. [CrossRef]
17. Caleyo, F.; Valor, A.; Alfonso, L.; Vidal, J.; Perez-Baruch, E.; Hallen, J.M. Bayesian analysis of external corrosion data of

non-piggable underground pipelines. Corros. Sci. 2015, 90, 33–45. [CrossRef]
18. Valor, A.; Caleyo, F.; Alfonso, L.; Vidal, J.; Hallen, J.M. Statistical Analysis of Pitting Corrosion Field Data and Their Use for

Realistic Reliability Estimations in Non-Piggable Pipeline Systems. Corrosion 2014, 70, 1090–1100. [CrossRef]
19. Ogutcu, G. Pipeline Risk Assessment by Bayesian Belief Network. In Proceedings of the 6th International Pipeline Conference,

Calgary, AB, Canada, 25–29 September 2006; Paper: IPC2006-10088. [CrossRef]
20. Ainouche, A. Future integrity management strategy of a gas pipeline using bayesian risk analysis. In Proceedings of the 23rd

World GAS Conference, Amsterdam, The Netherlands, 5–9 June 2006. Available online: http://members.igu.org/html/wgc2006/
pdf/paper/add10327.pdf (accessed on 20 March 2022).

21. Stephens, M.; Nessim, M. A Comprehensive Approach to Corrosion Management Based on Structural Reliability Methods. In
Proceedings of the 6th International Pipeline Conference, Calgary, AB, Canada, 25–29 September 2006; Paper: IPC2006-10458.
[CrossRef]

22. Caleyo, F.; González, J.L.; Hallen, J.M. A study on the reliability assessment methodology for pipelines with active corrosion
defects. Int. J. Press. Vessel. Pip. 2002, 79, 77–86. [CrossRef]

23. González-Arévalo, N.E.; Velázquez, J.C.; Díaz-Cruz, M.; Cervantes-Tobón, A.; Terán, G.; Hernández-Sanchez, E.; Capula-
Colindres, S. Influence of aging steel on pipeline burst pressure prediction and its impact on failure probability estimation. Eng.
Fail. Anal. 2021, 120. [CrossRef]

24. Zakikhani, K.; Nasiri, F.; Zayed, T. A Review of Failure Prediction Models for Oil and Gas Pipelines. J. Pipeline Syst. Eng. Pract.
2020, 11, 03119001. [CrossRef]

25. Muhlbauer, W.K. Pipeline Risk Management Manual, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2004; ISBN 9780750675796.
26. Tan, M.Y.J.; Varela, F.; Huo, Y.; Wang, K.; Ubhayaratne, I. An Overview of Recent Progresses in Monitoring and Understanding

Localized Corrosion on Buried Steel Pipelines. Paper presented at the CORROSION 2020, Physical Event Cancelled, 14–18 June
2020; Paper Number: NACE-2020-15025.

https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2020.pdf
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2020.pdf
http://doi.org/10.1016/j.jngse.2022.104532
http://doi.org/10.1016/j.biortech.2010.03.136
https://www.cia.gov/the-world-factbook/
http://doi.org/10.1016/j.tust.2019.103249
https://www.egig.eu/reports
http://doi.org/10.1115/1.2894292
http://doi.org/10.5006/0010-9312-12.10.35
http://doi.org/10.5006/1.3319138
http://doi.org/10.1016/j.corsci.2009.05.019
http://doi.org/10.1016/j.corsci.2008.03.005
http://doi.org/10.1016/j.corsci.2014.09.012
http://doi.org/10.5006/1195
http://doi.org/10.1115/IPC2006-10088
http://members.igu.org/html/wgc2006/pdf/paper/add10327.pdf
http://members.igu.org/html/wgc2006/pdf/paper/add10327.pdf
http://doi.org/10.1115/IPC2006-10458
http://doi.org/10.1016/S0308-0161(01)00124-7
http://doi.org/10.1016/j.engfailanal.2020.104950
http://doi.org/10.1061/(ASCE)PS.1949-1204.0000407


Metals 2022, 12, 576 38 of 40

27. Papavinasam, S. Corrosion Control in the Oil and Gas Industry; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780123970220.
28. Peabody, A.W. Peabody’s Control of Pipeline Corrosion, 2nd ed.; Bianchetti, R.L., Ed.; NACE International: Houston, TX, USA, 2001;

ISBN 978-1575900926.
29. Bhandari, J.; Khan, F.; Abbassi, R.; Garaniya, V.; Ojeda, R. Modelling of pitting corrosion in marine and offshore steel structures—A

technical review. J. Loss Prev. Process Ind. 2015, 37, 39–62. [CrossRef]
30. Fontana, M.G. Corrosion Engineering, 3rd ed.; McGraw-Hill Book Company: New York, NY, USA, 1985; ISBN 978-0070214637.
31. Agar, J.N.; Hoar, T.P. The influence of change of size in electrochemical systems. Discuss. Faraday Soc. 1947, 1, 158. [CrossRef]
32. Corrosionpedia Critical Pitting Potential (Epit). Available online: https://www.corrosionpedia.com/definition/352/critical-

pitting-potential-epit (accessed on 5 December 2021).
33. Szklarska-Smialowska, Z. Pitting Corrosion of Metals; NACE International: Houston, TX, USA, 1986; ISBN 978-0915567195.
34. Corrosionpedia Repassivation Potential. Available online: https://www.corrosionpedia.com/definition/6258/repassivation-

potential (accessed on 5 December 2021).
35. Caines, S.; Khan, F.; Shirokoff, J. Analysis of pitting corrosion on steel under insulation in marine environments. J. Loss Prev.

Process Ind. 2013, 26, 1466–1483. [CrossRef]
36. Frankel, G.S. Pitting Corrosion of Metals: A Review of the Critical Factors. J. Electrochem. Soc. 1998, 145, 2186–2198. [CrossRef]
37. Böhni, H. Metastable Pitting—Occurrence and Significance for Passive Metals; Swiss Federal Institute of Technology: Zürich,

Switzerland, 2002.
38. Finsås Wika, S. Pitting and Crevice Corrosion of Stainless Steel under Offshore Conditions. Master’s Thesis, The Norwegian

University of Science and Technology, Trondheim, Norway, 2012.
39. Angal, R.D. Principles and Prevention of Corrosion; Alpha Science International Ltd.: Oxford, UK, 2010; ISBN 978-1842655290.
40. Sridhar, N.; Dunn, D.S.; Seth, M. Application of a General Reactive Transport Model to Predict Environment under Disbonded

Coatings. Corrosion 2001, 57, 598–613. [CrossRef]
41. Craig, B.D. Practical Oilfield Metallurgy and Corrosion, 3rd ed.; Pennwell Corp: Tulsa, OK, USA, 1993; ISBN 978-0878143887.
42. Papavinasam, S.; Doiron, A.; Revie, R.W. Model to Predict Internal Pitting Corrosion of Oil and Gas Pipelines. Corrosion 2010, 66,

035006. [CrossRef]
43. Malik, A.U.; Ahmad, S.; Andijani, I.; Al-Fouzan, S. Corrosion behavior of steels in Gulf seawater environment. Desalination 1999,

123, 205–213. [CrossRef]
44. Frankel, G.S.; Sridhar, N. Understanding localized corrosion. Mater. Today 2008, 11, 38–44. [CrossRef]
45. Abood, T.H. The Influence of Various Parameters on Pitting Corrosion of 316l and 202 Stainless Steel; Department of Chemical

Engineering of the University of Technology: Baghdad, Iraq, 2008.
46. Velázquez, J.C.; Cruz-Ramirez, J.C.; Valor, A.; Venegas, V.; Caleyo, F.; Hallen, J.M. Modeling localized corrosion of pipeline steels

in oilfield produced water environments. Eng. Fail. Anal. 2017, 79, 216–231. [CrossRef]
47. Dean, S.W.; Grab, G.D. Corrosion of carbon steel by concentrated sulfuric acid. Mater. Perform. 1985, 24, 21–25.
48. Panossian, Z.; de Almeida, N.L.; de Sousa, R.M.F.; Pimenta, G. de S.; Marques, L.B.S. Corrosion of carbon steel pipes and tanks by

concentrated sulfuric acid: A review. Corros. Sci. 2012, 58, 1–11. [CrossRef]
49. Maruthamuthu, S.; Kumar, B.D.; Ramachandran, S.; Anandkumar, B.; Palanichamy, S.; Chandrasekaran, M.; Subramanian, P.;

Palaniswamy, N. Microbial Corrosion in Petroleum Product Transporting Pipelines. Ind. Eng. Chem. Res. 2011, 50, 8006–8015.
[CrossRef]

50. Santillan, E.-F.U.; Choi, W.; Bennett, P.C.; Diouma Leyris, J. The effects of biocide use on the microbiology and geochemistry of
produced water in the Eagle Ford formation, Texas, U.S.A. J. Pet. Sci. Eng. 2015, 135, 1–9. [CrossRef]

51. Liu, T.; Cheng, Y.F.; Sharma, M.; Voordouw, G. Effect of fluid flow on biofilm formation and microbiologically influenced corrosion
of pipelines in oilfield produced water. J. Pet. Sci. Eng. 2017, 156, 451–459. [CrossRef]

52. Shibata, T.; Takeyama, T. Stochastic Theory of Pitting Corrosion. Corrosion 1977, 33, 243–251. [CrossRef]
53. Gabrielli, C.; Huet, F.; Keddam, M.; Oltra, R. A Review of the Probabilistic Aspects of Localized Corrosion. Corrosion 1990, 46,

266–278. [CrossRef]
54. Lewis, C.F. Statistics—A Useful Tool For the Examination of Corrosion Data. Corrosion 1953, 9, 38–43. [CrossRef]
55. Rivas, D.; Caleyo, F.; Valor, A.; Hallen, J.M. Extreme value analysis applied to pitting corrosion experiments in low carbon steel:

Comparison of block maxima and peak over threshold approaches. Corros. Sci. 2008, 50, 3193–3204. [CrossRef]
56. Mughabghab, S.F.; Sullivan, T.M. Evaluation of the pitting corrosion of carbon steels and other ferrous metals in soil systems.

Waste Manag. 1989, 9, 239–251. [CrossRef]
57. Kajiyama, F.; Koyama, Y. Statistical Analyses of Field Corrosion Data for Ductile Cast Iron Pipes Buried in Sandy Marine

Sediments. Corrosion 1997, 53, 156–162. [CrossRef]
58. Katano, Y.; Miyata, K.; Shimizu, H.; Isogai, T. Predictive Model for Pit Growth on Underground Pipes. Corrosion 2003, 59, 155–161.

[CrossRef]
59. Race, J.M.; Dawson, S.J.; Stanley, L.; Kariyawasam, S. Predicting Corrosion Rates for Onshore Oil and Gas Pipelines. In Proceedings

of the 6th International Pipeline Conference, Calgary, AB, Canada, 25–29 September 2006; Paper: IPC2006-10261. [CrossRef]
60. Carpenter, C. The Effect of CO2 Injection on Corrosion and Integrity of Facilities. Available online: https://jpt.spe.org/effect-co2

-injection-corrosion-and-integrity-facilities (accessed on 11 December 2021).

http://doi.org/10.1016/j.jlp.2015.06.008
http://doi.org/10.1039/df9470100158
https://www.corrosionpedia.com/definition/352/critical-pitting-potential-epit
https://www.corrosionpedia.com/definition/352/critical-pitting-potential-epit
https://www.corrosionpedia.com/definition/6258/repassivation-potential
https://www.corrosionpedia.com/definition/6258/repassivation-potential
http://doi.org/10.1016/j.jlp.2013.09.010
http://doi.org/10.1149/1.1838615
http://doi.org/10.5006/1.3290387
http://doi.org/10.5006/1.3360912
http://doi.org/10.1016/S0011-9164(99)00078-8
http://doi.org/10.1016/S1369-7021(08)70206-2
http://doi.org/10.1016/j.engfailanal.2017.04.027
http://doi.org/10.1016/j.corsci.2012.01.025
http://doi.org/10.1021/ie1023707
http://doi.org/10.1016/j.petrol.2015.07.028
http://doi.org/10.1016/j.petrol.2017.06.026
http://doi.org/10.5006/0010-9312-33.7.243
http://doi.org/10.5006/1.3585102
http://doi.org/10.5006/0010-9312-9.1.38
http://doi.org/10.1016/j.corsci.2008.08.002
http://doi.org/10.1016/0956-053X(89)90408-X
http://doi.org/10.5006/1.3280453
http://doi.org/10.5006/1.3277545
http://doi.org/10.1115/IPC2006-10261
https://jpt.spe.org/effect-co2-injection-corrosion-and-integrity-facilities
https://jpt.spe.org/effect-co2-injection-corrosion-and-integrity-facilities


Metals 2022, 12, 576 39 of 40

61. Velázquez, J.C.; Caleyo, F.; Valor, A.; Hallen, J.M. Technical Note: Field Study—Pitting Corrosion of Underground Pipelines
Related to Local Soil and Pipe Characteristics. Corrosion 2010, 66, 016001. [CrossRef]

62. Ossai, C.I. Predictive Modelling of Wellhead Corrosion due to Operating Conditions: A Field Data Approach. ISRN Corros. 2012,
2012, 237025. [CrossRef]

63. Zakikhani, K.; Nasiri, F.; Zayed, T. A failure prediction model for corrosion in gas transmission pipelines. Proc. Inst. Mech. Eng.
Part O J. Risk Reliab. 2021, 235, 374–390. [CrossRef]

64. Al-Fakih, A.M.; Algamal, Z.Y.; Lee, M.H.; Abdallah, H.H.; Maarof, H.; Aziz, M. Quantitative structure-activity relationship model
for prediction study of corrosion inhibition efficiency using two-stage sparse multiple linear regression. J. Chemom. 2016, 30,
361–368. [CrossRef]

65. Finley, H.F.; Toncre, A.C. Extreme value statistical analysis in correlation of first leak on submerged pipeline. Mater. Prot. 1964, 3,
29–34.

66. Finley, H.F. An Extreme-Value Statistical Analysis of Maximum Pit Depths and Time to First Perforation. Corrosion 1967, 23, 8387.
67. Provan, J.W.; Rodriguez, E.S. Part I: Development of a Markov Description of Pitting Corrosion. Corrosion 1989, 45, 178–192.

[CrossRef]
68. Rodriguez, E.S.; Provan, J.W. Part II: Development of a General Failure Control System for Estimating the Reliability of

Deteriorating Structures. Corrosion 1989, 45, 193–206. [CrossRef]
69. Hong, H.P. Inspection and maintenance planning of pipeline under external corrosion considering generation of new defects.

Struct. Saf. 1999, 21, 203–222. [CrossRef]
70. Timashev, S.A.; Malyukova, M.G.; Poluian, L.V.; Bushinskaya, A.V. Markov Description of Corrosion Defects Growth and Its

Application to Reliability Based Inspection and Maintenance of Pipelines. In Proceedings of the 7th International Pipeline
Conference, Calgary, AB, Canada, 29 September–3 October 2008; Paper: IPC2008-64546. [CrossRef]

71. Caleyo, F.; Velázquez, J.C.; Valor, A.; Hallen, J.M. Markov chain modelling of pitting corrosion in underground pipelines. Corros.
Sci. 2009, 51, 2197–2207. [CrossRef]

72. Parzen, E. Stochastic Processes, Classics in Applied Mathematics; Society for Industrial and Applied Mathematics (SIAM): Philadelphia,
PA, USA, 1999.

73. Cox, D.R.; Miller, H.D. The Theory of Stochastic Processes, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 1977;
ISBN 9780412151705.

74. Timashev, S.A.; Bushinskaya, A.V. Markov approach to early diagnostics, reliability assessment, residual life and optimal
maintenance of pipeline systems. Struct. Saf. 2015, 56, 68–79. [CrossRef]

75. Wang, H.; Yajima, A.; Liang, R.Y.; Castaneda, H. A clustering approach for assessing external corrosion in a buried pipeline based
on hidden Markov random field model. Struct. Saf. 2015, 56, 18–29. [CrossRef]

76. Ossai, C.I.; Boswell, B.; Davies, I. Markov chain modelling for time evolution of internal pitting corrosion distribution of oil and
gas pipelines. Eng. Fail. Anal. 2016, 60, 209–228. [CrossRef]

77. Valor, A.; Caleyo, F.; Alfonso, L.; Rivas, D.; Hallen, J.M. Stochastic modeling of pitting corrosion: A new model for initiation and
growth of multiple corrosion pits. Corros. Sci. 2007, 49, 559–579. [CrossRef]

78. Strutt, J.E.; Nicholls, J.R.; Barbier, B. The prediction of corrosion by statistical analysis of corrosion profiles. Corros. Sci. 1985, 25,
305–315. [CrossRef]

79. Melchers, R.E. Pitting Corrosion of Mild Steel in Marine Immersion Environment—Part 2: Variability of Maximum Pit Depth.
Corrosion 2004, 60, 937–944. [CrossRef]

80. Velázquez-Altamirano, J.C.; Torres-Avila, I.P.; Teran-Méndez, G.; Capula-Colindres, S.I.; Cabrera-Sierra, R.; Carrera-Espinoza, R.;
Hernández-Sánchez, E. A Stochastic Model and Investigation into the Probability Distribution of the Thickness of Boride Layers
Formed on Low-Carbon Steel. Coatings 2019, 9, 756. [CrossRef]

81. Amaya-Gómez, R.; Riascos-Ochoa, J.; Muñoz, F.; Bastidas-Arteaga, E.; Schoefs, F.; Sánchez-Silva, M. Modeling of pipeline
corrosion degradation mechanism with a Lévy Process based on ILI (In-Line) inspections. Int. J. Press. Vessel. Pip. 2019, 172,
261–271. [CrossRef]

82. van Noortwijk, J.M. A survey of the application of gamma processes in maintenance. Reliab. Eng. Syst. Saf. 2009, 94, 2–21.
[CrossRef]

83. Kuniewski, S.P.; van der Weide, J.A.M.; van Noortwijk, J.M. Sampling inspection for the evaluation of time-dependent reliability
of deteriorating systems under imperfect defect detection. Reliab. Eng. Syst. Saf. 2009, 94, 1480–1490. [CrossRef]

84. Velázquez, J.C.; van Der Weide, J.A.M.; Hernández, E.; Hernández, H.H. Statistical Modelling of Pitting Corrosion: Extrapolation
of the Maximum Pit Depth-Growth. Int. J. Electrochem. Sci. 2014, 9, 4129–4143.

85. Kowaka, M.; Tsuge, H. Introduction to Life Prediction of Industrial Plant Materials: Application of the Extreme Value Statistical Method
for Corrosion Analysis; Originally Published in Japanese by The Japan Society of Corrosion Engineers 1984; Allerton Press:
New York, NY, USA, 1994; ISBN 978-0898640731.

86. Castillo, E.; Hadi, A.S.; Balakrishnan, N.; Sarabia, J.M. Extreme Value and Related Models with Applications in Engineering and Science,
1st ed.; Wiley: Hoboken, NJ, USA, 2004.

87. Alamilla, J.L.; Espinosa-Medina, M.A.; Sosa, E. Modelling steel corrosion damage in soil environment. Corros. Sci. 2009, 51,
2628–2638. [CrossRef]

88. Bazán, F.A.V.; Beck, A.T. Stochastic process corrosion growth models for pipeline reliability. Corros. Sci. 2013, 74, 50–58. [CrossRef]

http://doi.org/10.5006/1.3318290
http://doi.org/10.5402/2012/237025
http://doi.org/10.1177/1748006X20976802
http://doi.org/10.1002/cem.2800
http://doi.org/10.5006/1.3577840
http://doi.org/10.5006/1.3577841
http://doi.org/10.1016/S0167-4730(99)00016-8
http://doi.org/10.1115/IPC2008-64546
http://doi.org/10.1016/j.corsci.2009.06.014
http://doi.org/10.1016/j.strusafe.2015.05.006
http://doi.org/10.1016/j.strusafe.2015.05.002
http://doi.org/10.1016/j.engfailanal.2015.11.052
http://doi.org/10.1016/j.corsci.2006.05.049
http://doi.org/10.1016/0010-938X(85)90109-X
http://doi.org/10.5006/1.3287827
http://doi.org/10.3390/coatings9110756
http://doi.org/10.1016/j.ijpvp.2019.03.001
http://doi.org/10.1016/j.ress.2007.03.019
http://doi.org/10.1016/j.ress.2008.11.013
http://doi.org/10.1016/j.corsci.2009.06.052
http://doi.org/10.1016/j.corsci.2013.04.011


Metals 2022, 12, 576 40 of 40

89. Valor, A.; Alfonso, L.; Caleyo, F.; Vidal, J.; Perez-Baruch, E.; Hallen, J.M. The negative binomial distribution as a model for external
corrosion defect counts in buried pipelines. Corros. Sci. 2015, 101, 114–131. [CrossRef]

90. Ahammed, M.; Melchers, R.E. Reliability estimation of pressurised pipelines subject to localised corrosion defects. Int. J. Press.
Vessel. Pip. 1996, 69, 267–272. [CrossRef]

91. Zhang, P.; Su, L.; Qin, G.; Kong, X.; Peng, Y. Failure probability of corroded pipeline considering the correlation of random
variables. Eng. Fail. Anal. 2019, 99, 34–45. [CrossRef]

92. Andrieu, C. Monte Carlo Methods for Absolute Beginners. Lecture Notes in Computer Science. 2004, pp. 113–145. Available
online: http://nozdr.ru/data/media/biblio/kolxoz/Cs/CsLn/Advanced%20Lectures%20on%20Machine%20Learning%2020
03(LNCS3176,%20Springer,%202004)(ISBN%203540231226)(248s).pdf#page=120 (accessed on 1 January 2022).

93. Valor, A.; Caleyo, F.; Hallen, J.M.; Velázquez, J.C. Reliability assessment of buried pipelines based on different corrosion rate
models. Corros. Sci. 2013, 66, 78–87. [CrossRef]

94. Race, J.M.; Dawson, S.J.; Stanley, L.; Kariyawasam, S. Development of a predictive model for pipeline external corrosion rates. J.
Pipeline Eng. 2007, 6, 15–29.

95. Caleyo, F.; Valor, A.; Velázquez, J.C.; Hallen, J.M. On the estimation of the probability of failure of single corrosion defects in oil
and gas pipelines. In Proceedings of the Nace Corrosion Risk Management Conference, Houston, TX, USA, 23–25 May March
2016; Paper No. RISK16 -8761.

96. American Society of Mechanical Engineers. Manual for Determining the Remaining Strength of Corroded Pipelines: Supplement to
ASME B31 Code for Pressure Piping; American Society of Mechanical Engineers: New York, NY, USA, 1984.

97. American Society of Mechanical Engineers. Manual for Determining the Remaining Strength of Corroded Pipelines: Supplement to
ASME B31 Code for Pressure Piping; American Society of Mechanical Engineers: New York, NY, USA, 1991.

98. American Society of Mechanical Engineers. Manual for Determining the Remaining Strength of Corroded Pipelines: Supplement to
ASME B31 Code for Pressure Piping; American Society of Mechanical Engineers: New York, NY, USA, 2009.

99. Ma, B.; Shuai, J.; Wang, J.; Han, K. Analysis on the Latest Assessment Criteria of ASME B31G-2009 for the Remaining Strength of
Corroded Pipelines. J. Fail. Anal. Prev. 2011, 11, 666–671. [CrossRef]

100. Kiefner, J.F.; Vieth, P.H. Evaluating pipe-1 new method corrects criterion for evaluating corroded pipe. Oil Gas J. 1990, 88, 56–59.
101. Klever, F.J.; Stewart, G.; van der Valk, C.A.C. New developments in burst strength predictions for locally corroded pipelines. In

Proceedings of the Offshore Mechanics and Artic Engineering (OMAE) Conference, Copenhagen, Denmark, 18–22 June 1995.
102. Leis, B.N.; Stephens, D.R. An Alternative Approach to Assess the Integrity of Corroded Line Pipe—Part I: Current Status.

Available online: https://www.onepetro.org/conference-paper/ISOPE-I-97-490 (accessed on 7 August 2016).
103. Leis, B.N.; Stephens, D.R. An Alternative Approach to Assess the Integrity of Corroded Line Pipe—Part II: Alternative Criterion.

Available online: https://www.onepetro.org/conference-paper/ISOPE-I-97-490 (accessed on 7 August 2016).
104. Det Norske Veritas DNV-RP-F101 Corroded Pipelines. Available online: https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/

2010-10/RP-F101.pdf (accessed on 21 May 2012).
105. American Petroleum Institute. API RP 579, Fittness-for-Service; American Petroleum Institute: Washington, DC, USA, 2007.
106. Cicero, S.; Lacalle, R.; Cicero, R.; Ferreño, D. Assessment of local thin areas in a marine pipeline by using the FITNET FFS

corrosion module. Int. J. Press. Vessel. Pip. 2009, 86, 329–334. [CrossRef]
107. Corrosionpedia Non-Piggable Pipeline. Available online: https://www.corrosionpedia.com/definition/2817/non-piggable-

pipeline (accessed on 20 December 2021).
108. Kruschke, J.K. Doing Bayesian Data Analysis, 2nd ed.; Academic Press: Cambridge, MA, USA, 2015; ISBN 978-0-12-405888-0.
109. Ossai, C.I. A Data-Driven Machine Learning Approach for Corrosion Risk Assessment—A Comparative Study. Big Data Cogn.

Comput. 2019, 3, 28. [CrossRef]

http://doi.org/10.1016/j.corsci.2015.09.009
http://doi.org/10.1016/0308-0161(96)00009-9
http://doi.org/10.1016/j.engfailanal.2019.02.002
http://nozdr.ru/data/media/biblio/kolxoz/Cs/CsLn/Advanced%20Lectures%20on%20Machine%20Learning%202003(LNCS3176,%20Springer,%202004)(ISBN%203540231226)(248s).pdf#page=120
http://nozdr.ru/data/media/biblio/kolxoz/Cs/CsLn/Advanced%20Lectures%20on%20Machine%20Learning%202003(LNCS3176,%20Springer,%202004)(ISBN%203540231226)(248s).pdf#page=120
http://doi.org/10.1016/j.corsci.2012.09.005
http://doi.org/10.1007/s11668-011-9490-8
https://www.onepetro.org/conference-paper/ISOPE-I-97-490
https://www.onepetro.org/conference-paper/ISOPE-I-97-490
https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2010-10/RP-F101.pdf
https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2010-10/RP-F101.pdf
http://doi.org/10.1016/j.ijpvp.2008.11.021
https://www.corrosionpedia.com/definition/2817/non-piggable-pipeline
https://www.corrosionpedia.com/definition/2817/non-piggable-pipeline
http://doi.org/10.3390/bdcc3020028

	Introduction 
	Electrochemical Background for Statistical Modeling of Localized Corrosion Defects 
	Applications of Probabilistic and Statistical Methods to Approximate Localized Corrosion Defect Depth and Rate in Pipelines 
	Stochastic and Random Walk Models 
	Other Examples of the Use of Statistics in the Prediction of the Lives of Oil andGas Pipelines 
	Pipeline Reliability Estimations 
	Bayesian Data Analysis in Corroded Oil and Gas Pipelines 
	The Future Challenge for the Application of Probability and Statistics in Corroded Oil and Gas Pipelines 
	Conclusions 
	References

