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Abstract: Constitutive modeling of sheet metals involves building a system of equations governing
the material behavior under multi-axial stress states. In general, these equations require a hardening
law that describes the stress-strain relationship. This study provides a thorough examination of the
existing phenomenological hardening laws in the literature. Based on their ordinary differential
equations, special efforts were made to discuss the degree of flexibility of these hardening laws.
Four new phenomenological hardening laws were proposed during the discussions to capture the
stress-strain relationship of automotive sheet metals, such as aluminum alloy and steel sheets. Then,
applications of 18 hardening laws for fitting the uniaxial tensile stress-strain data of 12 automotive
sheet metals were thoroughly compared. The comparisons reveal that the proposed hardening
laws capture well the experimental stress strain data of all examined materials. Compared to
several combined hardening laws, the proposed functions have comparable flexibility but require
fewer parameters.

Keywords: automotive sheet metal; hardening law; aluminum alloys; steels; ordinary differential
equation

1. Introduction

Sheet metals are widely used in different industrial applications: automotive, aerospace,
ocean, and building engineering [1,2]. However, due to the nature of material anisotropy
and non-proportional loadings, computational modeling of sheet metal behaviors subjected
to a forming process is a difficult task [3]. As a result, the creation of new material models
is critical to the success of sheet metal modeling.

According to the scale of their application, computational models of sheet metals
can be classified into macroscopic and microscopic models [4,5]. The former takes into
account the experimental phenomena observed during deformation processes and attempts
to simplify the material’s behavior as much as possible. Consequently, these models are
appropriate for simulating and analyzing sheet metal forming processes of large-size parts.
Microscopic models, on the other hand, are widely developed based on physical insights
from material sciences, such as dislocation and grain boundary interactions associated
with crystal plasticity theories. More detail is used in the description of material behavior
under generalized external loads in this approach. Both modeling approaches necessitate
three components: a hardening law, a yield function, and a flow rule. The purpose of this
research is to characterize and discover the formulation of macroscopic hardening laws for
automotive sheet metals.

A large number of macroscopic hardening laws have been proposed to describe the
behavior of sheet metals [6]. Generally, they reproduce the experimental stress-strain
relationship following either saturation laws or power laws. Myriad steel and aluminum
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alloy sheets have applications in the vast majority of automotive sheet metals. For exam-
ple, Figure 1 depicts the use of common hardening laws, such as the Voce [7], Hockett–
Sherby [8], Hollomon [9], and Swift [10] models, in capturing the stress-strain data obtained
from a standard uniaxial tensile (UT) test of AA6016-T4 sheets, of which the experimental
stress-strain data were reported in a previous study [11]. It can be seen that all of the
models under consideration provide excellent matches with the experimental data. Their
extrapolations to larger strain ranges, however, show significant discrepancies. The incon-
sistency of their extrapolations is well-known in the literature and raises a specific care for
modelers in selecting a proper hardening law for a typical tested material.
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Figure 1. Applications of four hardening laws in capturing the experimental data obtained from
the uniaxial tensile test of AA6016-T4 sheets. Experimental data after [11]. (a) Stress-strain curves.
(b) Hardening rate—flow stress curves.

Numerically, their deviation is originated from the formulation of each hardening law,
as well as the identified parameters. Considering the evolution of hardening rate according
to the flow stress explores the reason for the deviation [12]. According to Figure 1b, the
Voce model uses a linear plot to approximate the hardening rate curve, which appears to
underestimate the material behavior in the extrapolation ranges. Other models, such as
Hollomon, Swift, and Hockett–Sherby, produce similar estimates for the evolution of the
hardening rate in a flow stress range of 300–350 MPa. Thus, as shown in Figure 1a, their
predictions for the post-necking behavior of the investigated material are more similar.
Therefore, an ordinary differential equation (ODE) can be used to evaluate the formulation
of a hardening law by describing the relationship between the hardening rate and the
flow stress.

The objective of this study is twofold. First, the ODE of common hardening laws
for automotive sheet metals is summarized. Detailed discussions on the formulation of
their ODE are provided. Second, four new hardening models are proposed based on these
discussions to capture the stress-strain relationship of sheet metals. The proposed models
are formulated under the assumption that they compound four parameters. The proposal
of new functions aims to enrich the set of constitutive equations for sheet metals. The
rest of the paper is structured as follows. Section 2 delineates the ODE of 14 hardening
models divided into three categories: saturation laws, power laws, and combinations. The
formulation of newly proposed hardening laws is presented in detail in Section 3. Section 4
compares applications of 18 mentioned hardening laws in reproducing the stress-strain data
of 12 automotive sheet metals (six steel and six aluminum alloy sheets). Section 5 validates
the usefulness of the identified proposed hardening laws in simulating the UT tests for
all investigated materials. Section 6 summarizes and discusses the work’s perspectives
and limitations.
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2. Ordinary Differential Equation of Existing Hardening Laws

An overview of various existing phenomenological hardening laws in the literature is
presented in detail, focusing on their ODE formulations. The models could be classified
into three groups: saturation laws, power laws, and combinations. Hereafter, H(ε) denotes
a hardening function of the equivalent plastic strain ε, and H′ denotes its derivative or
the hardening rate function; ci denote parameters of the hardening law, which should be
determined for any investigated material.

2.1. Saturation Laws

Saturation laws impose saturated stress at large strains. The hardening law proposed
by Voce [7] is the most common form in this group, of which the formulation is expressed
in Equation (1a). The model’s spread is due to its simplicity [6,13–15]. As shown in
Equation (1b), the work-hardening rate predicted by this model can be expressed by a
first-order linear ODE. The formulation results in a linear approximation of the hardening
rate based on flow stresses, as shown in Figure 1b. Although the model provides a good
estimation for the experimental stress-strain data obtained from the UT test, there is a clear
discrepancy between the model estimation and the experimental data, especially near the
end of the experimental data. Moreover, the deformation observed during the UT test
is relatively small compared to those examined in industrial forming processes [16–18].
Therefore, premature failure prediction of the hardening law is noticed for several forming
processes [19,20].

Voce:
H(ε) = c1 − c2 exp(−c3ε) (1a)

H′ = (c1 − H)c3 (1b)

Hockett and Sherby [8] performed compression tests for polycrystalline solids (alpha
Uranium and iron) to characterize the stress-strain relationship of the investigated material
at large strains. They proposed a hardening law to describe the derived experimental data
(Equation (2a)). Based on log-scale plots of experimental data, they recommended a value
of 0.58 for parameter c4 for all examined materials in their study, which led to excellent
estimation for all tested materials, particularly in large strain ranges. However, other values
of parameter c4 can be used for different materials (see the Supplementary Material).

Hockett–Sherby:
H(ε) = c1 − c2 exp(−c3εc4) (2a)

H′ = (c1 − H)c3c4ε(c4−1) (2b)

Later, Chinh et al. [21] conducted a series of experimental tests for polycrystalline
aluminum and copper to explore the stress-strain relationship in wide strain ranges. Their
experimental results demonstrated that the macroscopic flow curves follow a power law in
small strain ranges and become saturated in large strain ranges. As a result, they proposed
an exponential-power law for the stress-strain relationship, as shown in Equation (3a).
In fact, the proposed hardening law is consistent with the one proposed by Hockett and
Sherby [8], as evidenced by their ODEs (Equations (2b) and (3b)). In these equations, a
multiplication of a constant (c3 in Equation (2b) and 1

c3
in Equation (3b)) with a strictly

decreasing function c4ε(c4−1) produces a nonlinear evolution of the hardening rate.
Chinh et al.:

H(ε) = c1 − c2 exp
(
− εc4

c3

)
(3a)

H′ = (c1 − H)
c4ε(c4−1)

c3
(3b)
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2.2. Power Laws

As opposed to the saturation laws, power hardening laws present unbounded stresses
at large strains. The simplest power hardening law was proposed by Hollomon [9] with two
parameters, as shown in Equation (4a). Ludwik [22] pioneered the use of another power
law to describe the stress-strain relationship, as expressed in Equation (5a). Furthermore,
Swift’s [10] power hardening law is widely used to describe the flow curve of steels and
irons [20,23,24]. The power laws construct strictly increasing functions of the flow curve.
Consequently, their hardening rate functions are always positive because they are carried
out using reciprocal functions. With only two parameters, the Hollomon model has some
practical limitations. Both the Ludwik and Swift models contain three parameters, but the
latter seems to be more flexible than the former, according to their ODE.

Hollomon:
H(ε) = c1εc2 (4a)

H′ = H
c2

ε
(4b)

Ludwik:
H(ε) = c1 + c2εc3 (5a)

H′ = (H − c1)
c3

ε
(5b)

Swift:
H(ε) = c1(ε + c2)

c3 (6a)

H′ = H
c3

ε + c2
(6b)

Both saturation and power hardening laws are widely used to practically describe
the hardening behavior of sheet metals. The limitation of these hardening laws is their
inflexibility in capturing the flow curve over wide strain ranges [14,23,25]. The limitation
can be deduced mathematically from the formulations of their ODEs, which contain two or
three parameters. As a result, their approximations for hardening rate curves frequently
deviate from the experimental data (see Figure 1b), particularly at the two ends of the
data sequence. Therefore, numerous combinations of these hardening laws have been
introduced in the literature to improve the flexibility of the imposed hardening law.

2.3. Combination of Hardening Laws

Combining two or more functions in one hardening law will increase its flexibility.
However, the act also increases the number of hardening law parameters, which may
make calibrating their values more difficult. The following sections go over the two most
common methods for establishing a combined hardening law: additive formulation and
multiplicative formulation.

2.3.1. Additive Combination

Conventionally, the stress-strain data obtained from a standard UT test are used to
identify parameters of a selected hardening law by a curve fitting method. For various au-
tomotive sheet metals, the fitting method typically provides a good enough approximation
for the available data, either using saturation laws or power laws. Their extrapolations to
larger strain ranges, however, show significant discrepancies. As a result, a linear combi-
nation of a power law and a saturation law in an additive form [26–29], as expressed in
Equation (7a), can be used for intermediate extrapolations over a wider strain range. At the
same time, the combination maintains the same order of accuracy in their approximations
for the fitting range. In Equation (7a), H1 denotes a power hardening law that could be the
Hollomon, Ludwik, or Swift models, while H2 denotes a saturation hardening law in form
of Voce or Hockett–Sherby models; c1 is a linear combined factor (0 < c1 < 1). Equation
(7b) also includes an ODE formulation of the corresponding hardening rate. As an example,
Figure 2 shows an application of a linear combination of the Swift and Voce models (LSV
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model) with c1 = 0.7 on modeling the stress-strain data of AA6016-T4 sheets. It is worth
noticing that H1 and H2 are both excellent approximations for the experimental data. As a
result, the first term of Equation (7b) yields an average of the two functions over the entire
strain range, as illustrated in Figure 2. The second term, on the other hand, involves their
difference, which primarily contributes to the extrapolation ranges.
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Hollomon/Voce; Swift/Voce; Swift/Hockett–Sherby:

H(ε) = c1H1 + (1− c1)H2 (7a)

H′ =
1
2
(

H′1 + H′2
)
+

(
c1 −

1
2

)(
H′1 − H′2

)
(7b)

As alternatives to the above-mentioned method, several additive combinations of
two single functions have been introduced in the literature. For example, Kim et al. [14]
modified a Voce hardening law by adding a linear term. The same approach was applied
to modify the Hockett–Sherby model [30,31]. Besides, Koc and Štok [32] introduced a
double Voce function to improve the simulation results of an austenitic stainless steel
coupon subjected to a standard UT test. Furthermore, Ludwigson [33] proposed a modified
Hollomon model by including an exponential term, which was shown to improve the
hardening law’s accuracy at low strains [34]. In addition, Lavakumar et al. [35] proposed
adding one more exponential term to Ludwigson’s model to improve the accuracy of the
derived flow curve at large strains. The ODE of these hardening laws, like the previous
additive approach, can be separated into different terms. The first term overall averages the
contributions of the involved functions, while the others characterize their compensated
effects at different strain ranges. Thus, the more additive terms are used, the more a
flexibility of the hardening law is achieved.
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Modified Voce:
H(ε) = c1 − c2exp(−c3ε) + c4ε (8a)

H′ =
1
2
(c1 − H)

(
c3 +

1
ε

)
+

1
2

(
c4 −

1
ε

)
(c2 exp(−c3ε) + c4ε) (8b)

Double Voce:
H(ε) = c1 − c2exp(−c3ε)− c4exp(−c5ε) (9a)

H′ =
1
2
(c1 − H)(c2 + c4) +

1
2
(c2 + c4)(c2exp(−c3ε)− c4exp(−c5ε)) (9b)

Ludwigson:
H(ε) = c1εc2 + exp(c3 + c4ε) (10a)

H′ =
1
2

H
( c2

ε
+ c4

)
+

1
2

( c2

ε
− c4

)
(c1εc2 − exp(c3 + c4ε)) (10b)

2.3.2. Multiplicative Combination

Besides the spreading of additive combined hardening laws, several hardening laws
were constructed by multiplying two or more functions together. One of these functions is
the Misiolek equation [6], which is a product of a Hollomon power law and an exponential
function, as expressed in Equation (11a). The equation was used to explain the flow curve
of various sheet materials [36,37]. In comparison to the Hollomon equation, the ODE of the
Misiolek model has one more parameter that increases its flexibility.

Misiolek:
H(ε) = c1εc2 exp(c3ε) (11a)

H′ = H
( c2

ε
+ c3

)
(11b)

Recently, Pham and Kim [38] proposed another multiplicative combination of harden-
ing laws for which the formulations of the flow stress and hardening rate were expressed as:

Pham and Kim:

H(ε) = c1 + c2
[
(1− exp(−c3ε)](ε + 0.002)c4

]
, (12a)

H′ = (H − c1)

(
c3

exp(c3ε)− 1
+

c4

ε + 0.002

)
. (12b)

The ODE of this model contains three adjustable parameters, that may increase its
flexibility. Previous studies demonstrated the good capacity of this model in predicting the
hardening behavior of several aluminum alloy sheets [11,39] and steels [40,41].

3. New Strain Hardening Law

Literature reviews indicated that there does not exist a hardening law that is suitable
for all kinds of automotive sheet metals. The need to investigate new hardening laws to
broaden the set of constitutive models is critical to the success of simulating the forming
processes of newly developed materials. A new hardening law should be very flexible to
have a wide range of practical applications. However, the number of parameters involved
should be kept to a minimum to simplify the calibration process. Thus, only four-parameter
hardening laws are considered in this section for the sake of simplicity.

3.1. Saturation Law

Comparing Equations (1b) and (2b) reveals the significance of parameter c4 in the
Hockett–Sherby model. The term c4ε(c4−1) in Equation (2b) is reduced to a negative expo-
nent function if c4 < 1. Therefore, a new hardening law is proposed (named Proposed 1),
of which the ODE is regulated by a reciprocal function as follows:

Proposed 1:
H(ε) = c1 − c2(ε + c3)

(−c4) (13a)
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H′ = (c1 − H)
c4

ε + c3
(13b)

This formulation is similar to the one suggested by Sahoo et al. [42], which was
proposed based on observations with crystal plasticity. However, different methods should
be used to identify parameters of these models that may affect the predictive capacity of
the calibrated hardening law [42].

Alternatively, Equation (12b) requires two terms, c3
exp(c3ε)−1 and c4

ε+0.002 , to procreate a
combination. One may average their contributions by simplifying to a single function as:

Proposed 2:
H(ε) = c1 + c2[1− exp(−c3 ε)]c4 (14a)

H′ = (H − c1)
c3

exp(c3ε)− 1
(14b)

This proposed formulation is similar to the Sellars’s model [6] but requires one more
parameter for increasing its flexibility.

3.2. Power Law

Practically, power hardening laws do not restrict the upper bound of the flow stress
because of their power coefficient. A generic four-parameter power hardening law can be
expressed as:

H(ε) = c1(g(ε))c4 (15)

where g(ε) is a two-parameter function of ε. Mathematically, the ODE of this equation can
be expressed as:

H′ = Hc4
g′(ε)
g(ε)

(16)

Numerically, g(ε) can be an arbitrary of which the term g′(ε)
g(ε) should be a strictly

decreasing and non-negative function. For example, g(ε) of the Swift model is a modifi-
cation of the identity function, which is mathematically equivalent to a linear function.
Therefore, this study imposes a modified Sigmoid function to g(ε) leading to the following
hardening law:

Proposed 3:

H(ε) = c1

(
1 +

c2ε[
1 + (c2ε)c3

]1/c3

)c4

(17a)

H′ = Hc4
c2

[c2ε +
(
1 + (c2ε)c3

)1/c3 ]
(
1 + (c2ε)c3

) (17b)

In another way, the nonlinearity of g(ε) is secured by adding an exponential function
to a linear term as follows:

Proposed 4:
H(ε) = c1(2− exp(−c2ε) + c3ε)c4 (18a)

H′ = Hc4
c2 exp(−c2ε) + c3

2− exp(−c2ε) + c3ε
(18b)

Compared to formulations of the common hardening laws presented in the previous
section, the proposed hardening laws adjust their ODE aiming to increase the flexibility
of the derived functions. Therefore, they may have better flexibility than the well-known
hardening laws, such as the Voce, Hockett–Sherby, Hollomon, and Swift models and require
fewer parameters than their combinations. Applications of the proposed hardening laws
are discussed in the next section.
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4. Application for Automotive Sheet Metals
4.1. Investigated Materials

Six steel (DP590, DP780, DP980, SPCC, TRIP980, and TRIP1180) and six aluminum
alloy (AA6016, AA6022, AA7075, AA5052, AA6021, and AA3004) sheets, which are widely
used in automotive industries, are investigated in this study. The investigated materials
were subjected to uniaxial tensile tests following the Korean standard KS B0810-13B [43].
The specimens were all prepared in the rolling direction. Table 1 summarizes the material
properties obtained from the tests. Furthermore, the experimental stress-strain data of
steel and aluminum sheets are shown in Figures 3 and 4 respectively. Although the heat
treatments are important to the hardening behavior of aluminum sheets, their effects on
the derived stress-strain data are out of the scope of this study. Thus, the heat treatment
conditions applied to the examined aluminum are not specified in what follows.

Table 1. Material properties were obtained from the uniaxial tensile test of the investigated materials.

Material Thickness (mm) Young Modulus (GPa) Initial Yield
Stress (MPa)

Ultimate Tensile
Strength (MPa)

Maximum
Uniform Strain Elongation (%)

DP590 1.4 205 401 603 0.156 25.7

DP780 1.2 206 489 822 0.123 20.5

DP980 1.6 200 800 1030 0.050 11.0

SPCC 0.9 210 158 309 0.158 41.4

TRIP980 1.2 213 640 1026 0.120 19.5

TRIP1180 1.25 207 854 1117 0.229 40.9

AA6016 1.2 69 158 277 0.238 33.4

AA6022 1.1 67 123 238 0.209 30.1

AA7075 1.6 67 478 554 0.091 13.5

AA5052 0.8 73 173 229 0.090 12.2

AA6021 1.4 71 146 279 0.157 20.9

AA3004 0.51 62 73 156 0.171 28.7
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stress-strain curves. (b) True stress-strain curves.

It is seen that the variation of the Young modulus of steel sheets determined from the
tests is negligible, which is close to a value of 200 GPa, approximately. The measured Young
modulus of aluminum alloy sheets, which is approximated to 70 GPa, yielded similar
results. However, the plastic properties of these materials vary greatly from one another.
For example, initial yield stresses of steel sheets range from 150 MPa (SPCC) to 1000 MPa
(DP980 and TRIP980). The shortest elongation of 10% was observed in the case of the
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DP980 sheet, whereas, the longest elongation is the more than 40% observed in the case of
the TRIP1180.
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Furthermore, the ultimate tensile strengths (UTS) of the tested materials are marked
in Figures 3 and 4 to indicate the ranges of uniform deformations observed during the UT
tests. It is well-known that necking begins beyond the points, resulting in inhomogeneous
deformations. Hence, the deformation is concentrated on a narrow regime, subsequently
leading to the strain localization. Once the strain localization is formed, the failure occurs
quickly. In these figures, reference points are depicted to indicate the position of strain
localization observed during the tests for each material. These reference points were
determined based on the authors’ expertise since there is no standard for detecting the
strain localization on the engineering stress-strain data. It is recommended to extract the
reference point to match a requirement that the engineering stress is more than 95% of
UTS [41]. Some materials, such as DP980, AA5052, and AA6021, fail shortly after the
initiation of the diffuse neck. However, some materials, such as SPCC, TRIP1180, AA6022,
and AA3004, exhibit a wide deformation range after UTS. The observation demonstrates
various degrees of ductility of the tested materials. Consequently, capturing the behaviors
observed during the tensile tests for all investigated materials requires the use of a high-
flexibility hardening law.

4.2. Calibration Method

The true stress-strain data obtained from the UT tests are used to identify parameters
of the before-mentioned hardening laws. For this purpose, the common and constrained
curve fitting methods [44] are detailed in the next subsection.

4.2.1. Common Curve Fitting Method

In this method, a cost function of root mean square error (RMSE) is constructed
as follows:

RMSE =

√√√√ N

∑
i=1

(H(εi)− σi)
2 (19)

where εi and σi denote the measured stress-strain data obtained from an experimental test;
N denotes the number of experimentally measured points. Then, a generalized reduced
gradient algorithm is applied to minimize the cost function by using a Python script
developed by the authors.



Metals 2022, 12, 578 10 of 19

4.2.2. Constrained Curve Fitting Method

A previous study pointed out the link between the accuracy of a hardening law’s
prediction for ε∗u and its usefulness in estimating the forming limit curve (FLC) of sheet
metals [11,44]. Pham et al. [11] suggested increasing the weight factor of the points sur-
rounding ε∗u in the fitting routine. Furthermore, Noder and Butcher [44] proposed enforcing
the maximum force criterion as a constraint of the fitting procedure. The constraint is
expressed as follows:

H′(ε∗u)
H(ε∗u)

= 1 (20)

The before-mentioned calibration methods are applied to identify parameters of
18 hardening laws for 12 examined materials. The application of the common curve fitting
method is straightforward. In the constrained curve fitting method, the value of ε∗u for each
material is determined from its maximum uniform strain reported in Table 1.

4.3. Calibration Result

The identified parameters of all hardening laws for 12 examined materials are reported
in Tables S1–S12 in Supplementary Material. Figure 5 shows RMSE of the identified
hardening laws for all tested materials. According to these figures, it is seen that there
does not exist a hardening law that exhibits the best performance against the others. For a
particular material in these figures, several hardening laws show good fitting results based
on RMSE. For instance, the Hockett–Sherby and several combined hardening laws provide
excellent RMSE for most of the tested materials. In this regard, all proposed hardening
laws yield good RMSE of tested materials (RMSEs) that are more or less comparable to
those of the mentioned hardening laws.

Furthermore, imposing a constraint on the fitting procedure always increases the
RMSE, regardless of the used hardening formulation. In particular, the act significantly
increases the RMSE of some specific hardening laws, such as the Hollomon, Ludwigson, and
Misiolek models for many examined materials. In contrast, the RMSEs of several hardening
laws, such as the Hockett–Sherby, combined Swift/Hockett–Sherby, and modified Voce
models barely increase when the constrained curve fitting method is used. The comparison
demonstrates the flexibility of these hardening laws and confirms their usefulness in
practice, which has been proven in previous studies [15,45,46]. In addition, the proposed
hardening laws appear to have enough flexibility for reproducing the flow curves of all
investigated materials. Future studies should be conducted to address the potential of the
proposed hardening laws in capturing the hardening behaviors of other materials.

4.4. Discussion
4.4.1. Diffuse Neck Prediction

As discussed before, the predictability of a hardening law for the diffuse neck indicated
by the maximum homogeneous plastic strain, ε∗u regards its accuracy in predicting the
FLC of the tested material. Therefore, the difference between the experimental ε∗u and a
predicted value ε̃∗u given by a hardening law is calculated as follows:

δ1 =
ε̃∗u − ε∗u

ε∗u
× 100% (21)

Figure 6 presents the calculated δ1 based on the hardening laws identified by the
common curve fitting method. As shown in this figure, the saturation laws frequently
underestimated the diffuse neck of the tested material, indicated by negative values of
δ1. Whereas, the power laws overestimated the phenomenon with positive values of
δ1. In general, combined models (except for Ludwigson’s and Misiolek’s) provide better
predictions. Compared to these combined models, the proposed hardening laws provide
comparable predictions for ε∗u of the investigated materials. It is noted that the proposed
hardening laws take fewer parameters than these combined models.
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4.4.2. Hardening Rate Curve Prediction

Following previous studies [47–49], a reference hardening rate curve is constructed
for each material using five-order polynomials. These functions are the derivative of
polynomials fitted to the experimental stress-strain data of the investigated materials. The
difference between the reference hardening rate curve and the one of a hardening law is
calculated by RMSE of evenly distributed 100 points between zero and ε∗u of each curve.
For each investigated material, the calculated RMSEs are normalized to the one of the Voce
model and reported in Figure 7. In this figure, blue areas indicate better predictions, while
red areas show predictions twice as bad as that of the Voce model.
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It is seen from Figure 7 that several combined hardening laws, such as Swift/Hockett–
Sherby, modified Voce, and double Voce models, derived good predictions for the hardening
rate curves, no matter the constrained or unconstrained fitting method is used. The results
of Proposed 1, 3, and 4 functions are promising, in that they are comparable to those
of the before-mentioned models. The results presented in Figures 5–7 demonstrate the
potential of all proposed hardening laws in reproducing the experimental stress-strain
data obtained from the UT test for the examined materials. Hence, their applications in
numerical simulations of a forming process are deserving of further investigation.

5. Validation

This section deals with numerical validation for the identified hardening laws. These
functions are employed to simulate UT tests of the investigated materials. Then, the
simulated and measured tensile forces are compared to validate the accuracy of the imposed
hardening laws in large strain ranges.

5.1. Finite Element Model

Several finite element (FE) models are developed in Abaqus/Standard package to
simulate the UT tests. In these models, the first-order solid elements with reduced integra-
tion (C3D8R) are employed to model the testing coupon. Mesh size strongly influences
the predicted tensile forces, especially after the maximum. The effect of mesh size on the
simulation results of the UT tests for aluminum and steel alloys has been extensively inves-
tigated in [30,50,51]. Their studies recommended using a fine mesh on the gauge length
region, in which the smallest edge size is in a range of [0.2; 0.3] mm to achieve convergence
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in simulated forces. Following the commendation, a fine mesh with the element size of
0.3 × 0.4 mm is designed in the center region. Since the thickness of the examined material
is quite different, each FE model consists of five layers through the thickness direction to
make sure that the corresponding element size is not more than 0.4 mm. Figure 8 shows
the mesh on the specimen.
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It is well-known that the numerical prediction of UT forces is insensitive to the material
anisotropies, even though they are strongly affected the strain evolution of the deformed
specimens [52]. Therefore, the von Mises yield function is adopted for plasticity modeling in
these simulations because the tensile force predictions are used to evaluate simulation results.

During simulations, the left end section is fixed while a constant velocity is applied to
the right one to deform the specimen. Reaction forces are recorded during simulation to
report the tensile force predictions, while the gauge length displacements are calculated
from the displacements of two center nodes, as shown in Figure 8. A Python code is
developed to compare the experimental and simulated force-displacement curves.

5.2. Effect of Calibration Method

Figure 9 shows comparisons between several hardening laws identified by the com-
mon and constrained curve fitting methods and their predictions for the UT forces of DP590
sheets. In addition, Figure 9a,c depict the predicted ε∗u based on each hardening law, which
indicates the onset of the diffuse neck estimated by the corresponding model. According
to Figure 9a, the prediction of ε̃∗u is strongly related to the post-necking estimation of a
hardening law. The higher ε̃∗u is predicted, the higher post-necking tensile force curve is
derived. It is worth mentioning that all of these hardening laws approximated well the
experimental stress-strain data obtained from the UT tests, as shown in Figure 5. Therefore,
additional information should be considered to evaluate the usefulness of their predic-
tion for the post-necking behavior of the tested material, which will be discussed in the
next subsection.

Moreover, enforcing a constraint of ε̃∗u in the fitting procedure results in the same pre-
diction for the initiation of diffuse neck of different hardening laws, as shown in Figure 9c.
However, adopting these hardening laws in UT simulations exposes underestimations for
the tensile force curve after the maximum, as shown in Figure 9d. The drawback is believed
to be caused by the uncertainty of ε∗u determined from the experimental data. According to
Figures 3a and 4a, engineering stress-strain curves of many materials exhibit a wide range
of strain in which a nearly unchanged tensile strength is observed. For such material, it is
difficult to determine the initiation of the diffuse neck, as well as the corresponding value
of ε∗u. Therefore, the constrained curve fitting method should be used with care, especially
in determining the constraints.
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Figure 9. Comparison between the experimental and predicted tensile forces according to gauge
length displacement of DP590 sheets. (a) Hardening laws identified by the common curve fitting
method. (b) Tensile force predictions of the hardening laws reported in (a). (c) Hardening laws
identified by the constrained curve fitting method. (d) Tensile force predictions of the hardening laws
reported in (c).

5.3. Selection of a Proper Hardening Law

It is seen that numerical predictions for the tensile forces could agree well with the
experimental data until the force maximum. However, force predictions in the post-
necking ranges of different hardening models deviated largely from each other. It is
well-established that the force predictions are sensitive to not only material modeling
(i.e., material anisotropies and hardening law’s extrapolation to large strain ranges) but
also numerical parameters (i.e., element type and mesh size). A primary study has been
made to reduce the effects of numerical parameters in the developed FE models. Moreover,
the effects of material anisotropies on the simulated forces are frequently ignored for many
steel and aluminum alloy sheets [14,25,53]. Thus, the difference in predicted and measured
tensile forces can be used to evaluate the quality of the hardening law’s extrapolation in
the post-necking ranges. For this purpose, the force difference is estimated at a reference
gauge length displacement by the following equation:

δ2 =
Fsim

r − Fexp
r

Fexp
r

× 100% (22)
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where Fsim
r and Fexp

r denote the simulated and experimental reference forces. It is noted
that the reference force is related to the reference point of the engineering stress-strain
curves shown in Figures 3a and 4a for the investigated materials. Choosing different
reference force points may affect insignificantly the calculated δ2 [41] and does not change
the conclusions of this study.

Figure 10 shows the calculated δ2 of the proposed hardening laws for all tested
materials. According to Figure 10a, using the common curve fitting method yields a
significant variation in calculated δ2 based on different hardening laws. Adopting the
constrained curve fitting method reduces the variation where the δ2 calculations of these
hardening laws are closer together. However, the constraints lead to underestimations for
the tensile force of many materials. Therefore, it is suggested that the constrained method
is applicable for limited materials.
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For some materials such as TRIP1180, AA7075, and AA6021 sheets, several proposed
models give good evaluations of δ2. However, there exist several materials of which all
of these hardening laws give unsatisfied δ2 calculation, for instance, DP780, SPCC, and
TRIP980 sheets. For such kinds of materials, a different hardening law or a different
calibration method should be adopted to identify the parameters of the hardening laws.
Hence, the calculated δ2 of all mentioned hardening laws for all tested materials are
reported in Supplementary Material (Figure S1). From this perspective, if there are a lot of
hardening laws available for a particular investigated material, which one is adaptable will
need to be determined.

Calibration of hardening law’s parameters is an optimization process, where the so-
lution is a local minimum. Therefore, using different calibration methods perhaps derive
different calibrated parameters. In addition to selecting a proper hardening law, a suitable
calibration method should be considered carefully to determine parameters. The chosen
one aims at achieving a balanced accuracy of the pre- and post-necking predictions of the
identified hardening law. Hence, evaluating both the RMSE and δ2 criteria could be consid-
ered to meet the demand. A small value of RMSE can be used as a necessary condition to
ensure the accuracy of the selected hardening law in the pre-necking ranges. Whereas, the
δ2 can be used as a sufficient condition to qualify the goodness of the model’s predictions
in the post-necking ranges. For example, the Proposed 1 provides good descriptions for
several materials, such as TRIP1180, AA7075, and AA6021 sheets. In another hand, the
Proposed 4 gives excellent results for DP590, AA6016, and AA6022 sheets. Figure 11 depicts
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their predictions of tensile forces for the mentioned materials. For other materials, one may
choose a proper hardening law based on the results reported in Figure 5 and Figure S1.
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6. Conclusions

This study discussed the formulation of common hardening laws in the literature,
which are mainly used to describe the stress-strain relationships of automotive sheet metals.
Experimental data show that the evolution of hardening rate according to the increment
of the flow stress appears to be highly nonlinear. The use of either a saturation law or a
power law seems to be sufficient for capturing the experimental stress-strain data obtained
from the UT tests of the investigated materials. However, their extrapolation to large strain
ranges may be unsatisfied, as demonstrated by their predictions for the diffuse neck and the
hardening rate curves. Compared to these single functions, the combined hardening laws
provide better predictions for the post-necking ranges. However, the number of parameters
involved in these combinations are more than those of a single one. Increasing the number
of parameters may cost more in the calibration process, especially if an advanced method,
for example, the inverse finite element method, is applied.

Formulations of common hardening laws existing in the literature for sheet metals
were discussed using their ODE. Based on these discussions, four phenomenological hard-
ening laws for automotive sheet metals were presented, which requires four parameters in
each model. Two saturation laws are similar to those presented in previous studies [6,42]
but their formulas were constructed in different ways. Two power laws were newly pro-
posed, according to the authors’ knowledge. The proposed hardening laws, in addition to
the 14 hardening laws that exist in the literature, were tested for 12 sheet metals, includ-
ing six steel and six aluminum alloy sheets. The common and constrained curve fitting
methods were adopted to identify their parameters using experimental stress-strain data
obtained from the UT tests. Applications of the proposed hardening laws in fitting to the
flow stresses and predicting the diffuse neck, as well as the hardening rate curve of the
tested materials, are comparable to those of several combined hardening laws. Within
four involved parameters, the proposed functions may gain an advantage over the com-
bined models if they are calibrated by an advanced method such as the inverse finite
element method.

Applications of both common and constrained curve fitting methods for identifying
hardening law’s parameters expose limitations. Additional information is needed to judge
the goodness of the hardening laws identified by the common curve fitting method because
their extrapolations to larger strain ranges are highly sensitive to the formulations of the
imposed law. The constrained method should be used with care in determining a value
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of the maximum uniform plastic strain. Application of this method is only acceptable for
limited materials examined in this study. From this perspective, the δ2 criterion expressed
in Equation (22) can be used as an indicator for choosing a proper hardening law of which
the parameters were identified by curve fitting methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/met12040578/s1, Table S1: Calibrated parameters of hardening
laws for DP590 sheets; Table S2: Calibrated parameters of hardening laws for DP780 sheets; Table S3:
Calibrated parameters of hardening laws for DP980 sheets; Table S4: Calibrated parameters of
hardening laws for SPCC sheets; Table S5: Calibrated parameters of hardening laws for TRIP980
sheets; Table S6: Calibrated parameters of hardening laws for TRIP1180 sheets; Table S7: Calibrated
parameters of hardening laws for AA6016 sheets; Table S8: Calibrated parameters of hardening laws
for AA6022 sheets; Table S9: Calibrated parameters of hardening laws for AA7075 sheets; Table S10:
Calibrated parameters of hardening laws for AA5052 sheets; Table S11: Calibrated parameters of
hardening laws for AA6021 sheets; Table S12: Calibrated parameters of hardening laws for AA3004
sheets; Figure S1. Calculated δ2 of all identified hardening laws for tested materials. Column charts
indicate the results of the common curve fitting method; opened-symbols indicate the results of the
constrained curve fitting method.
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