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Abstract: High-strength steels (HSSs) with nominal yield stress not less than 460 MPa have been
increasingly employed in bridge structures. Compared with SM490 normal-strength steel (NSS),
HSSs, including SBHS500 and SM570, have higher strength but lower ductility, and brittle fracture
can easily occur in the HSSs members with notches. Therefore, 48 tension specimens with U-notch or
V-notch made of SBHS500, SM570 and SM490 structural steels are carried out. The influences of notch
depth, U-notch radius, V-notch degree and chemical composition on the mechanical and fracture
performances of the steel specimens are investigated. It is concluded from experimental results that
SBHS500 and SM570 HSSs with higher yield stress have a relatively higher elastic stress concentration
factor, crack initiation appears earlier, and brittle fracture is more likely to occur. Compared to SM570
HSS, SBHS500 HSS has better weldability.

Keywords: fracture performance; SBHS500; SM570; SM490; high strength steel; notch

1. Introduction

In engineering structures and components, notches are difficult to avoid, and some
notch-like geometries are necessary for structural design [1–3]. Notches produce stress
and strain concentration, then the stress state with high stress triaxiality, and these make
it easy for brittle fracture to occur [4–8]. U-notch and V-notch are the two main notch
types [9,10]. High-strength steel (HSS) usually refers to steels with nominal yield stress not
less than 460 MPa [11,12]. High yield stress might lead to poor plastic deformation capacity.
Accordingly, it is necessary to investigate the crack initiation, propagation and final failure
performances of notched HSS specimens, which is important to ensure the safety of HSS
structures with notches.

Great efforts have been put into fracture behavior of HSSs without notches in previous
studies [13–16]. These include Q460 [11], Q550 [16], Q690 [4,15,16], Q890 [16], ASTM
A572 [17], DP980 [18], ASTM A36 [19], ASTM A572 [19] and ASTM A992 [19] HSSs.
Additionally, for the Japanese bridge steel SM490 [20], the ductile fracture mechanism
of SM490 base metal, weld and heat affect zone was investigated for welded SM490
specimens in the reference [20], and a three-stage and two-parameter ductile fracture
model was proposed. Tension tests on U-notch and V-notch specimens with different
detailed geometries were carried out to investigate the ductile fracture behavior of SM490
steel [6]. An improved three-stage and two-parameter ductile fracture model was proposed
to accurately predict the ductile fracture behavior of specimens with notches by considering
the effect of stress triaxiality in the softening stage.
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In the past, SM490 steel was widely used in steel bridges in Japan. However, HSSs,
including SBHS500 and SM570, are employed in Japanese bridges in recent years to reduce
steel consumption by 10% [21,22] compared with SM490 steel because of their high yield
stress. In the previous study, the post-fire mechanical properties of SBHS500 HSS were
experimentally investigated [23]. Although HSS bridges have a significant advantage in
improving the bearing capacity of structures, the application of HSSs (including SBHS500
and SM570) in seismic structures is limited, owing to their relatively poor ductility com-
pared with that of normal strength steel (NSS). HSS bridges have several HSS members
with notches. This shortcoming of poor ductility limits the application of SBHS500 and
SM570 HSSs in seismic areas, especially for the HSS members with notches.

In this study, the fracture performances of notched steels are investigated for three
types of structural steels used in Japanese bridges, including SM490, SM570 and SBHS500,
in which SM570 and SBHS500 are HSSs standardized by the Japanese Industrial Standards
(JIS) Committee in the code JIS G 3140 [24], and SM490 is NSS standardized by JIS G
3106 [25]. Tension tests on U-notch and V-notch specimens with different detailed geome-
tries are carried out to study fracture performances of the steel specimens at different stress
triaxialities [6]. Crack initiating performances and crack initiation regions are identified.
Fracture surfaces of tested specimens are deeply analyzed. Moreover, effects of notch depth,
U-notch radius, V-notch degree and chemical composition on the yield stress and ultimate
stress of HSSs are investigated experimentally.

2. Experimental Program and Tested Specimens

Uniaxial tension tests were carried out to obtain the ductile fracture behavior of
SBHS500, SM570, and SM490 structural steels, using single-side notched flat bar specimens
made of these three types of steels, which consist of two series of notched specimens
with V-notch (abbreviated to VBS) and U-notch (abbreviated to UBS). In this experimental
investigation, uniaxial tension tests on flat bar specimens with various notches were
employed to investigate the dependence of ductile fracture behavior on stress triaxiality.
The geometric dimensions of VBS and UBS specimens tested are illustrated in Figure 1.
Different stress triaxialities are provided by changing the notch degree in VBS specimens
and the notch radius in UBS specimens [6]. For the VBS specimens, all of the specimens
have the same 3 mm notch depth, and four different notch degrees (30◦, 60◦, 90◦ and
120◦) are employed. Regarding the UBS specimens, all of the specimens have the same
5 mm notch depth, and four different notch radii (1 mm, 2 mm, 3 mm and 5 mm) are used.
Two specimens are allocated in each set and a total of 48 specimens were prepared for the
experimental tests. The actual flat bar thickness of VBS and UBS specimens are listed in
Table 1, and the photo of specimens is shown in Figure 2. Surface crack initiation behaviors
for all types of specimens were observed and recorded continuously by one high-speed
camera (Canon Inc., Tokyo, Japan). Though there are solutions, such as damage inspection
by magnetic dye penetrant or fractographic measurement, ductile crack initiation is defined
as the point when crack length extends to 1–2 mm according to visual or video camera
observation [20].

Table 1. Actual flat bar thickness of VBS and UBS specimens (Unit: mm) *.

VBS-V30-1 VBS-V30-2 VBS-V60-1 VBS-V60-2 VBS-V90-1 VBS-V90-2 VBS-V120-1 VBS-V120-2

SBHS500 12.18 12.20 12.20 12.13 12.15 12.15 12.13 12.20
SM570 12.13 12.30 12.33 12.13 12.13 12.15 12.15 12.13
SM490 12.05 12.00 12.05 12.08 12.00 12.00 12.03 12.00

UBS-R1-1 UBS-R1-2 UBS-R2-1 UBS-R2-2 UBS-R3-1 UBS-R3-2 UBS-R5-1 UBS-R5-2

SBHS500 12.40 12.08 12.20 12.15 12.18 12.20 12.18 12.10
SM570 12.23 12.13 12.20 12.15 12.15 12.23 12.23 12.18
SM490 12.03 12.03 12.00 12.03 12.05 12.00 12.03 12.00

* The value in this table is measured by a vernier caliper (±0.005 mm).
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Figure 2. Photo of specimens: (a) VBS specimens; (b) UBS specimens.

All specimens were tested using a 500 kN MTS material testing machine (MTS, Min-
nesota, MN, USA) under displacement control, as shown in Figure 3a. The specimens were
loaded at a rate of 0.02 to 0.05 mm/s (nominal corresponding strain rate 1 × 10−4/s to
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2.5 × 10−4/s). The observed point displacements were measured using a contact Ω exten-
someter (TML, Tokyo, Japan) in a gauge length of 200 mm, as shown in Figure 3b. During
the testing, the load P and observed point displacement were measured and recorded by a
data logger (TDS-530, TML, Tokyo, Japan).
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Figure 3. The test equipment: (a) MTS Material testing machine; (b) Ω extensometer.

3. Experimental Results and Discussions
3.1. Experimental Results

For comparison, Figure 4 shows the engineering stress-engineering strain curves
obtained from base metal specimens (non-notched flat bar specimens) made of SBHS500,
SM570, and SM490 structural steels, respectively, in which three tensile coupons of each
material (named as -C1, -C2, and -C3) are tested in this study. The engineering stress is
defined as the load divided by section area, and the engineering strain is defined as the
displacement from an extensometer divided by 200 mm. It can be observed that the three
tensile coupons’ engineering stress-engineering strain curves of each material, as shown
in Figure 4, are very close. The mechanical properties of SBHS500, SM570, and SM490
structural steels are listed in Table 2, in which the values are the average of results obtained
from three tensile coupons. For the SM570 and SM490 steels with obvious yield platform,
the yield stress is regarded as the stress when the material reaches yielding. Because the
SBHS500 HSS has no yield platform, 0.2% proof stress is regarded as the yield stress, where
0.2% proof stress is the engineering stress corresponding to the residual plastic strain level
of 0.2%. It is to be noted that the SBHS500 and SM570 HSSs have similar mechanical
properties, including elastic modulus, yield stress, ultimate stress, and elongation, although
SBHS500 HSS has no obvious yield platform, which exists in SM570 HSS. However, SM490
NSS has relatively low yield stress and relatively large elongation.
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Figure 4. Engineering stress–engineering strain curves of SBHS500, SM570, and SM490 struc-
tural steels.

Table 2. Mechanical properties of SBHS500, SM570 and SM490 structural steels.

E (GPa) 1 ν2 σy (MPa) 3 εy
4 σu (MPa) 5 δ (%) 6

SBHS500 208 ± 1.137 0.270 ± 0.020 578 ± 12.16 0.0020 ± 0.0000 675 ± 15.34 16.7 ± 0.01
SM570 216 ± 1.549 0.278 ± 0.009 597 ± 1.809 0.0028 ± 0.0013 674 ± 0.153 15.5 ± 0.04
SM490 213 ± 1.488 0.273 ± 0.009 388 ± 0.150 0.0018 ± 0.0057 546 ± 2.603 26.0 ± 1.30

1 E = Young’s modulus, 2 ν = Poisson’s ratio, 3 σy = yield stress, 4 εy = yield strain, 5 σu = ultimate stress,
6 δ = elongation.

The experimental load–displacement curves of VBS and UBS specimens made of
SBHS500, SM570 and SM490 structural steels are shown in Figure 5. It is evident from
Figure 5 that the load–displacement curves of the two specimens of the same type and
material are in agreement with each other, including elastic and plastic parts, although
softened and fractured parts of the two specimens of the same type and material have a
difference of less than 10%. Regarding UBS specimens, with the increase in U-notch radius,
ductile crack initiation occurs later. Figure 6 illustrates the strain-displacement curves
of VBS-V90 specimens made of SBHS500, SM570 and SM490 structural steels, where the
strain and displacement are directly obtained from a large strain gauge (YFLA-2, TML,
Tokyo, Japan) in Figure 7a and extensometer, respectively. The maximum strain that can
be measured by this large strain gauge is 20%. It can be observed from Figure 6 that the
notched specimens of SBHS500 HSS have a relatively larger strain rate compared to those
of SM570 and SM490 steels, so the notched specimens of SBHS500 HSS have a relatively
faster crack propagation speed.
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Figure 5. Load–displacement curves of VBS and UBS specimens made of various HSS materials:
(a) VBS specimens made of SBHS500; (b) UBS specimens made of SBHS500; (c) VBS specimens made
of SM570; (d) UBS specimens made of SM570; (e) VBS specimens made of SM490; (f) UBS specimens
made of SM490.
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Figure 7. Crack initiation, propagation and final fracture of Specimen UBS-R1-1: (a) Before crack
initiation; (b) crack initiation; (c) crack propagation; (d) final fracture.

The strain gauge was arranged at the position 5 mm away from the notch tip, as
shown in Figure 7a. When the displacement is about 1 mm, and the specimen is in the
elastic range, SM570 and SM490 specimens have the same strain increase rate; however, the
SBHS500 specimen has a relatively smaller strain increase rate. When the displacement is
4 mm, the strain of the SM490 NSS specimen is about 2%, and that of SM570 and SBHS500
HSS specimens is about 3%. It can be observed and obtained that the plastic deformation
capacity of SM570 and SBHS500 HSS specimens is relatively worse than that of SM490
specimens, and the inelastic strain of SM570 and SBHS500 HSS specimens concentrates
at the notch region of specimens. On the contrary, the SM490 NSS specimens with better
plastic deformation capacity have a greater gauged displacement. Therefore, a smaller
strain at the notch region can be observed in the SM490 NSS specimens compared to SM570
and SBHS500 HSS specimens.

Average elongation values of VBS and UBS specimens for ductile fracture tests are
listed in Table 3. Regarding the VBS specimens, it is evident that the elongation of the
specimen has no obvious relationship with the notch degree. For the UBS specimens, the
obvious relationship between the elongation and the notch radius is not observed except
for the specimens with a notch radius of 1 mm. However, the elongation of UBS specimens
is 2% greater than that of VBS specimens on average. The phenomenon’s reason is that the
stress triaxiality and inelastic strain concentration degree of VBS specimens are higher than
those of UBS specimens. It can be concluded from Table 3 and Figure 8 that the elongation
of SBHS500 HSS specimens is the smallest of all specimens made of three steel materials
in this study, and brittle fracture occurs in the SBHS500 HSS specimens. Additionally, the
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elongations of SM570 and SM490 specimens change more greatly along with the notch
shape change; however, the varied range of elongation of SBHS500 HSS specimens along
with the notch shape is fewer than that of SM570 and SM490 specimens.

Table 3. Average elongation value of VBS and UBS specimens for ductile fracture tests *.

SBHS500 SM570 SM490 SBHS500 SM570 SM490

VBS-V30 5.8 ± 0.01% 9.1 ± 0.07% 12.9 ± 0.45% UBS-R1 5.9 ± 0.30% 5.9 ± 0.19% 9.6 ± 0.01%
VBS-V60 6.7 ± 0.07% 7.5 ± 0.69% 11.7 ± 0.12% UBS-R2 6.1 ± 0.00% 6.5 ± 0.04% 10.5 ± 0.04%
VBS-V90 4.9 ± 0.00% 8.1 ± 1.51% 12.1 ± 0.15% UBS-R3 6.4 ± 0.09% 6.4 ± 0.30% 10.4 ± 0.00%
VBS-V120 6.9 ± 0.02% 7.3 ± 0.42% 12.9 ± 0.13% UBS-R5 6.6 ± 0.03% 6.9 ± 0.01% 10.5 ± 0.02%

* The value in this table is the average value of two specimens.
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Figure 8. Average elongation value of VBS and UBS specimens for ductile fracture tests: (a) Average
elongation–V-notch radius relationship; (b) average elongation–U-notch radius relationship.

3.2. Crack Initiation

“Linear notch mechanics” proposed by Nishitani [26,27] is regarded as an engineering
method to evaluate the mechanical properties of members with the notch. The elastic stress
concentration factor is approximately defined as follows:

K = 1 + 2

√
d
R

(1)

where K is the elastic stress concentration factor, d is the notch depth, and R is the notch
radius. For the UBS specimens, when the notch radius is equal to 1 mm and 2 mm, the
crack initiation occurs before the ultimate loading point; when the displacement is equal to
3 mm and 5 mm, the crack initiation occurs after the ultimate loading point.

The parameters of UBS specimens calculated and obtained from tests are listed in
Table 4. It can be observed from Table 4 that the εcrack value of UBS specimens decreases
with the increase in the notch radius. Compared to the SM490 NSS specimens with better
plastic deformation capacity, the SBSH500 and SM570 HSS specimens with worse plastic
deformation capacity have smaller strain values at crack initiation (εcrack).



Metals 2022, 12, 672 9 of 16

Table 4. Parameters of UBS specimens calculated and obtained from tests.

UBS-R1 UBS-R2 UBS-R3 UBS-R5

d (mm) 2 5 5 5 5
R (mm) 3 1 2 3 5

K1 5.472 4.162 3.582 3.000

SBHS500
εcrack

4 0.0159 ± 0.0004 0.0198 ± 0.0002 0.0268 ± 0.0012 0.0377 ± 0.0004
εcrack/εy

5 7.950 9.900 13.400 18.850

SM570
εcrack 0.0125 ± 0.0010 0.0228 ± 0.0007 0.0282 ± 0.0041 0.0403 ± 0.0008

εcrack/εy 4.471 8.155 10.073 14.395

SM490
εcrack 0.0398 ± 0.0009 0.0573 ± 0.0018 0.0610 ± 0.0012 0.0705 ± 0.0016

εcrack/εy 22.111 31.833 33.889 39.167
1 K = stress concentration factor, 2 d = notch depth, 3 R = notch radius, 4 εcrack = average value of strain at crack
initiation for two specimens, 5 εy = yield strain of HSS.

The εcrack/εy-1/K relationship of the UBS specimens is shown in Figure 9. A linear
relationship is observed between the value of εcrack/εy and 1/K. With the increase of 1/K,
the εcrack/εy of three series of the specimens increases. The coefficient of determination of
these three curves is more than 0.9. Regarding the SBHS500 and SM570 HSSs specimens
with a high yield stress, with the decrease in notch radius, the elastic stress concentration
factor increases and the strain at crack initiation decreases. This fact might lead to a brittle
fracture occurring before the plastic deformation is fully employed.
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Figure 9. εcrack/εy-1/K relationship of UBS specimens.

3.3. Fracture Surface

It can be observed from tests that for VBS and UBS specimens, as shown in Figure 10,
cracking is induced by the growth and coalescence of numerous nucleated micro-voids
from the surface of the notch root region (Zone A), then propagation in a herringbone
pattern (Zone B), leading to final shear mode failure (Zone C) [20]. Zone A and Zone B are
coarse surfaces; Zone C is very smooth and along a local shear band oriented at an angle of
about 45◦ in relation to the tensile axis [12].
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It can be concluded from Figure 10a–c that the specimens made of SM490 with the
best plastic deformation capacity have the relatively larger crack initiation region and crack
propagation region; however, the specimens made of SBHS500 with the worst plastic defor-
mation capacity have the relatively smaller crack initiation region and crack propagation
region. It can be observed in Figure 10a,d,e that the crack initiation region greatly increases
with the increase in the U-notch radius. From Figure 10f–h, it can be observed that the
crack initiation region slightly increases with the increase in V-notch degree. Moreover,
there is obvious delamination in the failure surface of SBHS500 and SM570 HSS specimens.

3.4. Effect of Notch Depth

To investigate the effect of notch depth on fracture behavior, Figure 11 illustrates the
VBS test results of SM490 specimens with a notch depth of 3 mm in this study and those
of SM490 specimens with a notch depth of 6 mm in the reference [6]. Figure 12 shows the
UBS test results of SM490 specimens with a notch depth of 5 mm in this study and those of
SM490 specimens with a notch depth of 6 mm in the reference [6].

In this section, the yield and ultimate stresses are defined as the 0.2% proof stress and
the maximum stress during tests, respectively. When there is no obvious yield platform, the
yield stress can be defined as 0.2% proof stress [28]. In the VBS tests, as listed in Table 5, the
yield stress of VBS specimens with a notch depth of 3 mm in this study is 400 MPa; however,
that of VBS specimens with a notch depth of 6 mm in the previous study is 450 MPa. The
ultimate stress of VBS specimens with a notch depth of 3 mm and 6 mm is 550 MPa and
480 MPa, respectively. In other words, with the increase in notch depth, the yield stress
increases, but the ultimate stress decreases. The same phenomenon occurs in the UBS
specimens, as shown in Figure 12. The yield stress of UBS specimens with a notch depth of
6 mm is greater than that with a notch depth of 5 mm; however, the ultimate stress is the
opposite. The decent rate of a load of specimens in this study is not related to notch shape
and notch depth. The greater the notch depth, the earlier the crack initiation. A greater
notch depth might result in brittle fracture because the plastic deformation capacity cannot
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be fully employed. Therefore, a detailed notch geometry should be obtained in practical
engineering because a greater notch depth might lead to brittle fracture of members.
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Figure 11. Effect of notch depth (VBS specimens made of SM490): (a) VBS-V30 specimens; (b) VBS-
V60 specimens; (c) VBS-V90 specimens; (d) VBS-V120 specimens.

Table 5. Effect of notch depth (UBS specimens made of SM490).

Depth σy (MPa) σu (MPa)

3 mm 400 550
6 mm 450 480

Because the tested specimens in this study are single-groove, the HSS material in the
notch region firstly reaches to yielding, as marked by the black circle in Figure 13a, and
then the full cross-section enters yielding. During this process, the neutral axis moves to the
side without the notch because the elastic modulus will decrease once the material enters
plastic. In this study, the yielding stress of specimens tested is regarded as the point that a
full cross-section enters plasticity because the yielding point of the notch region cannot be
determined easily.
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Figure 12. Effect of notch depth (UBS specimens made of SM490): (a) UBS-R2 specimens; (b) UBS-R3
specimens; (c) UBS-R5 specimens.

3.5. Relationships between Detailed Notch Geometry with Yield and Ultimate Stresses

The relationships between detailed notch geometry (U-notch radius and V-notch
degree) with yield and ultimate stresses are shown in Figure 14. The yield and ultimate
stresses in Figure 14 are defined as the yield load and ultimate load divided by the notched
minimum sectional area, respectively. It can be observed that the yield stress has no obvious
relationship with the detailed notch geometry, including both the U-notch radius and V-
notch degree. The yield stress of VBS and UBS specimens is about 1.1 times greater than
that of base metal specimens. Similarly, the ultimate stress has no obvious relationship
with the detailed notch geometry. Accordingly, the effect of notch depth is higher than the
effects of notch degree or notch radius.
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Figure 14. Effect of U-notch radius and V-notch degree: (a) Yield stress–U-notch radius relation-
ship; (b) yield stress–V-notch degree relationship; (c) ultimate stress–U-notch radius relationship;
(d) ultimate stress–V-notch degree relationship.
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3.6. Weldability

It is remarked that from the metallurgical point of view, both the grain sizes and
microstructural arrays of distinctive materials and alloys have important roles in the
resulting material’s properties (e.g., mechanical and corrosion behaviors), as previously
reported [29–36]. In this study, the weldability of these steels is studied based on the
chemical composition.

Table 6 lists the chemical compositions of HSSs in this study, including SM570 and
SBHS500, from HSS manufacturers. The chemical composition of SM490 NSS is not pro-
vided by the manufacturer. As shown in Table 6, C, Si, Mn, P, and S are the main five
compositions, in which C, Si and Mn play an important role in the control of mechanical
and impact properties, and P and S are impurities. Except for these five compositions,
other compositions can be added to HSS materials to improve impact properties or to refine
particle size. Generally, increasing C content can lead to an increase in yield and ultimate
stresses. In this study, SBHS500 and SM570 HSSs have almost the same ultimate stress;
however, the yield stress of SM570 is greater than that of SBHS500 because the C content of
SM570 HSS is 0.02% higher than that of SBHS500. Adding the composition of Cr can result
in improving the corrosion, oxidation, and abrasion resistance; adding the Cr content has
no effect on the mechanical properties of HSS. The carbon equivalent value Ceq and the
welding crack sensitivity index PCM, which is a weldability index, are defined as follows:

Ceq = C +
Mn

6
+

Si
24

+
Ni
40

+
Cr
5

+
Mo
4

(2)

PCM = C +
Mn
20

+
Si
30

+
Cu
20

+
Ni
60

+
Cr
20

+
Mo
15

+
V
10

+ 5B (3)

Table 6. Chemical composition of SM570 and SBHS500 (%).

B N C Si Mn P S Cu Ni Cr Mo Nb V

SM570 0.0012 0.0160 0.1200 0.2100 1.6000 0.0110 0.0020 0.010 0.020 0.010 0.000 0.020 0.060
SBHS500 0.0010 0.0153 0.1000 0.2200 1.5300 0.0090 0.0020 0.010 0.010 0.140 0.000 0.023 0.060

Table 7 lists the calculated values of Ceq and PCM in Equations (2) and (3). It is
illustrated that the Ceq value of SBHS500 is equal to that of SM570; however, the PCM
value of SBHS500 is 0.02% less than that of SM570. Therefore, the preheating of welding
of SBHS500 specimens or members can be carried out at a relatively low temperature,
the crack due to heating during welding is not easy to occur, and SBHS500 specimens or
members have better weldability.

Table 7. Calculated values of PCM and Ceq.

PCM Ceq

SM570 0.220 0.402
SBHS500 0.203 0.397

4. Conclusions

The ductile fracture performances of two types of HSSs, including SBHS500 and
SM570, and an NSS SM490 are investigated by a series of V-notch and U-notch fracture tests.
Four various V-notch degrees and four U-notch radii are employed to create different stress
triaxialities. A total of 48 specimens are tested. The following conclusions can be obtained:

(1) For the three structural steels, with the decreases of the degree of V-notch or radius of
U-notch, both the ductile crack initiation point and drop in the load–displacement
responses of VBS and UBS specimens appear earlier;
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(2) The elongation of specimens made of SM490 and SM570 vary greatly along with the
notch shape change; however, the elongation changes of specimens made of SBHS500
along with the notch shape change is relatively small;

(3) NSS SM490 is the structural steel with the best plastic deformation capacity in the
three structural steels of this study. SBHS500 and SM570 HSSs have the worse plastic
deformation capacity because of their higher yield stress;

(4) SBHS500 and SM570 HSSs with higher yield stress have a relatively higher elastic
stress concentration factor, the crack initiation appears earlier, and the brittle fracture
is more likely to occur;

(5) Compared to SM570 HSS, SBHS500 HSS has a lower PCM and better weldability.
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