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Abstract: Strict monitoring and prediction of endpoints in a Basic Oxygen Furnace (BOF) are essential
for end-product quality and overall process efficiency. Existing control models are mostly developed
based on thermodynamic principles or by deploying advanced sensors. This article aims to propose a
novel hybrid algorithm for endpoint temperature, carbon, and phosphorus, based on heat and mass
balance and a data-driven technique. Three types of static models were established in this study:
firstly, theoretical models, based on user-specified inputs, were formulated based on mass and energy
balance; secondly, artificial neural networks (ANN) were developed for endpoints predictions; finally,
the proposed hybrid model was established, based upon exchanging outputs among theoretical
models and ANNs. Data of steelmaking production details collected from 28,000 heats from Tata Steel
India were used for this article. Machine learning model validation was carried out with five-fold
cross-validation to ensure generalizations in model predictions. ANNs are found to achieve better
predictive accuracies than theoretical models in all three endpoints. However, they cannot be directly
applied in any steelmaking plants, due to possible variations in the production setting. After applying
the hybrid algorithm, normalized root mean squared errors are reduced for endpoint carbon and
phosphorus by 3.7% and 9.77%.

Keywords: BOF steelmaking; endpoint prediction; prediction model; machine learning; artificial
neural network; heat and mass balance; hybrid modeling; slag chemistry

1. Introduction

The Basic Oxygen Furnace (BOF) is a key process in the global steelmaking industry
due to its high productivity and cost-efficiency, and it is implemented in around 65% of
global steelmaking plants [1,2]. Over the past decade, the steelmaking industry has faced
continuous economic and environmental challenges, including a 100% increase in the price
of iron ore [3]. As a result, to fulfil the steel product pricing requirement and ensure an
uninterrupted supply of raw material, the source of iron ore may change abruptly. Such
sudden change in iron ore sources may change the quality of iron ore, and, eventually,
can change the quality of hot metal produced from the blast furnace. For instance, the
phosphorus (P) content of hot metal can occasionally change, due to the high P content in
iron ore. This change in iron ore quality can affect the processing of hot metal in a basic
oxygen furnace, in terms of alteration in blowing periods, flow of input oxygen, etc. The
problem of over-blow or under-blow can also be observed, which creates problems for
downstream operators. The same issues can arise if there is rapid fluctuation in hot metal
carbon and silicone content. Close control of such situations is not possible by human
interventions only, and fast automated support is needed. An assistance model can be
extremely useful for operators to predict the operating conditions upon observing any such

Metals 2022, 12, 801. https://doi.org/10.3390/met12050801 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met12050801
https://doi.org/10.3390/met12050801
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0002-0755-8846
https://doi.org/10.3390/met12050801
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met12050801?type=check_update&version=2


Metals 2022, 12, 801 2 of 21

fluctuation in hot metal quality. Thus, in the production process, accurate predictions on
endpoint steel chemistries and temperature (T) can ensure final product quality, as well as
process efficiency.

BOF is a complex multi-variate and multi-phase process, subject to oscillations in
input materials and extreme environments. During the process, pure oxygen is injected
into the furnace at a supersonic speed onto the surface of hot metal (HM) in order to elevate
the furnace temperature and remove impurities through oxidation reactions. Endpoint
compositions and endpoint temperature refer to the elemental content and temperature
of the molten steel when the oxygen blowing process is completed. Endpoint carbon (C)
directly determines the strength and brittleness of steel; increased P content in steel can
lead to subpar ductility, toughness, and embrittlement; endpoint T plays a crucial factor in
determining efficiency for subsequent processes, such as secondary refining and continuous
casting [1,4]. The existing process control models for BOF can be roughly categorized into
three groups: (i) online measurement models, (ii) theoretical models, and (iii) data-driven
models [5].

Online measurement models involve the deployment of advanced sensors and equip-
ment, such as sub-lance systems and off-gas analyzers [6–8]. These models can predict the
endpoints for each heat during processing by means of continuous sensing. Thus, these
models require large capital and maintenance costs, which directly increase the cost of
steel. For example, Li et al. dynamically predicted off-gas formation by deriving a reaction
kinetics-based mathematical model in a top-blown converter [9]. Cunha et. al. developed a
dynamic model which could forecast endpoints and correct the process parameters using
machine learning (ML)-based prediction and inverse models [10].

Mechanism models for predicting endpoint chemistries and temperature can be cat-
egorized into static models and dynamic models. Mechanism static models are usually
established based on heat and mass balance during the process, and they mostly depend
on static operation parameters and the stability of raw material characteristics. Heat bal-
ance model calculation includes the balance of input and output energy for a system at
equilibrium. Input heat consists of the sensible heat of each input material, such as hot
metal and scrap (for preheated scrap only) and dissolution heat of impurities, i.e., C, Si, Mn,
and P in liquid iron. On the other hand, heat output is comprised of sensible heats of steel,
sensible heats of slag, sensible heats of waste gases and heat of scrap melting. In order
to calculate the sensible heats of these components, mass balance needs to be performed
to determine their respective weights. Thus, heat and mass balance-based models can
successfully identify the end chemical composition and temperature of liquid steel after
heat making. A pioneer study on heat and mass balance in a BOF process was performed by
Philbrook [11]. He presented the method of performing these calculations comprehensively.
Slatosky developed a heat and mass balance-based static model to predict the end point
temperature of BOF [12]. He also validated his calculations using data obtained from
mill trials. Meyer et al. identified that error in FeO prediction by incorrect estimation of
oxygen consumption in the formation of FeO and CO2 can lead to substantial deviation
in endpoint temperature prediction [13]. In 1981, Neto established a solution-based heat
and mass balance theoretical model to forecast endpoint carbon and temperature, but
subpar prediction accuracy was found in the model, due to the theoretical assumptions
in parameters [14]. Fruehan et al. developed a heat balance model to calculate minimum
theoretical energy and validated that against real plant data [15]. Madhavan et al. applied
a mass and energy balance model in oxygen steelmaking and validated their model against
plant data [16,17]. Such models may suffer from the unrealistic assumption of equilibrium,
as well as the highly volatile raw material components. Over the past several decades, a
tremendous amount of research has been conducted on phosphorus removal, specifically
in steelmaking, based on thermodynamic principles [18–20]. In the 1940s, Balajiva and
Vijragupta reported that increasing the concentrations of CaO and FeO result in favor of
phosphorus partition [18]. Suito and Inuoi concluded that dephosphorization accelerates
with an increasing concentration of CaO in the slag [19]. Prediction of endpoint phosphorus
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is important because it is a determining factor for processing time. Optimized phosphorus
content can help in reducing specific consumptions and improve the life of refractory lining.
The equation for calculating the phosphorus partition ratio, established by Suito and Inuoi,
is given by,

log (%P)
[%P] = 0.072{(%CaO) + 0.3(%MgO) + 0.6(%P2O5) + 0.2(%MnO) + 1.2(%CaF2)− 0.5(%Al2O3)}

+2.5 log(%Fetotal) +
11570

T − 10.52
(1)

where (A) and (B) represent a species in the hot metal phase and slag phase respectively,
T is the turndown temperature, and (%A) corresponds to the weight percentage of any
component A. Phosphorus partition is chronologically improved through a lot of research
using a combination of experimental and statistical analysis [21–27]. One of the limitations
of the mechanism static model is the incapability of predicting both chemical compositions
and temperature with time during the blowing process. To overcome such a limitation,
researchers have developed mechanism static models by incorporating additional process
variables [28,29]. In 2015, Sarkar et al. proposed a mathematical model for predicting the
composition evolutions of slag-metal compositions by modeling the emulsion phenomena
in three separate reactors with the incorporation of continuous process parameters, such as
lance height. This model was able to predict many features of BOF process qualitatively
well [28]. Recently, Biswas et al. further advanced this framework by including chemical
reactions involving phosphorus and manganese. This model also incorporated a new
mechanism reaction before the formation of emulsion, and it was capable of simulating
the reversion of manganese and phosphorus in the middle of BOF blowing [29]. In the
present manuscript, only the mechanism static model based on heat and mass balance is
considered for formulation.

Data-driven static models are prominent in recent trends because they can significantly
improve correlation among input and output features. With increasing computational
power and availability of data, many researchers have successfully established endpoint
prediction models by using statistical and machine learning techniques [5,30–39]. In 2010,
Wang et al. proposed using mutual information as the input variable selection technique
paired with an input weighted support vector machine to predict endpoint carbon of the
BOF process. The model was capable of effectively selecting useful process parameters
and improving forecasting accuracy [2]. Han et al. proposed an algorithm that combines
particle swarm optimization, independent component analysis, and radial basis function
neural network to predict endpoint carbon and temperature of BOF steelmaking [36].
In 2011, Cai et al. applied density-based spatial clustering of applications with a noise
clustering algorithm and a radial-basis function neural network to predict endpoint tem-
perature [39]. In 2019, Chattopadhyay and Kumar proposed building prediction models
by using multiple linear regression (MLR) for two plants, where they presented necessary
verification measures to incorporate the MLR algorithm [30]. More recently, Phull et al.
established a gaussian mixture model (GMM) paired with decision tree-based twin support
vector machine (TWSVM) based on slag chemistry and tapping temperature, to predict
endpoint phosphorus [31]. A greater degree of P-partition can be achieved by using their
proposed method. These results of data-driven models have shown effective improvements
in prediction accuracy over conventional theoretical models.

In general, theoretical models that use thermodynamic principles are beneficial to
understanding the reactions taking place in BOF steelmaking. However, these models tend
to be established based on homogeneity of physiochemical reactions and slag compositions
at equilibrium, which is unlikely to be achieved in BOF production, due to the nature
of the multi-phase and multi-variate process. On the other hand, machine learning is
a fast-growing area of research, due to its superb computational power in nonlinearity
modeling, which can compensate for the deficiencies of traditional theoretical models.
However, ML can be difficult to interpret and is sometimes referred to as a “black-box”,
because it can contain thousands of parameters and the model can be hard to comprehend.
In addition, endpoint prediction models that are developed based on ML techniques tend
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to be plant-specific, and they cannot be applied in any other steelmaking plants due to
potential variations in production settings. Before the emergence of machine learning, the
majority of the BOF process models were developed based on thermodynamic principles.

In this paper, a novel hybrid model to predict endpoint T, C, and P was established by
using theoretical framework coupled with data-driven techniques. To begin with, a slag
chemistry model was established by using static parameters to predict slag composition,
which was incorporated to develop the theoretical model. Theoretical models for endpoint
temperature, carbon, and phosphorus were developed based on heat and mass balance
with static parameters and the slag chemistry model. Then, three machine learning models
using ANN were developed for endpoint temperature, carbon, and phosphorus. In the
end, the hybrid algorithm was carried out by creating a workflow that allows exchange
of input and output among theoretical models and data-driven models. In contrast to
theoretical models, the hybrid algorithm can reduce the number of assumptions and
simplifications involved and ultimately improve predictive accuracies. In addition, the
involvement of theoretical models within the hybrid architecture can effectively improve
comprehensive understanding in the metallurgical process, and the presence of theoretical
models allows the hybrid model to be applied in any steelmaking plant, disregarding
variations in process parameters.

2. Theory and Methodology

As mentioned earlier, theoretical models and machine learning models have their own
advantages regarding one another. All of the models in this paper are developed based on
static parameters that are readily available before the beginning of the BOF process, which
include hot metal chemistries, process parameters, and flux additions. On the other hand,
lag parameters, such as slag chemistries, features that can only be measured when the BOF
process is completed, are not directly used as input variables for model development. In
this paper, a total of three different techniques were utilized for endpoint prediction model
development. Firstly, theoretical models were established by formulating heat and mass
balance of the BOF; secondly, an artificial neural network (ANN) was utilized to create
three models for endpoint predictions; lastly, the proposed hybrid model algorithm was
implemented, based on theoretical models and ANN by using Python 3.7. The theoretical
and data-driven models’ developments are encapsulated using a flowchart as shown in
Figure 1.

Figure 1. Flowchart of the development for theoretical models and data-driven models, models
highlighted in red correspond to the participants in hybrid algorithm.
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2.1. Nature of the Data

The proposed hybrid model algorithm was developed and tested on datasets obtained
from Tata Steel India. The dataset consists of static features from 28,000 heats, including
hot metal chemistries, process parameters, and flux additions. A detailed summary of
features and endpoint values is presented in Table 1. Units for hot metal compositions
and endpoint chemistries are provided in weight percentage (wt%), units for endpoint
temperature and hot metal temperatures are in degrees Celsius; units for flux additions
and hot metal weight are given in tons; the unit for oxygen volume is given in Nm3; and
units for all other process parameters are in minutes.

Table 1. Descriptive statistics of features and endpoints for Tata Steel dataset.

Feature Category Variable Mean Standard
Deviation

Endpoints
Endpoint T 1649.1 22.2
Endpoint C 0.044 0.013
Endpoint P 0.0163 0.006

Hot Metal Chemistries

HM C 4.556 0.066
HM P 0.176 0.015
HM S 0.023 0.018

HM Mn 0.043 0.006
HM Si 0.641 0.162
HM Ti 0.069 0.015
HM Cr 0.009 0.005

Flux Additions

Lime 8.507 1.345
Dolomite 3.656 0.698
Iron Ore 6.596 2.004

Scrap 10.606 6.616

Process Parameters

HM Weight 163.9 7.0
HM Temperature 1362.1 31.8
Oxygen Volume 7807.6 408.9
Blow Duration 17.85 1.66

Blow End to Turndown Start Duration 3.52 1.91
Blow End to Tapping Start Duration 8.47 7.63

Tapping Duration 5.5 1.99

2.2. Formulation of Mass and Energy Balance

The mass and energy balance model is crucial for modeling the BOF process, and it
is commonly used as an in-house static model for controlling process parameters such
as coolant addition or re-blowing. In this article, the heat and mass balance model was
formulated to create theoretical models for predicting endpoint temperature, carbon, and
phosphorus based on input static parameters.

2.2.1. Mass Balance

To create a static mass balance model, all materials entering and leaving the BOF
system must be considered, and they can be expressed by a series of equations derived
from elemental balance. In general, elemental balances can be categorized into four groups:
metallic elemental balance, oxygen balance, carbon balance, and flux balance. Mass balance
for metallic element X (can be Fe, Si, Mn, P) can be given by:

Mass o f element (X)in hot metal + (X) in Iron Ore + (X) in Scrap
= Mass o f element (X) in steel + (X)in slag

(2)

oxygen balance can be described by:
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Mass o f oxygen injected + oxygen in iron ore + oxygen in dolomite + oxygen in lime
= Mass o f oxygen in slag + oxygen in O f f Gas

(3)

carbon balance can be represented by:

Mass o f carbon in hot metal + carbon in Scrap = Mass o f carbon in steel + carbon in o f f gas (4)

and flux balance can be written in the following form:

Mass o f f lux addition = Mass o f CaO and MgO in slag (5)

Terms on the left side of the equal sign represent materials that enter the system, and
terms on the right correspond to those that leave. By looking at Equations (2)–(5), steel and
slag are two major components in the system outputs. Thus, to create a forecasting model
for predicting steel chemistries, it is also necessary to predict slag chemistries to complete
the overall mass balance calculation.

2.2.2. Slag Chemistry Model

Since slag parameters cannot be directly used as inputs to formulate mass balance, it
is necessary to design a model specifically for slag chemistries. In order to create a slag
chemistry model based on user-specified inputs, four simplifications and assumptions were
considered for the formulation:

1. Silicon from hot metal is completely oxidized.
2. Weight percentage of CaO in slag is assumed to be the mean from the dataset, which

is 51%.
3. Coolant added is in the form of pure Fe2O3.
4. Injected oxygen is completely consumed.
5. All the lime added to the process goes into the slag.

The slag chemistry model starts with creating a MLR model to predict theoretical slag
basicity based on part of the user-specified parameters presented in Table 2. Theoretical
slag basicity is an important parameter for refining and is given by Equation (6):

Theoretical Slag Basicity =
weight percentage o f CaO
weight percentage o f SiO2

(6)

Table 2. User-specified inputs used for multiple linear regression to predict slag basicity.

Feature Category Variable

Hot Metal Chemistries

HM C
HM P
HM S

HM Mn
HM Si

Flux Additions

Lime
Dolomite
Iron Ore

Scrap

Based on the assumption that all of the silicon input is completely oxidized, the weight
of SiO2 in slag can be calculated based on mass balance of silicon. Then, this value is
multiplied by the predicted slag basicity from the regression model to provide the mass
of CaO in slag, and slag weight can be computed based on the second assumption. Once
the slag weight is determined, the weight percentages of MnO, MgO, Al2O3, and P2O5
can be calculated, based on elemental mass balance Equations (2)–(5). Lastly, the weight
percentage of FeO can be determined by subtracting the weight percentages of all other
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components from 100%. The overall slag chemistry model calculations are represented
using a flowchart as shown in Figure 2.

Figure 2. Flowchart of the slag chemistry model.

2.2.3. Endpoint Carbon Theoretical Model

Decarburization is the most extensive reaction during the BOF process. The majority
of the carbon from liquid iron and scrap is oxidized into off-gas in the form of CO and CO2,
and only a small amount of carbon is left in liquid steel, which is endpoint carbon. Instead
of directly calculating endpoint carbon by formulating a carbon balance, the theoretical
model developed in this paper uses oxygen balance to indirectly infer the amount of carbon
present in liquid steel. The endpoint carbon theoretical model is closely dependent on one
of the assumptions made earlier, which is that the oxygen injected is completely consumed.
With the user-specified inputs and outputs from the slag chemistry model, the endpoint
carbon model starts by calculating the mass of oxygen injected into the system through
lance. Oxygen sourced from limestone, dolomite, and iron ore is also computed, and total
weight of oxygen input can be calculated by using Equation (3). On the other hand, oxygen
present in slag can be determined based on the predicted slag chemistries from the prior
model. The difference between oxygen input and output refers to the amount of oxygen
consumed for decarburization. From the dataset, the ratio between CO and CO2 in the
off-gas is found to be relatively consistent; thus, a fixed ratio of 0.15 is applied based on
iterative calculations. The overall flowchart of the endpoint carbon theoretical model is
represented in Figure 3.

Figure 3. Flowchart of the endpoint carbon theoretical model.

2.2.4. Heat Balance and Endpoint Temperature Theoretical Model

The assessment of heat balance is captured by establishing calculations that include
the balance of input and output energy for a system at equilibrium. Heat input and output
components in the BOF process can exist in various forms, such that input heat consists
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of sensible heat of each input material, such as hot metal and scrap (for preheated scrap
only), and dissolution heat of impurities i.e., C, Si, Mn, and P in liquid iron. On the other
hand, heat output is comprised of sensible heats of steel, sensible heats of slag, sensible
heats of waste gases and heat of scrap melting. The heat balance for a BOF process can be
formulated as follows:

Overall energy balance:

Heat input = Heat output + Heat Losses (7)

Heat Input Components:

Heat input = Sensible heat of liquid iron + Heat of oxidation reactions (8)

Heat Output Components:

Heat Output = Sensible heat o f (molten steel + slag + waste gas)
+Heat o f Scrap and Ore melting

(9)

Since no endpoint information is available for the formulation of heat balance in this
study, four additional simplifications and assumptions are considered:

1. Sulfur is not considered for heat balance.
2. Weight percentages of iron and carbon in molten steel are assumed to be their respec-

tive medians from the dataset.
3. Flux and scrap additions are assumed to be charged at room temperature (25 ◦C).
4. Slag temperature is assumed to be 100 degrees Celsius higher than steel tempera-

ture [6].
5. Off-gas temperature is assumed to be 1600 ◦C [6].

In addition to the considered assumptions, the optimal heat loss and post-combustion
ratio (PCR) in the heat balance model are investigated based on iterative calculations.
According to the literature, heat loss for the oxygen steelmaking process ranges from 1.3%
to 5.9% of the total heat input, and the PCR ratio ranges from 0.10 to 0.22 [6,7,16,40]. These
value ranges are tried and tested to formulate the heat balance, and the values for heat loss
and PCR are determined to be 5% and 0.15. The overall flowchart of the endpoint carbon
theoretical model is represented in Figure 4.

Figure 4. Flowchart of the endpoint temperature theoretical model.

Based on user-specified parameters, the sensible heat of liquid iron can be calculated
with the weights of each component and their corresponding heat capacities:
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Sensible heat o f hot metal
= WHM ∗ (Fe%HM ∗

∫ THM
298 CpFedT + C%HM ∗

(∫ THM
298 CpCdT + HdissC

)
+ Si%HM

∗
(∫ THM

298 CpSidT + HdissSi

)
+ P%HM

∗
(∫ THM

298 CpPdT + HdissP

)
+ Mn%HM ∗

∫ THM
298 CpCdT + HdissMn)

(10)

where WHM is the weight of hot metal, X%HM means weight percentage of X in hot metal,
THM is the hot metal temperature, CpX represents specific heat of X, and HdissX corresponds
to heat of dissolution of X. During the BOF process, impurities in the liquid iron are oxidized
to form slags. With the results generated by the slag chemistry model, heat of oxidation
reactions can be computed by using the following equation:

Heat of oxidation reactions =

Wslag ∗
(

SiO2%slag ∗ 28
60 ∗ (HreactionSi + HDissSi +

60
28

(
HDissSiO2 +

∫ TSlag
298 CpSiO2dT

)
+ MnO%slag ∗ 55

71

∗(HreactionMn + HDissMN + 71
55

(
HDissMnO +

∫ TSlag
298 CpMnOdT

)
+ P2O5%slag ∗ 62

142

∗(HreactionO + HDissP +
142
62

(
HDissP2O5 +

∫ TSlag
298 CpP2O5dT

)
+ FeO%slag ∗ 56

72

∗(HreactionFe + HDissFe +
72
56

(
HDissFeO +

∫ TSlag
298 CpFeOdT

))
+

(WHM ∗ C%HM −WSteel ∗ C%Steel) ∗
(

CO%o f f gas
12
28 ∗ HDissC + 28

12

(
HreactionCO +

∫ To f f gas
298 CpFeOdT

)
+CO2%o f f gas

12
44 ∗ HDissC + 44

12

(
HreactionCO2 +

∫ To f f gas
298 CpFeOdT

)

(11)

where Wslag is the weight of slag, Hreaction X represents heat of reaction of X, Tslag and Toffgas
correspond to slag temperature and off-gas temperature. To solve for endpoint tempeature,
also denoted as temperature of the steel (TSteel), the sensible heat of output components is
formulated with unknown variable TSteel, as given in Equation (11).

Sensible heat of steel, slag, and off-gas =

WSteel −Wscrap ∗
(

Fe%Steel ∗
∫ TSteel

298 CpFedT
)
+ Wsteel ∗ (C%Steel ∗

∫ TSteel
298 CpCdT + Mn%Steel

∗
∫ TSteel

298 CpMndT + P%Steel ∗
∫ TSteel

298 CpPdT) + WSlag ∗ (FeO%Slag ∗
∫ TSlag

298 CpFeOdT

+SiO2%slag ∗
∫ TSlag

298 CpSiO2dT + MgO%Slag ∗
∫ TSlag

298 CpMgOdT + P2O5%slag

∗
∫ TSlag

298 CpP2O5dT) + (WHM∗C%HM −WSteel ∗ C%Steel) ∗ (CO%o f f gas ∗
∫ To f f gas

298 CpCOdT

+CO2%o f f gas ∗
∫ To f f gas

298 CpCO2dT) + Wscrap ∗ (
∫ Tm

298 CpFedT + Lmelt +
∫ TSteel

Tm CpFedT

(12)

where Lmelt is the latent heat of melting for scrap.

2.2.5. Endpoint Phosphorus Theoretical Model

In the last few decades, numerous models were established to predict the phosphorus
partition ratio (lp), defined as slag/steel phosphorus distribution ratio, by combining
regression models with thermodynamic principles. Based on the features involved in the
equations, 6 existing models were selected to test on the Tata Steel’s dataset. These models
are provided in Table 3, where they are denoted using [M1]–[M6]. These models were tested
and compared against each other, and the model with the highest accuracy was selected as
final for the equation. Since final phosphorus is heavily dependent on slag chemistries and
turndown temperature, which are both lag parameters, the theoretical model for endpoint
P is created based on the slag chemistry model and endpoint temperature theoretical
model. The overall flowchart of the endpoint phosphorus theoretical model is displayed in
Figure 5.
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Table 3. Existing models to predict phosphorus partition ratio in steelmaking.

Model Equation

M1
[41] l̂p = 0.431[(%CaO)/(%SiO2)]− 0.361 log(%MgO) + 13590

Temp − 5.71 + 0.384 log(%Fe.total)

M2
[30] l̂p = 5.89 log(%CaO) + 0.5 log(%P2O5) + 0.6(%MnO) + 15340

Temp − 18.542 + 2.5 log(%Fe.total)

M3
[42] l̂p = 5.6 log(%CaO) + 22350

Temp − 21.876 + 2.5 log(%Fe.total)

M4
[43] l̂p = 0.6639[(%CaO)/(%SiO2)] +

8198.1
Temp − 3.113 + 0.3956 log(%Fe.total) + 0.2075 log(%C)

M5
[4] l̂p = 0.08(%CaO) + 2.5 log(%Fe.total) + 22350

Temp − 16.0

M6
[44] l̂p = 7 log(%CaO) + 2.5 log(%Fe.total) + 22350

Temp − 24.0

Figure 5. Flowchart of the endpoint phosphorus theoretical model.

2.3. Machine Learning Model Formulation
2.3.1. Neural Network

As mentioned before, the formulation of theoretical models is based on homogeneity
of physiochemical reactions and slag compositions at equilibrium, which is unlikely to be
achieved in BOF production, due to the nature of the multi-phase and multi-variate process.
Artificial neural network (ANN), one particular family of machine learning algorithms, is
capable of resolving these issues due to its ability in modeling nonlinearity by transforming
inputs to outputs as links between neurons in a sequence of layers.

A basic neural network consists of three major components: an input layer taking
input features, an output layer predicting the target variable, and one or more hidden
layers which consist of a series of processing units, that are interconnected by weights and
errors. A schematic diagram of a neural network with one single hidden layer is presented
in Figure 6. For a single-layer neural network, the input layer with ‘p’ independent input
variable X can be expressed as X = (X0, X1, . . . ,Xp)T, and the hidden layer with ‘k’ number
of neurons and output layer are connected between weights (w) and biases (b). The input–
output transformation between each layer is done by applying the activation function σ(x).

Training the neural network is the process of computing weights (w) and biases (b)
from the training dataset. Each iteration of the training process is completed by two actions:
feedforward and backpropagation. In feedforward, the input variables are fed into the
neural network and used to calculate the predicted output ‘ŷ’, and backpropagation denotes
a process of updating weights and biases in the neural network by using the loss function.
For a single-layer neural network, the feedforward calculation from input layer to hidden
layer can be described as the following:
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Figure 6. General structure of an artificial neural network with three input and hidden neurons.

The dataset is split into training and testing set in a 70%/30% fashion. Training of
the neural network involves the process of computing weights and biases based on the
training set, and each training iteration is completed by feedforward and backpropagation.
In the feedforward process, input variables are fed into the neural network and used
to generate a prediction output ‘ŷ’ by using activation functions. Backpropagation is a
process of updating weights and biases based on a specified loss function. The feedforward
calculation for the hidden layer a(2) can be described as:

a(2) = σ


 w1, 1 · · · w1, p

...
. . .

...
wp, 1 · · · wp, p


 x1

...
xp

+

 b1
...

b3


 (13)

Neurons in the hidden layer are computed by applying an activation function ‘ŷ’, and
the weights and biases, ‘w1’, ‘b1’ are randomly initialized in the beginning. In this study,
activation function is selected as a rectified linear function (ReLU). On the other hand,
backpropagation is done by using the loss function J(W, b), as presented below:

Loss (y, y )̂ = J (W, b) = ∑m
j=1(y− ŷ)2 (14)

where ŷ denotes the predicted value, y represents the actual value, and m is the number of
observations. The loss function is optimized by a gradient descent algorithm, by finding
the point with lowest slope in cost function. Features used for developing neural networks
for all endpoints are listed in Table 4. The hyperparameters of each ANN, parameters
that cannot be updated through the training phase, are selected based on five-fold cross-
validation, as discussed in Section 3.1.

2.3.2. Model Adequacy

Five-fold cross-validation was implemented to ensure ANN model generalization
on an arbitrary selection of data. In the five-fold cross-validation algorithm, the training
set is randomly shuffled and divided into 5 partitions as shown in Figure 7. During each
training epoch, four of the folds is used for training ANN models with one of the folds
being left out as a validation set. By implementing this algorithm, the fitted model can be
validated with each fold once, and, therefore, the model generalization can be monitored.
At the end of five-fold cross-validation, find evaluation metrics is computed by taking the
average of accuracy values from all validation splits. Lastly, in order to reduce the amount
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of computational power and accelerate convergence, input features in the dataset were
normalized to the same order of magnitude.

Table 4. Features used for neural network modeling.

Feature Category Feature Name

Hot Metal Chemistries

Hot Metal Carbon

Hot Metal Sulfur

Hot Metal Silicon

Hot Metal Manganese

Hot Metal Phosphorus

Hot Metal Chromium

Hot Metal Titanium

Process Parameters

Oxygen Blow Duration

Blow End to Turndown Start Duration

Blow End to Tapping Start Duration

Tapping Duration

Blowing Strategy

Injected Oxygen Volume

Hot Metal Weight

Hot Metal temperature

Flux Additions

Limestone

Dolomite

Iron Ore

Scrap

Figure 7. Schematic diagram of five-fold cross-validation.

Root mean squared error (RMSE) is selected as the evaluation metric for endpoint
predictions. It is defined by

RMSE =

√
∑N

i=1(xi − x̂i)
2

N
(15)
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where xi is the ith actual value of x and x̂i is the ith predicted value of x. A lower value
of RMSE corresponds to a better predictive accuracy. However, the magnitude of RMSE
is dependent on the target feature, which is endpoint in this case. According to Table 1,
the range of different endpoints varies significantly in magnitude; thus, using a metric
that is in the same scale can make it more interpretable. Normalized RMSE facilitates the
comparison among different models with various scales. It is described as

NRMSE =

√
RMSE

ymax − ymin
(16)

where ymax − ymin refers to the range of observed data.

2.4. Hybrid Model Formulation

Much research has attempted to establish data-driven models for endpoint prediction
by using various algorithms, such as radial basis function ANN, GMM, and TWSVM. These
algorithms usually achieve a very high level of accuracy, but they are all plant-specific
models and suffer from poor interpretability, which is a commonly known issue for machine
learning techniques. The objective of the hybrid model development is to combine the
advantages of both theoretical models and data-driven models and resolve their respective
drawbacks. Therefore, a hybrid algorithm that contains a workflow combining a theoretical
model and a machine learning model is proposed in this study.

The idea of the hybrid model formulation can be interpreted as an architecture that
uses prediction from one model as the input variables for other models, where the exchange
of input and output takes place. For example, turndown temperature is one of the key
variables in predicting endpoint phosphorus by using thermodynamic driven equations.
Thus, the predictive accuracy of the theoretical phosphorus model is expected to improve
with the use of endpoint temperature with higher precision. The overall hybrid model
consists of 7 models, as represented in Table 5.

Table 5. Single models that are included in the hybrid model architecture.

Model Type Predicted Endpoint Abbreviation

Theoretical Models

Slag Chemistries MM_S

Endpoint Temperature MM_T

Endpoint Carbon MM_C

Endpoint Phosphorus MM_P

Data-Driven Technique
(ANN)

Endpoint Temperature ANN_T

Endpoint Carbon ANN_C

Endpoint Phosphorus ANN_P

In this study, all models were developed based on input parameters that are readily
available in the beginning of the BOF process. As a result, variables such as slag chemistries
cannot be directly used for fitting models. Due to this reason, the hybrid model started
off by integrating the slag chemistry model (MM_S) with all theoretical models as shown
in Figure 8a Once all theoretical models and ANN models are completed, the hybrid
model continues with information exchange among individual models, as presented in
Figure 8b. The numbers in Figure 8 represent the order of actions, which can be explained
as the following:

1. User-specified inputs, such as hot metal chemistries, process parameters, and flux
additions, were fed into the slag chemistry model. The results of “User Inputs” and
“MM_S” corresponds to the input feature space that is used for model developments.
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2. Theoretical models for endpoint carbon and temperature (MM_C and MM_T) were
established by formulating mass and energy balance based on the input features from
step 1.

3. Theoretical model for endpoint phosphorus (MM_P) was created based on slag
chemistries from MM_S and endpoint temperature prediction from MM_T. Ther-
modynamic driven regression models [M1]–[M6] were tested against each other.

4. Three ANN networks were established by using user inputs, and hyperparameter
tuning was conducted with five-fold cross-validation.

5. Endpoint carbon prediction from ANN_C was substituted as the endpoint carbon into
MM_T to formulate mass balance. The assumption of using the median of endpoint
carbon from dataset was discarded.

6. Since endpoint phosphorus is heavily dependent on turndown temperature, endpoint
temperature prediction from ANN_T was substituted into MM_P and ANN_P.

7. Finally, endpoint phosphorus from ANN_P was substituted into MM_C and MM_T
to complete the formulation of mass balance.

Figure 8. Overall schematic flow chart of hybrid model algorithm: (a) establish theoretical models
and ANN models by using user inputs and slag chemistry models; (b) hybrid architecture consisting
of theoretical models and ANN models.

3. Results
3.1. Theoretical Phosphorus Model Validation

As mentioned in Section 2, six regression-based models with thermodynamic princi-
ples were compared against each other to predict endpoint phosphorus content. RMSE was
used as the evaluation metric for the predictive performance among each, and the results
are displayed in Figure 9.

From Figure 9, [M1] achieves the lowest RMSE among all six models; thus, it is selected
as the equation to be used in the theoretical endpoint phosphorus model (MM_P). To recall,
[M1] is expressed as:

l̂p = 0.431[(%CaO)/(%SiO2)]− 0.361 log(%MgO) +
13590
Temp

− 5.71 + 0.384 log(%Fe.total)
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Figure 9. RMSE comparison among six phosphorus equations [M1] to [M6] in endpoint P prediction.

3.2. Theoretical Model Results

The results of the predictive evaluation metrics for all three theoretical models are
presented in Table 6. In this table, both RMSE and NRMSE values are provided for
comparison. Among all three theoretical models, MM_C provides the best predictive
performance with an NRMSE around 0.135, whereas MM_T gives out the highest NRMSE
at 0.536.

Table 6. Model evaluations of the theoretical models for endpoint temperature, carbon, and phosphorus.

Model Name MM_T MM_C MM_P

RMSE 53.58 0.0135 0.00695
Range of Endpoint 100 0.1 0.032
Normalized RMSE 0.536 0.135 0.217

3.3. ANN Model Hyperparamter Selection

For most machine learning models, the hyperparameters are parameters that cannot
be derived through training. The hyperparameters are very important in that they control
the learning process by means of factors such as learning time and convergence. These
values are initialized by the user and tuned empirically. In this study, hyperparameters are
tuned via a trial-and-error approach. For ANN models, the structure of the neural network,
determined by number of neurons and layers, is usually the first hyperparameter to test
out. In general, a neural network with only one hidden layer is named a single-layer neural
network, and a neural network with more than one hidden layer is known as a multilayer
perceptron. A single-layer neural network can be used to represent linearly separable
functions, and a multilayer perceptron can be implemented to overcome the limitation
of linear separability in high dimensional space. On the other hand, the batch size is a
hyperparameter that controls the number of training examples in a single forward and
backward propagation as described in Section 2. A large batch size can lead to degradation
in the generalization of models, whereas a small batch size can take too long for the
model to converge, which adversely affects the training time. Finally, the learning rate, a
configurable hyperparameter, controls how quickly the ANN model adapts to the problem.
A large learning rate can cause faster convergence outside of the global minimum solution,
whereas a small learning rate can cause the model to get stuck in a local minimum. In this
study, hyperparameters were selected based on trial and error, with the starting values,
increments, and end values displayed in Table 7. For each model, the hyperparameters
were selected based on the combination that achieves the lowest validation loss (RMSE).
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Table 7. Selection of hyperparameters for ANN model for all endpoints.

Hyperparameters Starting Value Increment End Value
Selected Parameter

ANN_T ANN_C ANN_P

Number of Neurons 16 16 64 32 32 32
Number of Layers 1 1 3 2 2 2

Batch Size 16 16 64 32 64 32
Learning Rate 0.005 0.005 0.02 0.01 0.005 0.005

In addition to the hyperparameters discussed in Table 7, the number of epochs is also
a crucial hyperparameter for the training phase of ANN models. One epoch refers to a
complete cycle through the entire training set, including forward pass and backpropagation.
During the training phase of ANN models, the training set is split into training and
validation sets, in which the training set is used for model fitting and the validation set
for the purpose of testing. A typical trace of training and validation losses throughout all
epochs for ANN models is represented in Figure 10. At the beginning of the training (at
early epochs), the model started with large RMSE loss value, and it kept dropping and
stabilized after a certain epoch number. In order to ensure convergence in solution and
efficient computation, early stopping is deployed during the training of ANN models.
An early stopping of 20 epochs is selected for model developments, so that the model
completes the training phase when validation loss does not drop after 20 epochs.

Figure 10. Training and validation losses during the throughout 100 epochs for ANN_T.

3.4. ANN Model Results

Three ANN models were created by using their corresponding hyperparameters,
mentioned in Table 7. The results of the ANN models developed, based on Tata Steel’s
dataset, are presented in Table 8. Training and validation RMSE values were collected by
using five-fold cross-validation. It can be observed that no overfitting is present because
training and validation RMSE values are comparable with each other. Validation NRMSE
was calculated and recorded for the comparison among all three models. To compare the
results of ANN models with that of theoretical models in Table 6, it can be observed that
ANNs for all endpoints improved by different extents, where ANN_T achieves the largest
reduction in NRMSE by 60.6%.
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Table 8. Model evaluations of the ANN models for endpoint temperature, carbon, and phosphorus.

Model Name ANN_T ANN_C ANN_P

Training RMSE 21.36 0.0127 0.00553
Validation RMSE 21.49 0.0129 0.00575

Validation NRMSE 0.215 0.129 0.1796

3.5. Hybrid Model Results

With the hybrid model formulation, four out of six models receive updated input
features, whereas the inputs for ANN_C and ANN_T do not change, according to Figure 8b.
As a result, the hybrid algorithm does not affect predictions from them. However, for
the other four models, as a result of the updated features and hybrid architecture, their
endpoint predictions and accuracies will be different from before. The evaluation results of
hybrid models are presented in Table 9. The term “With Hybrid” refers to the evaluation
metric obtained after implementing the hybrid algorithm. From Table 9, all of the hybrid
models show improvements in endpoint predictions, where hybrid MM_P attains the
largest improvement of 11.98% reduction in NRMSE, followed by hybrid ANN_P and
MM_C with 3.55% and 2.96% reductions in NRMSE, respectively.

Table 9. Comparison of model evaluations of the hybrid models and non-hybrid models.

Model Name MM_T MM_C MM_P ANN_P

RMSE 53.07 0.0130 0.0063 0.005680

NRMSE
(With Hybrid) 0.531 0.130 0.196 0.1775

NRMSE
(Without Hybrid) 0.536 0.135 0.217 0.1796

Improvement 1.12% 3.7% 9.77% 1.17%

4. Discussion and Interpretation of Results

In this section, the analysis of the results is discussed. Firstly, the performance of the
hybrid model algorithm and its comparison with non-hybrid models is discussed, and
secondly, the application of such an algorithm from an industrial perspective is explained.

4.1. Hybrid Model Algorithm Performance and Comparison

Before the implementation of the hybrid algorithm, the ANN models for all three
endpoints outperformed theoretical models, by 59.9% for endpoint temperature, 4.4% for
endpoint carbon, and 17.23% for endpoint phosphorus. A comparison summary among
theoretical models, ANN models, and hybrid models is presented in Table 10. As mentioned
before, the formulation of theoretical models is based on homogeneity of physiochemical
reactions and slag compositions at equilibrium, which is unlikely to be achieved in BOF
production, due to the nature of the multi-phase and multi-variate process. Mathematically,
the neural network algorithm is capable of solving the complex nonlinearity between
input features and endpoints. In addition to this reason, the formulation of heat and
mass balance in this study involves a number of assumptions, as described in Section 2,
because the availability of input parameters is solely based on user-specified inputs. The
inaccuracies introduced due to these assumptions during the formulation of mass balance
can be propagated into the heat balance model and cause deviation in endpoint predictions.
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Table 10. Model evaluations of the hybrid models and non-hybrid models.

Model Name MM_T MM_C MM_P ANN_P ANN_T ANN_C

NRMSE
(With Hybrid) 0.531 0.130 0.196 0.1775 0.215 0.129

NRMSE
(Without Hybrid) 0.536 0.135 0.217 0.1796 / /

Improvement 1.12% 3.7% 9.77% 1.17% / /

With regards to the implementation of the hybrid algorithm, it can be found that all
four hybrid models achieved lower NRMSE values as shown in Figure 11. One of the
reasons for the improvement in predictive performance is due to the reduction in number of
assumptions involved for theoretical models. The implementations of the hybrid algorithm,
endpoint carbon and phosphorus from ANN models can be substituted directly into the
heat and mass balance formulation, and endpoint temperature can be directly used for
endpoint phosphorus calculation in the theoretical model. As a result, hybrid theoretical
models benefit from the computational power provided by ANN. The Hybrid MM_P
model showed the largest improvement of 9.77% in prediction accuracy, followed by
hybrid MM_C and ANN_P with decrease in NRMSE of 3.7% and 1.17%, respectively. The
reduction in NRMSE for hybrid MM_T was the lowest among all hybrid models at a 1.12%.

Figure 11. NRMSE comparison among non-hybrid and hybrid models.

4.2. Application of the Results and Models for Industry

From an industrial point of view, it is crucial to introduce data-driven techniques in
predicting endpoints for the BOF process due to their predictive power. As mentioned
in Section 1, the majority of the current mechanism static models in predicting endpoints
are based on heat and mass formulation, or dynamic control models, such as the sub-
lance system. The implementation of data-driven techniques, such as machine learning,
is proven to significantly improve the endpoint temperature prediction over that offered
by the theoretical models. However, one of the drawbacks of data-driven models is
that they are highly dependent on process parameters, which make them plant-specific
rather than universal. On the other hand, the heat and mass balance model can be used
as a universal model because it is developed based on thermodynamic principles. The
proposed hybrid model of theoretical framework coupled with machine learning techniques
can effectively increase the prediction accuracy of mechanism models by reducing the
number of assumptions and simplifications in mass and heat balance, and improve the
interpretability, as well as generalization, of data-driven models. This model proved
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to work seamlessly with the Tata Steel’s dataset, which contains production details of
28,000 heats. The hybrid model provided optimal predictive performance when training
data and features were provided, but it can also be used as a universal model because of
the presence of a theoretical framework.

5. Conclusions

A hybrid algorithm, based on heat and mass balance and neural network modeling,
is proposed in this paper. The model predicts numerical values of endpoint temperature,
carbon, and phosphorus based on user-specified inputs, such as hot metal chemistries,
process parameters, and flux additions. With superb computational power in modeling
nonlinearity, ANN models show improvements in endpoints predictions, especially in
endpoint temperature. All hybrid models are observed to benefit from the implementation
of the hybrid algorithm because the number of assumptions in heat and mass balance
formulation is significantly reduced. Results have shown that hybrid MM_P achieved a
9.77% reduction in NRMSE, followed by 3.7% decrease for hybrid MM_C, hybrid ANN_P
and MM_T attain 1.17% and 1.12% drop in NRMSE, respectively.

Finally, one of the main considerations of this study towards industry is the application
of the hybrid model. In this paper, all prediction models were developed based on user-
specified inputs which allow the model to be executed before production. In addition,
the hybrid model can exploit the computational power of data-driven techniques and the
generalization of theoretical models, which allow it to be implemented in either plant-
specific or universal settings.
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