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Abstract: The effect of grain size on the mechanical properties and creep rupture of 253 microalloyed
(MA) austenitic stainless steel (ASS) was investigated. The cold rolling process with a 53% reduction
in thickness was applied to the steel followed by annealing at 1100 ◦C over 0, 900, 1800, and 3600 s to
obtain grain sizes of 32.4, 34.88, 40.35, and 43.77 µm, respectively. Uniaxial tensile and micro-Vickers
hardness tests were carried out to study the effect of grain size on mechanical properties at room
temperature. The creep rupture test was performed at 700 ◦C under a load of 150 MPa. The results
showed that there was a correlation between grain size, mechanical properties, and creep rupture
time. The fine initial grain size showed relatively good mechanical properties with a short creep
rupture time, while the coarse initial grain size produced low mechanical properties with a long
creep rupture time. The initial grain size of 40.35 µm was the optimum grain size for a high value
of creep rupture time due to the low hardness and elongation values at room temperature and low
creep ductility value. The intergranular fracture was found on the initial grain size below 40.35 µm,
and a mixed mode of intergranular and transgranular fracture was found on the initial grain size
above 40.35 µm after the creep rupture test.

Keywords: grain size; mechanical properties; creep rupture; 253 MA; austenitic stainless steel

1. Introduction

Grain boundary strengthening in metal is one of the efforts made to improve me-
chanical properties. Work hardening, followed by annealing, is one method to change
the grain size of the metal. During annealing, the recovery, recrystallization, and grain
growth processes can produce different grain sizes, which are affected by the annealing
temperature and time. A fine grain size can increase strength, decrease ductility, and
increase metal hardness, and vice versa [1]. In the recrystallization process, both statically
and dynamically, the degree of plastic deformation and strain induce martensite to affect
the level of the fineness of the grain size and mechanical properties [2]. Several cold de-
formation techniques have been described in previous studies, followed by annealing to
obtain fine grain sizes [3–6]. The presence of carbide precipitates, intermetallic phases,
and micro-alloying present either in the austenite matrix or at the grain boundaries and
annealing twins that appear during annealing are also believed to affect the mechanical
properties [7–10].

Metals exposed to high temperatures impact the grain size to be large or coarse,
which causes the strength of the metal to decrease. However, the large grain size gives
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it an advantage over the creep properties of metals. Creep is a deformation indicated by
increasing strain as a function of time that can occur when the metal is exposed to high
temperatures and constant loads [1]. In the primary stage, the strain increases drastically
for a short time and then approaches constantly in the secondary stage. In the secondary
stage, the creep mechanism can occur in grain boundary sliding (GBS), diffusion creep
(Nabarro–Hearring diffusion creep and Coble creep), and dislocation creep (Harper–Dorn
dislocation creep) [11,12]. The mechanism is theoretically equally influenced by grain
size [12–14]. Ruano et al. [12] stated that critical grain size is influenced by dislocation
density and stacking fault energy that distinguishes the occurrence of diffusion creep and
dislocation creep mechanisms.

Meanwhile, Galindo-Nava et al. [14] stated that GBS and dislocation creep occur in
different grain size ranges. Coarse grain size generally results in a lower minimum creep
rate than refined grains so that the fracture time increases [6,13]. However, Liu et al. [15]
reported that large grain size does not always affect the creep rupture time. Then, the
strain increases rapidly in the tertiary creep stage and ends with fracture. Surface fracture
due to the fact of creep can occur in a brittle, ductile, or ductile–brittle mixture [11,16,17].
Wang et al. [11] found that when creep was applied to IN617 at a temperature less than
950 ◦C and stress of 0.12σTS and 0.2σYS, it resulted in a mixed ductile–brittle fracture.
Morris et al. [16] stated that at high creep temperatures, 316 ASS experienced high creep
ductility and short fracture times, and the creep ductility was low when the steel was
exposed to low creep temperatures due to the presence of an intergranular carbide and
intermetallic phase. Wei et al. [17] stated that the A286 alloy could fracture from ductile to
brittle when the temperature decreases and the creep stress increases.

253 microalloyed (MA) (UNS S30815) is a high-temperature austenitic stainless steel
(ASS) widely applied in the power, petrochemical, and metallurgical industries. This steel is
a variant of EN 1.4828 with a high nitrogen content and is micro-alloyed with the rare earth
metal (REM) cerium. This steel is suitable for use at high temperatures from 850 to 1100 ◦C,
has carburizing resistance, and has sufficient creep strength. This steel is not suitable for
use between 600 and 850 ◦C, because it can cause a decrease in the impact toughness value
at room temperature [18,19]. Several studies have focused on the properties of resistance
to fatigue [20], oxidation, high-temperature corrosion, and flow softening of this steel [21].
However, to the best of the authors’ knowledge, there has been no study on the effect of
grain size on the mechanical and creep properties of 253 MA ASS, except Maode et al. [22]
who reported the effect of cerium on the creep properties of 253 MA ASS.

As previously mentioned, grain growth kinetics, grain size, and annealing twins
affected the hardness values of 253 MA ASS after low reduction by multi-pass cold rolling
and continued with annealing [23,24]. In this study, the 253 MA ASS pipe was reduced
by approximately 53% using multi-pass cold rolling and then annealed with variations in
time to obtain different austenite grain sizes. The purpose of this research was to determine
the effect of grain size on the mechanical and creep properties, which are applicable for
early failure prevention of components exposed to high temperatures through mechanical
degradation and creep rupture time prediction by simply measuring grain size.

2. Materials and Methods

The material used in this research was a 253 MA ASS pipe with an outside diameter of
60.33 mm and a length of 200 mm. The chemical composition is shown in Table 1.

Table 1. Chemical composition of 253 MA ASS (%wt.).

C Si Mn P S Cr Ni N Ce La Fe

0.079 1.422 0.51 0.03 <0.005 22.06 10.86 0.384 0.03 0.014 Bal.

The steel was cut using an Electrical Discharge Machining (EDM)wire cutting machine
(Taizhou Jiangzhou CNC Machine Tool company, Jiangsu, China) to form a cold-rolled
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sample with a length of 165 mm, a width of 25.7 mm, and a thickness of 3.9 mm. Cold
rolling was carried out to reduce the thickness of the sample to approximately 53% so that
the final dimensions achieved were a length of 267 mm, a width of 26 mm, and a thickness
of 2.3 mm. The cold-rolled sample was then formed into a tensile test sample according to
American Society for Testing and Materials (ASTM) E8 and a creep rupture test specimen
using an EDM wire cutting machine. The dimensions of the creep test specimen can be
seen in Figure 1.
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Figure 1. Creep rupture test sample (unit: mm).

The samples were annealed at 1100 ◦C for 900, 1800, and 3600 s with a H2 gas atmo-
sphere and then cooled in the cold zone of the tubular furnace (Nabertherm GmbH RSH 50,
Lilienthal, Germany) to obtain grain sizes of 32.4, 34.88, 40.35, and 43.77 µm. The technical
specifications of the cold rolling, tubular furnace, and annealing processes are explained in
References [23,24].

The uniaxial tensile test was carried out at room temperature using a hydraulic
universal testing machine (UTM) by Tinius Olsen, Horsham, PA, USA. The creep rupture
test was carried out at a temperature of 700 ◦C and a load of 150 MPa using ZwickRoell
test equipment (ZwickRoell GmbH & Co. KG, Ulm, Germany). The microstructures
were observed on the samples before and after creep testing using an AmScope MIUI
1803 microscope (AmScope.com, Irvine, CA, USA). The samples were ground using SiC
paper with grits of 200, 400, 600, 1000, and 2000 and then polished using diamond paste with
sizes of 5, 3.5, and 1 nm. An electrolytic etch was applied to the samples in a 25% oxalic acid
solution under a potential of 9 V. The grain size was measured using a measurement method
of line intercept according to ASTM E112. ImageJ software (Version 1.53r, Berkeley Software
Distribution (BSD) licenses, Oakland, California, USA) was employed to measure grain size.
The micro-Vickers Mitutoyo hardness test (Mitutoyo America Corporation, Aurora, Illinois,
USA) under a load of 0.3 N was used to measure the hardness of the sample 253 MA ASS,
which consisted of different grain sizes. Scanning Electron Microscope (SEM) observations
were carried out to observe the fracture surface of the tensile and creep test samples, and
Energy Dispersive X-ray Analysis (EDAX) analysis was also conducted to observe the
precipitates using the JEOL Type JSM 6390 A test equipment (JEOL, Ltd, Tokyo, Japan).

3. Results and Discussion
3.1. Grain Growth of 253 MA ASS after 53% Reduction

Figure 2 shows the grain growth of 253 MA ASS during annealing at 1100 ◦C with
variations in annealing time. In this figure, the grain size increased slightly with holding
time. In addition, this picture shows a comparison of grain sizes obtained from the ex-
periments and predictions. The power law equation [25] predicts the grain size shown in
Equation (1).

dn − d0
n = k·t (1)

where d is the average grain diameter, d0 represents the initial grain size, n is the growth
exponent, t is the soaking time, and k is the growth coefficient.

The grain sizes resulting from the calculations using Equation (1) showed values close
to the experimental results with an error of approximately 1–4%. Constants k and n were
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obtained from calculations using solve-excel. A value of n = 1 indicates that normal grain
growth occurred [26].
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Figure 3a–e show the microstructures of 253 MA ASS after cold rolling followed by
annealing at 1100 ◦C with variations in the annealing time. Precipitation was visible on the
microstructure of 253 MA ASS after cold rolling and annealing. These precipitates were
distributed in the austenite matrix and grain boundaries, which can cause a pinning effect
so that grain growth increases slightly with annealing time [27]. The 253 MA ASS after
annealing at 1800 s showed more precipitation than other annealing times. In addition,
high-reduction cold rolling up to 53% in 253 MA ASS resulted in many strains inducing the
formation of martensite. During annealing, the transformation of martensite to austenite
reversion occurs slowly. It contributes to inhibiting the rapid growth of austenite grains [28].
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Figure 3. Microstructures of 253 MA ASS after (a) cold rolling and then (b) annealing at 1100 ◦C with
annealing times of (c) 900; (d) 1800; (e) 3600 s with 100×magnification.

Figure 4a–e show observations of precipitates using SEM. The precipitates appeared
spherical with relatively small and large sizes in the austenite matrix and grain boundaries.
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The diameter size of the precipitate changed after cold rolling and annealing over 900,
1800, and 3600 s, respectively, as follows: 9.8, 8.8, 13.2, and 10.4 µm. The number of
precipitates per area increased with the annealing time until 1800 s, after which the number
of precipitates decreased, as shown in Figure 5. The presence of precipitates at the austenite
grain boundaries causes a pinning effect, resulting in sluggish grain growth [27].
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Figure 5. Effect of annealing time on the number of precipitates per area.

Table 2 shows a point-by-point EDAX analysis of the precipitates, shown by the
arrows for each annealing time in Figure 4. In this table, the elements C, Cr, Ni, Ce, and
Fe may form metal carbide (M23C6) precipitates in the austenite grains. With increasing
annealing time, the percentage of carbon atoms decreased slightly. This indicates that
the longer annealing time caused metal carbide precipitates to dissolve into the austenite
grains. However, in 253 MA ASS with an annealing time of 900 s, the carbon atoms in the
precipitate could not be detected. This was probably due to the relatively little dissolution
of carbon atoms in the austenite matrix. In addition, the presence of chrome and nitrogen
elements in 253 MA ASS is likely to form Cr2N precipitates in the microstructure, which
contribute to inhibiting grain growth [29].
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Table 2. EDAX analysis of the precipitates.

No. Sample
% Atom

C O Si Cr Mn Fe Ni Ce

1 Cold Rolled 33.26 - 1.21 15.04 - 43.76 6.73 -
2 1100 ◦C 30.7 4.42 14.71 2.09 43.1 4.97 -
3 1100 ◦C—900 s - - - 24.35 1.45 65.08 9.11 -
4 1100 ◦C—1800 s 28.48 8.08 - 16.02 - 42 5.45 -
5 1100 ◦C—3600 s 27.29 6.21 - 16.1 - 43.21 6.27 0.45

3.2. Effect of Grain Size on the Mechanical Properties

Figure 6 shows the tensile test results curve of 253 MA ASS after cold rolling and
annealing at 1100 ◦C. In this figure, cold-rolled steel had a higher yield strength and
ultimate tensile strength than annealed steel, while for the 253 MA ASS, after annealing
at 1100 ◦C each time, the yield strength and ultimate tensile strength values were not
significantly different. Annealed steel was lower in strength than cold-rolled steel was,
but it had a higher engineering strain value than cold-rolled steel did. In addition, the
increasing annealing time reflected the coarser grain size increasing the engineering strain
or ductility values. However, 253 MA ASS annealed for 900 s showed higher engineering
strain values than those annealed for 1800 s. The dissolution % atom of Cr, Mn, Ni, and
Fe atoms in 253 MA ASS with an annealing time of 900 s was higher than those for the
other annealing times (Table 2), which appeared in the austenite grains as intermetallic
precipitates, resulting in reducing the engineering strength slightly and increasing the
engineering strain slightly.
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Figure 7 shows the effect of annealing time on the value of the micro-Vickers hardness.
In this figure, the hardness of 253 MA ASS decreased drastically after the steel was cold-
rolled and decreased slightly after the steel was annealed. The longer the annealing time,
the coarser the grain, which results in softening of the steel. However, this figure shows
that the hardness of 253 MA ASS with an annealing time of 3600 s was slightly higher than
that for the annealing time of 1800 s. This was probably due to the number of precipitates
at the annealing time of 3600 s (in Figure 5) being lower than for the annealing times of 900
and 1800 s. For comparison, at the same cold-rolling percentage and annealing temperature
and a longer annealing time, the hardness of cold-rolled steel in this study had a hardness
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value greater than the hardness value of American Iron and Steel Institute (AISI) 904L
super austenitic stainless steel in the study by Stornelli et al. [30]. This was probably due to
the high nitrogen content in its chemical composition and the presence of micro-alloying
cerium deposited in the austenite matrix, which can increase the hardness of 253 MA ASS.
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Figure 8 shows the relationship between yield strength and grain size of d−
1
2 253 MA

ASS using the Hall–Petch equation. The Hall–Petch equation is shown in Equation (2):

σy = σ0 + k′·d−1/2 (2)

where σy is the yield strength, σ0 and k′ are experimental constants, and d is the grain

size. The higher the value of d−
1
2 , the finer the grain sizes obtained. The experimental

results were almost linear with the prediction results using Equation (2). The fitted line
showed a slope of 28.5 MPa µm2 and a flow stress of 223.2 MPa at an infinite grain size.
In this figure, the yield strength value increased slightly with the degree of grain fineness.
When compared with previous studies using 316L steel, it has a yield strength value of
approximately 290–301 MPa at room temperature at a grain size d−

1
2 of approximately

0.08–0.16 µm−
1
2 [31]. In this study, 253 MA ASS had a yield strength value of approximately

350–400 MPa at room temperature at a grain size d−
1
2 of approximately 4.4–5.6 mm−

1
2 or

0.14–0.17 µm−
1
2 . This confirms a grain boundary strengthening effect that was influenced by

differences in chemical composition, especially the nitrogen content and the micro-alloying
cerium, and this result agrees with previous studies [32,33].

Figure 9 shows the effect of grain size on the elongation of 253 MA ASS. This figure
shows that the elongation value fluctuates with increasing degrees of fineness of grain size,
d−

1
2 . Although fluctuating, the difference in elongation percentage was not significantly dif-

ferent with increasing d−
1
2 grain fineness. Therefore, the presence of precipitates in austenite

grains caused an insignificant difference in elongation, compared with 18Mn18Cr0.6N steel
in previous studies, which had an elongation value of 43% [34]. The elongation value of
253 MA ASS was higher than that of 18Mn18Cr0.6N due to the differences in the chemical
composition, percentage of cold rolling, and annealing temperature.
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Figure 10 shows the effect of grain size on the strain-hardening exponent. The calcula-
tion of the strain-hardening exponent and constant refers to ASTM E646—method B, as
shown in Equation (3):

σ = Kεn (3)

where σ is the true stress (ksi), K is a constant, ε is the plastic component of true strain,
and n is the strain-hardening exponent. In this figure, the strain-hardening exponent, n,
decreased with the grain size, d−

1
2 , as did the value of the constant, K. This was because the

more refined the grain size, the higher the yield strength, but the strain decreased so that
the value of the strain-hardening exponent, n, decreased. Xu et al. [35], in their research on
the effect of grain refinement on strain-hardening, found that the finer the austenite grain
size, the lower the strain-hardening rate. This result agrees with the previous study.
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Figure 11 shows the effect of grain size on the micro-Vickers hardness. In this picture,
the hardness value increased slightly with the fineness of the grain size, d−1/2, even though
at a grain size d−

1
2 of 5 mm−

1
2 , the hardness value decreased. This was probably due to the

dissolution of the elements Cr, Mn, Fe, and Ni as precipitates in austenite grains cause the
hardness value of 253 MA ASS at a grain size d−

1
2 of 5 mm−

1
2 to decrease.
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Figure 11. Effect of grain size on the micro-Vickers hardness.

Figure 12a–e show SEM observations on tensile test fractures at 253 MA ASS after cold
rolling and annealing at 1100 ◦C with variations in the annealing time. In these images, the
fracture that occurred in the steel after cold rolling and annealing was a ductile fracture,
which is characterized by a dimple shape on the fracture surface. With an increasing
annealing time, a coarser grain size occurred and the maximum dimple size increased, as
shown in Figure 13.
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3.3. Effect of Grain Size on Creep Rupture Properties

Figure 14 shows the effect of annealing time on the creep rupture behavior of 253 MA
ASS at a temperature of 700 ◦C and a load of 150 MPa. Primary, secondary, and tertiary creep
stages occurred for all of the annealing times. The primary creep stage at the annealing
time of 3600 s showed a higher elastic strain than the other annealing times. The secondary
creep stage at the annealing time of 1800 s was longer than for other the annealing times,
which was caused by a high resistance to creep rupture.
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Figure 14. Effect of annealing time on the creep rupture behavior of 253 MA ASS at 700 ◦C and a load
of 150 MPa.

Table 3 shows the creep parameter of 253 MA after annealing at 1100 ◦C with variations
in annealing time. This table shows that the highest elastic creep strain of 0.306 mm/mm
was found in 253 MA ASS after annealing for 3600 s, while for the annealing time of
1800 s, the highest fracture strain and time of fracture occurred. The lowest creep rate of
7.95 × 10−6 s−1 was found at 253 MA ASS with an annealing time of 1800 s.

Table 3. Creep parameter of 253 MA ASS after annealing at 1100 ◦C with variations in the annealing
time.

Creep Parameter
Annealing Time (s)

0 900 1800 3600

εelastic (mm/mm) 0.055 0.039 0.135 0.306
εfracture (mm/mm) 0.367 0.339 0.605 0.601

tfracture (min) 9270.4 11,683.6 21,846.1 16,924.4
Creep rate (s¯1) 22.1 × 10−6 16.8 × 10−6 7.95 × 10−6 8.29 × 10−6

Figure 15 shows a comparison of grain sizes before and after the creep rupture test.
In this figure, the grain size increased slightly after the creep rupture test. This indicates
that the grain growth of 253 MA ASS was still ongoing during the creep rupture test at
a temperature of 700 ◦C and a load of 150 MPa. The grain size before and after the creep
rupture test showed almost the same value at 253 MA ASS after being annealed for 3600 s.

Figure 16a–c show the relationship between rupture time and initial grain size, micro-
Vickers hardness, and yield strength. Figure 14a shows that the time of rupture increased
with grain size, from approximately 32 to approximately 40 µm, while at grain sizes greater
than approximately 40 µm, the time of rupture decreased. Figure 14b shows that the
higher the micro-Vickers hardness value, the lower the rupture time. Figure 14c shows that
the time of rupture increased as the yield strength increased from approximately 350 to
approximately 360 MPa, while the yield strength over approximately 360 MPa decreased
the rupture time. Based on the results of the linear regression, it was found that there was
a strong relationship between time of rupture with initial grain size and micro-Vickers
hardness with an R2 value of approximately 0.9.
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Figure 17a–d show the microstructure of 253 MA with variations in the annealing
time of the gauge length after the creep rupture test at a temperature of 700 ◦C and a
load of 150 MPa. The grain size of 253 MA ASS at each annealing time was coarser after
the creep rupture test, which consisted of large and small grains. 253 MA ASS with an
annealing time of 1800 s (Figure 17c) after the creep rupture test showed austenite grains
consisting of larger and smaller grain sizes. This indicates that abnormal or discontinuous
growth of austenite grains occurred during the creep rupture test. This grain growth was
characterized by rapidly growing grains in a matrix of small grains, which results in a
bimodal grain size distribution, causing the creep fracture time to be longer than 253 MA
with other annealing times. The results of this study are different from the results of
previous studies that stated that the larger the grain size, the higher the creep rupture
time [13,36]. Annealing twins were seen in the austenite grains at each annealing time,
where the size followed the austenite grain size. After the creep rupture test, the gauge
length section did not show any creep in the austenite grains. At each annealing time,
concentrated precipitates at the austenite grain boundaries could initiate intergranular
cracks at 253 MA ASS.

Figure 18a–d show the microstructure of 253 MA with variations in annealing time near
the fracture after the creep rupture test with a 500× magnification. After the creep rupture
test, the near section of the fracture did not show any elongation in the austenite grains.
When compared with research conducted by Liu et al. [15] and Manokaran et al. [37], Ni–
Mo–Cr–Fe superalloy (Hastelloy N) and austenitic stainless-steel SS321 showed elongated
grains near the fracture after creep rupture tests were performed. The precipitation is
relatively concentrated at the grain boundaries of the triple junction so that it can trigger
intergranular cracking when the load is applied. In addition, at 253 MA ASS at annealing
times of 1800 and 3600 s after the creep rupture test, there was crack propagation from the
grain boundaries to the grain matrix due to the interconnection between the precipitates
at the grain boundaries and the austenite matrix, which triggers transgranular cracking
when the load is applied. Transgranular failure was also found by Monteiro et al. [38] in
their research on the creep rupture mechanism of AISI 316 austenitic stainless steel and
by Sinya et al. [39] in their study of the mechanism of creep fracture in AISI 316 after
undergoing creep rupture for 100,000 h.
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Figure 19a–d show the SEM observations on the near section of fracture of 253 MA ASS
with variations in the annealing time after creep rupture tests with a 500X magnification.
This figure shows that 253 MA ASS without annealing and with an annealing time of
900 s experienced intergranular fracture after the creep rupture test. Meanwhile, 253 MA
ASS with annealing times of 1800 and 3600 s experienced mixed-mode intergranular and
transgranular fractures. This fracture mode was triggered by micro-cavity coalescence and
intergranular cracking in the grain boundary under creep rupture test [40]. Figure 20 shows
that the average creep cavity size of 253 MA ASS with an annealing time of 1800 s was less
than that of 253 MA ASS with an annealing time of 3600 s; therefore, the creep fracture time
of 253 MA ASS with an annealing time of 1800 s was longer than for 253 MA ASS with an
annealing time of 3600 s.

Figure 21 shows a comparison of the micro-Vickers hardness values before and after
the creep rupture test on the variation in austenite grain size, d−

1
2 . The measurement

of the micro-Vickers hardness after the creep rupture test was carried out on the gauge
length section of 253 MA ASS. The hardness value after the creep rupture test was higher
than before the creep rupture test when the austenite grain size, d−

1
2 , reached above

approximately 5 mm−
1
2 . Although the grain size of the sample after creep rupture was

slightly coarser than the grain size of the sample before creep rupture (Figure 13), the
hardness value of the sample after creep rupture was slightly higher than that of the sample
before creep rupture at austenite grain fineness levels above 5 mm−

1
2 . The difference in

the hardness values between steels before and after creep rupture may be due to grain
boundary hardening caused by changes in grain size during the creep rupture test [41].
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The low value of the micro-Vickers hardness in steel with a grain size (d−
1
2 ) of ap-

proximately 5 mm−
1
2 or with an annealing time of 1800 s was probably due to the large

number of precipitates per area formed on the austenite matrix. Then, the precipitate can
dissolve and reappear in the austenite matrix and the grain boundaries after the steel is
subjected to a creep rupture test at a temperature of 700 ◦C and a constant load of 150 MPa.
At this constant temperature and load, the precipitate can act as a trigger for the nucle-
ated micro-cavities. If the precipitate is present in the austenite matrix, it will cause the
micro-cavity to nucleate and propagate until transgranular fracture occurs. Meanwhile,
intergranular fractures can be caused by the presence of precipitates at the austenite grain
boundaries so that micro-cavities can form and propagate at the grain boundaries [43].
Figure 19c–d show the 253 MA ASS fractures in the mixed transgranular and intergranular
modes after the creep rupture test. The mixed-mode fracture was indicated by the presence
of micro-cavities coalescence and intergranular cracking on the fracture surface. Mixed-
mode transgranular and intergranular fractures of 253 MA ASS with a grain size (d−

1
2 ) of

approximately 5 mm−
1
2 showed relatively little coalescence of micro-cavities than 253 MA
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ASS with a grain size (d−
1
2 ) of approximately 4.4 mm−

1
2 . A possible cause is that the 253 MA

ASS with a grain size (d−
1
2 ) of approximately 5 mm−

1
2 had a high creep rupture time.

4. Conclusions

In this study, the effect of grain size on the mechanical properties and creep rupture
properties of 253 MA ASS was studied, and the following can be concluded:

(1) Grain growth at a temperature of 1100 ◦C showed a slight increase with annealing time.
A fine grain size can increase yield strength and hardness, and the ultimate strength
was almost constant, with fluctuating elongation and decreased strain hardening;

(2) M23C6 and intermetallic precipitates and micro-alloying in austenite grains resulted
in slow grain growth that affected the mechanical properties at room temperature.
Ductile fracture occurred in the cold rolling and annealing samples. The grain size
influenced the size of the dimple at the fracture surface. The larger the grain size, the
larger the resulting dimple size;

(3) Creep rupture at a temperature of 700 ◦C and a load of 150 MPa showed that the
austenite grain growth continued even though the difference between the grain size
before and after the creep rupture test was not significant;

(4) A higher creep rupture time and a lower creep ductility were found on the grain size
of approximately 40 µm. However, this grain size had a low value of hardness and
yield strength;

(5) The normal grain size distribution during the creep rupture test resulted in a fast
rupture time with intergranular fractures occurring in steels with an initial grain size
below 40 µm. In comparison, the bimodal grain size distribution during the creep
rupture test increased the rupture time, resulting in mixed-mode intergranular and
transgranular fractures in steel with an initial grain size above 40 µm;

(6) The difference in grain size before and after the creep rupture test caused grain bound-
ary hardening, resulting in a higher steel hardness value after the creep rupture test.
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