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Abstract: Precipitate coarsening is a major mechanism responsible for the degradation in mechanical
properties of many precipitation-hardened alloys at high temperatures. With recent developments in
processing of nanocomposite materials, a substantial volume fraction of inert second phase ceramic
nanoparticles can be introduced into the grain interiors of polycrystalline materials. These intra-
granular nanoparticles can have synergistic effects of impeding dislocation motion and interacting
with coarsening precipitates to modify the coarsening rate. In this work, the precipitate coarsening
behavior of an alloy in the presence of intragranular inert nanoparticles was studied using the phase
field method. Two key measurements of coarsening kinetics, precipitate size distribution and coars-
ening rate, were found to be affected by the volume fraction and the size of nanoparticles. Two novel
mechanisms related to geometric constraints imposed by inter-nanoparticle distance and the blockage
of solute diffusion path by nanoparticle–matrix interfaces were proposed to explain the observed
changes in precipitate coarsening kinetics. The simulation results in general suggest that the use of
small nanoparticles with large number density is effective in slowing down the coarsening kinetics.

Keywords: precipitates; coarsening; nanoparticles; phase field modeling; high temperature strength

1. Introduction

High performance alloys, including Al, Ni, and Co–based superalloys are strengthened
by the heat treatment process to produce nano-sized, hard, and coherent precipitates
through hindering of both dislocation movement and grain growth. However, at elevated
temperatures, rapid increase in diffusion rate accelerates precipitate coarsening rate and
results in the loss of mechanical strength. Precipitate coarsening refers to growth of larger
particles at the expense of smaller shrinking particles in the matrix. Coarsening occurs
when finely dispersed nanoprecipitates change their sizes, shapes, and distribution due
to microstructural evolution driven by reduction in interfacial energy [1]. The kinetics of
precipitate coarsening influence the strength of alloys such that this area continues to attract
the interests of many researchers. Techniques like solute segregation at precipitate interfaces
in Al alloys [2–6], formation of stacking fault ribbons in Ni alloys [7–9], introduction of
slow diffusing elements in superalloys [10–14], and application of external compressive
stresses [15,16] were proposed as measures to retard the precipitate coarsening process.
The mechanisms responsible for precipitate coarsening resistance are thermodynamic and
kinetic in nature and involve interfacial energy reduction, solute drag against precipitate
growth, development of strain fields around growing precipitates, slowing down of solute
diffusion [17], etc. Through proper incorporation of these effects during processing, the
precipitate coarsening behavior can be forced to deviate significantly from the normal
coarsening, described by the classical Lifshitz–Slyozov–Wagner (LSW) theory [18].
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The practice of dispersing fine ceramic nanoparticles like titanium carbon nitride
(TiCN), alumina (Al2O3), zirconia (ZrO2), and yttria (Y2O3) for the synergistic purposes of
retarding solidification coarsening [19–21] and pinning grain growth [22–27] at elevated
service temperatures is now established. During solidification, the introduced mobile
second–phase particles migrate and form assemblies around the established nuclei and
retard dendritic growth through combined pushing and drag effects. Retarded grain
growth causes many nuclei to form in the melt, thereby refining the microstructure. Due
to slow solidification velocities found in conventional casting processes, the majority of
the nanoparticles are incorporated along grain boundaries (due to particle pushing) and
become intergranular particles in the final microstructure, and only a few are engulfed
by the moving solidification front to become intragranular in the final microstructure.
However, with small sized nanoparticles and high cooling rates such as those encountered
in laser additive manufacturing, it is possible for a large volume fraction of nanoparticles
to be engulfed into the grains owing to fast moving solidification fronts which are larger
than the critical velocity required for engulfment [28]. This technique was recently ap-
plied to produce an aluminum metal containing a high content of uniformly dispersed
TiCN nanoparticles of a volume fraction of 35% using selective laser melting method [28].
Ceramic nanoparticles can also be introduced in grain interiors during grain growth and
recrystallization [29], and the presence of second–phase inert particles in grain interiors
during recrystallization was also predicted using 3D simulations [27]. Several studies
have suggested that the engulfed nanoparticles inside the grains are more effective in
strengthening the alloy through interaction with dislocations [19,20] when compared with
those segregated on the grain boundaries. It should be noted that in the presence of nano-
ceramic particles of lower thermal conductivity like Al2O3, SiO2, SiC, and ZrO2, it was
observed [19,20] that during solidification cooling process the temperature of the particles
is higher than that of the melt, and nucleation does not occur on the particles surface.

Many researchers to date have focused on the influence of nanoparticles on grain
growth control, however at high temperatures, both grain growth and precipitate coarsen-
ing control are of considerable importance. The strengthening mechanism in conventionally
solidified aluminum alloy containing 0.2–0.3 vol% of small sized coherent Al3Sc precipitates
and 30 vol% incoherent grain boundary Al2O3 ceramic particles (300 nm) was comprehen-
sively studied by Karnesky et al. [26]. The results demonstrated synergistic strengthening
due to dislocation pinning at the departure side of Al2O3 particles and back strain effects
imposed on dislocations by the Al3Sc precipitates due to lattice mismatch, but the coars-
ening kinetics of precipitates was not affected by the presence of intergranular ceramic
particles. Although the presence of nanoparticles in grain interiors has been experimentally
confirmed, according to our knowledge, their influence on precipitate coarsening kinetics
has not yet been comprehensively studied. Since detailed experimental study of the influ-
ence of grain interior nanoparticles is not available, our present work begins by attempting
to provide some insights, and this will guide future work.

The phase field method is a powerful continuum modelling method now extensively
employed to simulate microstructural evolutions through characterizing phases using a
set of conserved and non-conserved order parameters [30]. It has been used to model
complex interface evolutions in a wide variety of materials by describing interfaces using
smooth order parameters [30–33]. The coarsening kinetics of precipitates has been studied
using the phase field method in many previous works [17,34–36], and the validity of the
method has been established through experimental comparisons [17,37]. In this work, the
effect of inert nanoparticles on precipitate coarsening kinetics is studied by extending the
coarsening model [34] to include inert second–phase particles.

The article is arranged as follows: after the introduction section, the phase field model
used in our simulations is formulated in the next section, then simulation results for the
influence of various nanoparticle volume fractions and sizes on the coarsening kinetics are
presented, together with discussions on potential mechanisms related to these results. This
is then followed by conclusions.
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2. Phase Field Model

In comparison with macroscopic models relying on thermodynamic equilibrium
calculations, the phase field model consists of kinetic equations capable of predicting
realistic mesoscale morphological and microstructural evolution rather than merely relying
on final states, which is the case in macroscopic models. The phase field method was
initially developed for simulating solidification microstructures [33] and solid-state phase
transformation processes [30,31].

Coarsening of precipitates is satisfactorily explained by the Lifshitz–Slyozov–Wagner
(LSW) theory in which large particles grow at the expense of small particles driven by
interfacial energy reduction. In the classic LSW theory, the precipitate coarsening process
occurs as the result of solute diffusion and the Gibbs–Thomson effect. The phase field
method captures these two fundamental mechanisms by incorporating solute diffusions
using the Cahn–Hilliard type generalized diffusion equation and the Gibbs–Thomson effect
using an order parameter equation for precipitate–matrix interface evolution. Validity
of the original phase field model from which the current work was developed has been
previously verified by comparing experimental results with simulation results [35,38].

The phase field model used in this work is an extension of the previous coarsening
model for binary alloys [34]. The free energy functional of the system is expressed using
the following volume integral:

F =
∫ [

f0(C, ηi) +
kc

2
(∇C)2 +

4

∑
i=1

kη

2
(∇ηi)

2

]
dv, (1)

where C(r) is the concentration field which is equal to the equilibrium concentration Cα,
in the host matrix, and, in the precipitate phase, it is set to the equilibrium concentration
of the precipitate phase Cβ, v is the system volume, ηi is the phase field parameter for
tracking precipitate surface evolution of the grain with ith lattice orientation, and kc and kη

are constant coefficients. The local term f0(C, ηi) is
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The terms Cm =
(Cα+Cβ

2

)
, A, B, Dα, Dβ describe the concentration dependence

of the thermodynamic free energy, γ and δ are used to describe the interfacial energy
of precipitate matrix interfaces, ηnano is the nanoparticle phase field parameter, ηj is the
phase field parameter for tracking precipitate surface evolution of the grain with jth lattice
orientation, and εij describes the interfacial energy between precipitates with different
lattice orientations [34]. H is a dimensional constant with the unit of energy per volume
which was introduced to quantify the total free energy of the system. The inert nanoparticles
were introduced into the model through the phase field parameter, ηnano, which is equal
to 1 inside the nanoparticle and 0 outside. The interfacial energy between nanoparticles

and precipitates was incorporated in the model through the term φ
4
∑

i=1
(ηnano)

2(ηi)
2, with φ

being the interaction parameter term. This nanoparticle–precipitate interfacial term has the
same form as the precipitate interfacial term f3

(
ηi, ηj

)
and the inert nanoparticle was treated
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as a non-evolving precipitate phase, as will be seen in the evolution equations below. The
free energy functional above does not include the elastic energy associated with coherent
interfaces and transformation induced volume change. Evolutions of the concentration and
precipitate surfaces were studied using the standard variational dynamics for conserved
(Equation (6)) and non-conserved (Equation (7)) fields:

∂C(r, t)
∂t

= ∇·
[

MC∇
(

δF
δC

)]
, (6)

∂ηi(r, t)
∂t

= −Li
δF
δηi

, i = 1, 2, 3, 4, (7)

where, Li and MC are kinetic coefficients, t is the time, and F is the free energy functional
which is given in Equation (1). Since there is no solute diffusion inside inert nanopar-
ticles, the concentration kinetic coefficient was chosen to be MC = Mg(ηnano) where
g(ηnano) =

(
1−

(
η3

nano
)
∗
(
6η2

nano − 15ηnano + 10
))

, M is the solute mobility in the matrix
(the solute mobility in the precipitate is assumed to be the same as in the matrix) such
that the mobility MC vanishes inside the nanoparticle and varies smoothly between either
the nanoparticle–precipitate or nanoparticle–matrix interface. For simplicity, the kinetic
coefficients of all the phase field parameters were set to be the same, i.e., Li = L. One may
notice that there are only four phase field parameters for precipitate surfaces appearing
in the formulation. This choice is solely made for improving computational efficiency. It
is acceptable when the precipitate volume fraction is low, but, at high precipitate volume
fraction, unphysical precipitate coalescence may occur, since, by using only four phase field
parameters, all the precipitates are assumed to have only 8 possible different lattice orien-
tations (η = ±1). It was found from simulation tests that using 4 phase field parameters
maintained the simulation efficiency while avoiding significant coalescence problems at
the moderate precipitate volume fraction in our simulations.

Numerical implementation of the model was based on non-dimensionalized forms of
Equations (8) and (9) as follows:

∂C(r∗, t∗)
∂t∗

= ∇∗·
[

M∗g(ηnano)∇∗
(

∂ f ∗0
∂C
− k∗C(∇∗)

2C
)]

(8)

∂ηi(r∗, t∗)
∂t∗

= −
(

∂ f ∗0
∂ηi
− k∗η(∇∗)

2ηi

)
(9)

where, dimensionless time t∗ = LtH, particle radius r∗ = r
l , k∗η =

kη

(l2 H)
, k∗c = kc

(l2 H)
, f ∗ = f

H ,

∇∗ = l∇ and the relative kinetic coefficient M∗ = M
Ll2 . Here, l =

√
kη/H is the interface

width. The mobility M is related to solute diffusivity D [39] and the choice of L does not
significantly affect the coarsening result [31].

A single grain in the illustrated microstructure in Figure 1 was set to be the study
domain where the coarsening of existing precipitates occurs. Since the purpose of the
current study was to explore the general precipitate coarsening behavior in the presence
of inert nanoparticles, only 2-dimensional (2D) simulations were performed, but it can
be easily extended to 3 dimensions (3D). The nanoparticle volume fraction in this 2D
case was equivalent to the area fraction such that in this article these two terms are used
interchangeably. A square simulation box with a grid size of 1000 × 1000 and spatial
discretization of h

l = 1 was used. The simulation time step was set to be dt∗ = 0.002. The
following model parameters Cα = 0.05, Cβ = 0.95, Cm = 0.5, A = 2.0, B = 9.8, γ = 2.5,
Dα = Dβ = 2.5, δ = 1.0, εij = 3.0, k∗i = k∗c = 3.0 were adapted from ref. [34]. For simplicity,
the kinetic coefficient M∗ was set to have the same value equal to 1 in both the matrix and
the precipitate. It has been shown that selecting M∗ within the range of 1 to 100 does not
significantly affect the numerical result [39]. Initially, a large number of small nuclei with
concentration of C = 0.95 were randomly seeded into the system following an approach
introduced by Simmons et al. [40]. The initial matrix concentration was set to be 0.22
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which was enough for the precipitate volume fraction to reach about 20%. This precipitate
volume fraction was small such that it was possible to vary the volume fraction of the inert
nanoparticles within a large range. No further nucleation events were considered except
those given as the initial nuclei. Equations (6) and (7) were solved numerically using center
difference spatial discretization and forward Euler time integration. Periodic boundary
conditions were applied to all the simulations. To properly capture the coarsening statistics,
a simulation setup was repeated three times and coarsening statistics were averaged over
the three simulations. For convenience, the volume fraction, equivalent average radii and
particle size distributions of precipitates were post-processed from raw data with the aid of
Image J software.
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Figure 1. A schematic microstructure showing grains with randomly dispersed nanoparticles in both
grain interiors and grain boundaries. Solid lines are grain boundaries, and dark dots are nanoparticles.

3. Results and Discussion
3.1. Coarsening Behavior in Absence of Nanoparticles

To evaluate the model, the precipitate coarsening process without inert nanoparticles
was simulated first. Figure 2 shows the coarsening behavior of precipitates in the absence of
nanoparticles at aging times of t* = 2000, 12,000 and 24,000. The red particles are precipitates
and the blue regions are the matrix phase. The spherical precipitate shape is the result of
the simplified model formulation where surface energy anisotropy and elastic energy are
both ignored [34]. The precipitate number declines from more than 300 at a time step of
t* = 2000 to less than 100 at a time step of t* = 24,000, whilst the average precipitate size
increases. Here, coarsening is mainly controlled by inter-precipitate diffusion through the
matrix phase driven by free energy differences between small and large precipitates due to
the curvature effect, and this results in simultaneous shrinkage and growth of precipitates.
The coarsening kinetics was studied by plotting the cube of the average precipitate radius
versus aging time according to the power law (i.e., Rn ∝ t) whilst fixing the value of the
exponent n to 3. The precipitate radius is obtained from the relation Radius =

√
A/π

where A is the precipitate area. We adopted the cubic growth law, since it is the standard
exponent from the LSW theory and was reported by many researchers in literature. Such an
approach makes it easy to compare our results with previous simulation and experimental
results. Besides a brief introduction in Section 2, detailed background of the LSW theory
can be found elsewhere [1,18,41]. The plot of the cube of average precipitate size (R3)
with coarsening time step (t) is given in Figure 3a. In the absence of nanoparticles, the
cube of the particle size evolves linearly with time following the power growth law with
the coarsening exponent of n = 3. The coarsening behavior satisfies the classical LSW
theory [18] and this verifies that the process is controlled by bulk matrix diffusion. The
variation of the precipitate area fraction with aging time step in absence of nanoparticles is
shown in Figure 3b; it is evident that with time step, the area fraction rapidly decreases
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before reaching a steady state. The sluggish behavior observed in the transient stage before
the steady state condition is due to the seeding method used to introduce precipitates in
the system. Figure 3c show the changes in a number of precipitates during coarsening and
reflects that the numbers are continuously decreasing due to simultaneous growth and
shrinkage of precipitates.
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The LSW theory shows that regardless of the system initial particle size distribution,
the particle size distribution (PSD) will always converge towards self-similarity with
time [42]. The self-similarity can be examined by either calculating the structural function
to verify dynamical scaling [36] or through analyzing the PSD shape that changes with
time step. In this work, the latter was used to verify the self-similarity of our system.
The normalized PSD shapes with fitted curves for precipitate coarsening at selected time



Metals 2022, 12, 892 7 of 16

steps in absence of nanoparticles are shown in Figure 4a–d. Data for plotting histograms
was extracted from coarsening results using Image J software before plotting histograms
Microsoft Excel. The peak frequency of the PSD gradually decreases and shifts to the right
with time due to coarsening and this is consistent with normal coarsening behavior [36].
The figure also shows that the size distribution range becomes broader with an increase
in time, as expected in a normal coarsening process. Observations show that the PSD did
not significantly change in shape with time step and this indicates that, for the time steps
considered, a scaling behavior during coarsening has already been reached.
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To validate the model, our simulation results for precipitate coarsening in absence
of nanoparticles were compared with results by Wu et al. [43], Wang et al. [44], and those
from Zhu et al. [36] for coarsening of binary Ni Al alloys. The PSD shapes and curves of
R3 vs t from our simulation results (Figures 3a and 4a–c) are similar with those from these
previous results, i.e., they both obey the linear cube growth law and have similar unimodal
skewed PSD shapes. Quantitative comparisons are necessary in the future to further clarify
this aspect.

3.2. Coarsening Behavior in Presence of Nanoparticles

To understand the effect of nanoparticles on the precipitate coarsening process, inert
nanoparticle phases with volume fractions of 10%, 20%, and 30% were introduced into the
domain. A previous study on grain boundary pinning [24] showed that the size distribution
of nanoparticles is not important in controlling grain growth. Thus, for a given nanoparticle
volume fraction, mono-sized spherical nanoparticles with three radii sizes, r*, of 10, 20 and
30 were used. All the nanoparticles were randomly distributed in the system. It should
be noted that introduction of nanoparticles reduced the total solute content within the
matrix, and, therefore, the volume fraction of the precipitate phase in the coarsening stage
is also reduced.

Figure 5a–c shows the evolution of the precipitates with different nanoparticle volume
fractions at a fixed nanoparticle size of r* = 20. The relationships of the cube of the average
precipitate size with the coarsening time under different volume fractions of nanoparticles,
including zero volume fraction, are merged for comparison and plotted in Figure 6a. At
a given time, the average precipitate size decreases with increasing nanoparticle volume
fractions. Similar simulations with different nanoparticle sizes are also shown in Figure 6b,c.
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In general, the average precipitate size curves deviate from the linear cubic growth law
and become more nonlinear at higher volume fractions of nanoparticles. This behavior
is expected, since low nanoparticle volume fraction systems are closer to the classic LSW
coarsening theory, and one should expect a larger deviation of the average precipitate size
from the LSW theory as more nanoparticles are added into the system. One may also notice
that, at the same nanoparticle volume fraction, the deviation from linear LSW coarsening
rate is more significant for smaller nanoparticles. This particle size effect will be discussed
in a later section.
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Figure 6 also shows that, at a given time, the gradients of the curves are non-constant
and gradually decrease with an increase in nanoparticle volume fraction, and this signifies
the slowing down of the coarsening rate. The local slopes of the curves are the coarsening
rate constants which indicate the kinetic and thermodynamic changes in terms of the
diffusion coefficient, interfacial energy, and molar volume according to the coarsening rate
constant relationship given below [37].

k =
8
9

D
CeγsV2

m f (φ)
RT

(10)

where, Vm is the molar volume of the precipitates, D is the bulk diffusion of solutes in the
matrix, Ce is the equilibrium solute concentration of the matrix, γs is the interfacial energy
of the precipitate–matrix interface, R is the particle radius, T is the temperature, and f (φ) is
the ratio of the coarsening rate with finite precipitate volume fraction to the coarsening rate
with zero volume fraction. After examining the precipitate shrinkage and growth behavior
in detail, it was found that the decelerated coarsening behavior experienced in this study is
not attributed to inverse coarsening like the one experienced in the previous study [45], but
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the behavior is in agreement with results obtained by Ryu et al. [46] for regular coarsening
deceleration.
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The PSD at different times in presence of nanoparticles of radius size r* = 10 with
different volume fractions in the system are given in Figures 7–9. The graphs show that with
an increase in the system nanoparticle area fraction, the particle size distributions change
and significant differences from the non-nanoparticles PSD in Figure 4 can be identified.
Firstly, with an increase in volume fraction of nanoparticles, the PSD shapes become more
disordered and peak positions do not significantly move to the right. This signifies much
departure from the regular PSD observed in the absence of nanoparticles. Secondly, the rate
of increase of the broadness of the precipitate size ranges becomes slower at higher volume
fractions of precipitates (Figure 9) when compared to that in the absence of nanoparticles
(Figure 4). After examining the coarsening simulation results carefully, it is found that,
at high nanoparticle volume fraction, the shapes of the precipitates become irregular due
to contact with nanoparticles. As seen in the high volume fraction PSD in Figure 9, the
precipitate size range becomes narrow, and such PSD shapes are quite similar to those
obtained for decelerated coarsening in the presence of stresses [15]. Figures 7–9 show that
in the presence of nanoparticles in the system, the PSD shapes are constantly changing
with time and are not self-similar according to the classic LSW theory. This behavior can
be understood by identifying another precipitate size–limiting mechanism, which is the
distance between randomly distributed inert nanoparticles. As shown in Figure 5, when the
precipitates are in contact with nanoparticles, further growth of precipitates is constrained
by the surrounding nanoparticles. Since the nanoparticles are randomly distributed in the
matrix, the size distribution of the inter-particle space where the precipitates can grow is also
random, with the average inter-particle space being inversely proportional to the number of
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nanoparticles. The particle size distribution, particularly in the late stages of coarsening, is
the combined result of the classic coarsening kinetics that pushes the distribution towards
the standard LSW PSD shapes and the geometric constraint imposed by inter-particle,
distance which leads to random size distribution. Thus, with less size constraints at low
nanoparticle volume fraction, the system will relax towards the standard PSD given by
the LSW theory, and with strong size constraints at high nanoparticle volume fractions,
precipitates will form a PSD that centers around the average inter-particle distance.
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To investigate the effect of nanoparticle sizes on the precipitate coarsening rate,
the nanoparticle volume fractions were fixed and the nanoparticle sizes were varied.
Figure 10a–c shows the evolution of precipitates with time steps for nanoparticles of a
fixed volume fraction of 30% and different sizes, r*, of 10, 20, and 30. In the presence of
small sized nanoparticles, the late stage precipitate shape changes from circular to irregular,
whilst for large nanoparticles the changes are insignificant. Figure 11a–c shows the plots
of the cube of average precipitate radius with time for nanoparticles with fixed volume
fractions and different particle sizes. It is shown that small-sized nanoparticles are more
effective in suppressing precipitate coarsening when compared to large ones. The results
show that, for the same volume fraction, the precipitate sizes and gradients of the curves
decreases with a decrease in the nanoparticle size. The smallest precipitate sizes are ob-
tained in the presence of a high volume fraction of nanoparticles of the smallest size, as
shown in Figure 11c. On the contrary, a small area fraction of large nanoparticles, like those
shown in Figure 11a, only slightly affects the precipitate’ coarsening rate. At the same
volume fraction, small nanoparticles possess larger overall surface area. Since the coars-
ening process involves the transportation of solute atoms from small precipitates to large
precipitates through diffusion, the large amount of particle–matrix interfaces produced by
small nanoparticles block more solute transportation path and, therefore, effectively slows
down the coarsening process.

The effect of nanoparticle sizes on PSD are shown in Figures 9, 12 and 13 for nanopar-
ticles with 30% volume fraction and size radii, R*, of 10, 20, and 30. The figures show that
with a decrease in the nanoparticle size, the PSD shapes become more random due to the
inter-particle distance constraints from the increasing nanoparticle number density. With
larger nanoparticle size, like in Figure 13, the PSD shape is close to the one in absence of
nanoparticles since the inter-particle distance is also large. A similar behavior was observed
in NiAl and Fe-Cr alloys, where it was shown that the coarsening rate can be decelerated
by solute segregation, stresses and strains [10,47].
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4. Conclusions

The effects of intra-granular nanoparticles on early-stage coarsening behavior of
precipitates were studied computationally by generalizing a previously proved phase
field model for precipitate coarsening. Inert nanoparticles of various sizes and volume
fractions were incorporated in the matrix phase using a non-evolving order parameter. It is
found that both the precipitate size distribution and the coarsening rate may be affected
by the presence and characteristics of nanoparticles. Two distinct mechanisms for these
nanoparticle effects are proposed. The new length scale related to the inter-nanoparticle
distance introduced by incorporating random nanoparticles may change the standard LSW
precipitate size distribution by geometrically constraining the precipitate size, and the
reduction of available diffusion paths due to the blockage of nanoparticle–matrix interfaces
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can significantly slow down the coarsening process. As the first systematic computational
study of the effects of nanoparticles on the precipitate coarsening process, this work sheds
light on potential approaches to control the coarsening process and further improve the
mechanical properties of nanoparticle–reinforced metal matrix composites.

The simulation results in general suggests that the use of smaller nanoparticles with
large number density is effective in slowing down of the coarsening kinetics. However,
since the current work was performed in 2D only, the diffusion path blockage mechanism
that leads to this conclusion may become less significant in 3D due to an increasing transport
path. Computationally intensive 3D simulations need to be carried out in the future in order
to confirm the result. In addition, other potential contributing factors like the precipitate–
matrix misfit stress and surface diffusion along the particle–matrix interface should be
included when generalizing the results to real materials.
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