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Abstract: Transgranular chloride-induced stress corrosion cracking (TGCISCC) is a mounting con-
cern for the safety and longevity of arc welds on austenitic stainless steel (AuSS) nuclear waste
storage canisters. Recent studies have shown the key role of crystallography in the susceptibility and
propagation of TGCISCC in SS weldments. Given that crystallography underlies mechanical hetero-
geneities, the mechanical-crystallographic relationship during TGCISCC growth must be understood.
In this study, welded SS 304L coupons are loaded in four-point bend fixtures and then boiled in
magnesium chloride to initiate TGCISCC. Nanoindentation mapping is paired with scanning electron
microscopy (SEM) electron backscatter diffraction (EBSD) to understand the correlation between
grain orientation, grain boundaries, and hardening from TGCISCC propagation. The nanoindenta-
tion hardness of individual grains is found to not be a controlling factor for TGCISCC propagation.
However, intragranular hardness is generally highest immediately around the crack due to localized
strain hardening at the crack tip. This work shows that nanoindentation techniques can be useful in
understanding CISCC behaviors when paired with electron microscopy.

Keywords: chloride-induced stress corrosion cracking; austenitic stainless steel; EBSD; nanoindentation;
stress corrosion cracking

1. Introduction

Stress corrosion cracking (SCC) is an environmentally assisted degradation mode that
occurs when three key factors synergistically interact: electrochemical reactions, mechan-
ical stress, and susceptible materials [1,2]. SCC has been a critical degradation mode for
structural alloys in numerous industries and applications, including nuclear reactors [3–5],
petroleum pipelines [6,7], airplane panels [8], and fusion welding [9,10]. Based on the
cracking patterns, SCC can be divided into intergranular SCC (IGSCC) and transgranular
SCC (TGSCC) modes. IGSCC is often associated with enhanced grain boundary (GB) sus-
ceptibility, typically through precipitation (e.g., carbide sensitization in austenitic stainless
steels [11,12]) or segregation (dealloying, or Cr depletion at GBs [13–16]). On the other hand,
TGSCC is not strongly controlled by GBs, but rather by crystallographic and mechanical
factors, which are manifested by slip steps [17–19] induced during the crack growth.

Chloride-induced SCC (CISCC), which often occurs in a transgranular mode (TG-
CISCC), is expected to occur in 300 series of austenitic stainless steel (AuSS) welds of
nuclear waste storage canisters [20,21]. During service in coastal regions, humid coastal air
carrying sea salt constantly cools down the decay heat from the waste contained within the
dry storage canisters. Subsequently, the deliquescence of chlorine-rich salt brine can form a
corrosive environment on the canister surface, thus leading to pitting [3,22–24]. Meanwhile,
because the canisters are fabricated and formed into their cylindrical shape using fusion
welding, residual tensile stresses are introduced along the vertical weld seam [25,26]. Thus,
the chlorine-rich corrosive environment on the canister surface, combined with the residual
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tensile stress from fabrication, makes the weldment region of nuclear waste storage can-
isters highly susceptible to TGCISCC. Recently, crystallographic and mechanical factors,
i.e., the Schmid factor and Taylor factor, have been found to play a significant role in
determining TGCISCC behavior [27,28]. Specifically, the mismatch of the Schmid factor
and Taylor factor between adjacent grain pairs controls whether the crack will continue to
propagate or will arrest at a GB. However, these crystallographic properties give rise to
anisotropic mechanical properties, which can also affect TGCISCC behavior given the role
of both crystallography and mechanics in controlling TGSCC.

SCC is commonly characterized using techniques such as scanning electron microscopy
(SEM) fractography [29], SEM electron backscatter diffraction (EBSD) [5,27], focused ion
beam [30], analytical transmission electron microscopy [31], atom-probe tomography [32],
3D X-ray tomography [33,34], and atomic force microscopy [35]. Meanwhile, nanoinden-
tation has been shown to be a versatile tool for evaluating the mechanical responses of
nuclear materials [36–47]. Although there has been limited application of nanoindentation
to predict or evaluate SCC susceptibility or propagation to date, the role of mechanics in
TGSCC creates the possibility of using nanoindentation in this manner.

The objective of this paper is to utilize nanoindentation in parallel with SEM and EBSD
to determine whether nanoindentation can be used to assess—at least qualitatively—the
SCC susceptibility and propagation. Stainless steel (SS) 304L coupons with a weld seam
at the center are bent using a four-point bending fixture to introduce tensile stress on
the surface, and then submerged in boiling magnesium chloride solution to emulate an
aggressive CISCC environment of the nuclear waste storage canisters. After major CISCC
through-cracking appears on the surface, the coupon is sectioned and prepared for post
mortem characterization. Eight TGCISCC regions are selected for nanoindentation; five of
these regions are indented using a coarse spatial resolution array of indents, whereas the
remaining three regions are indented using a finer resolution nanoindentation mapping
approach. Afterwards, SEM-EBSD is performed on all of the indented crack regions to
reveal the grain structure. Results show that the micromechanical properties measured
by the nanoindentation can provide a reasonable qualitative assessment of TGCISCC
susceptibility and localized hardening during crack propagation.

2. Materials and Methods

The material studied in this work was commercial-grade stainless steel 304L that was
hot rolled and pickled (composition shown in Table 1). Two SS 304L sheets, each 3 mm
thick, were gas tungsten arc welded (GTAW) together using SS 308L filler to reproduce
the weld seam in spent nuclear fuel (SNF) canisters [48]. The welding was applied with
a current of 110 A and voltage of 12 V. The welded sheet was laser cut into coupons with
a dimension of 105 mm × 18.5 mm × 3 mm. The weld seam was located at the center
of the coupons and ground flat with 100-grit paper on a grinding machine, as shown in
Figure 1. In order to emulate the residual stress in the SNF canister weld region [48], the
coupons were bent within four-point bend fixtures, as shown in Figure 2. The four-point
bend fixtures were specifically designed for corrosion testing, being composed of Hastelloy
C-276, and the four points of contact with the coupon were made from zirconia ceramic to
galvanically isolate the coupon. The tensile stress was measured with an X-ray residual
stress analyzer µ-X360 (Pulstec, Shizuoka, Japan) to be 224 MPa on average on the convex
surface of the bent coupon [49].

Table 1. Base metal and weld filler metal composition [27].

Materials
Alloying wt.% (Balance Fe)

C Si Cr P S N Mn Ni Cu Mo

SS 30403 0.027 0.35 18.11 0.023 0.04 0.056 1.31 8.02 - -
SS 30880 0.014 0.47 19.88 0.021 0.002 - 1.83 9.66 0.1 0.01
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Figure 1. (a,b) Surface morphology of test coupon before and after immersion in boiling magnesium 
chloride; (c) schematic illustration of the coupon dimension and welding zones; (d) side view of the 
test coupon after boiling magnesium chloride immersion, with a major crack appearing to the right 
of the weld seam (adapted from Reference [27]). 

Figure 1. (a,b) Surface morphology of test coupon before and after immersion in boiling magnesium
chloride; (c) schematic illustration of the coupon dimension and welding zones; (d) side view of the
test coupon after boiling magnesium chloride immersion, with a major crack appearing to the right
of the weld seam (adapted from Reference [27]).
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Figure 2. Four-point bend apparatus [50]. Reprinted/adapted with permission from Reference [50].

To accelerate the stress corrosion cracking (SCC) initiation and growth, the bent
coupons were immersed in boiling magnesium chloride (MgCl2) in the Advanced Ma-
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terials Laboratory at the University of New Mexico. The experimental setup is shown
in Figure 3 [50]. Reagent-grade MgCl2 hexahydrate flake was used to make the boiling
solution. The coupon, while loaded in the four-point bending fixture, was fully immersed
in the boiling MgCl2 solution and constantly boiled at 155 ± 1 ◦C following the ASTM G36
standard [51] until a major crack occurred on the sample surface. More details about the
sample preparation and corrosion testing can be found in [50].
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After a major crack was observed on the coupon surface, post-corrosion analysis was
performed to assess the relationship between the nanohardness of individual grains and
the cracking tendency. The bent coupon was sectioned by diamond saw into a smaller
piece for ease of metallographic polishing; the section piece contained a cross-section of the
weld, heat-affected zone (HAZ), and base metal, as represented by the blue dashed lines
in Figure 1c. From our earlier study [27], the HAZ was found to be most susceptible to
CISCC, and thus, this study focused only on the HAZ. The sectioned piece was polished
following standard metallurgical sample preparation processes [50] and finished with 12 h
of vibratory polishing.

Nanoindentation was carried out on the cross-section of the specimen with a KLA iMi-
cro Nanoindenter (KLA Corporation, Milpitas, CA, USA) under displacement-controlled
mode. The nanoindenter utilized a diamond Berkovich tip with an elastic modulus of
1141 GPa [38]. To understand the hardness distribution in the bulk cracked sample, arrays
of nanoindents of a 1000 nm depth and 50 µm spacing were applied around 5 CISCC cracks
(henceforth referred to as cracks #1–#5) with a strain rate of 0.2 in the HAZ. Nanohardness
and modulus were calculated based on the Oliver–Pharr method [52]. Additionally, the
iMicro was operated in NanoBlitz 3D property mapping mode around 3 additional crack
tips (henceforth referred to as cracks #6–#8) to assess the hardness distribution at a finer
resolution. The NanoBlitz maps were conducted using indentation arrays of 15 × 15 with
a target load of 45 mN and depth of 1 µm. The spacing between indents was 10 µm to
minimize interactions from neighboring indents [53].

A Quanta 650 FEG Scanning Electron Microscope (SEM) (Thermo Fisher Scientific,
Waltham, MA, USA) equipped with an EDAX HikariTM electron backscatter diffraction
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(EBSD) detector (AMETEK Inc., Mahwah, NJ, USA) was used for microstructure characteri-
zation after nanoindentation. The grain structure around the 5 crack regions was revealed
by EBSD at 20 kV and 5.5 spot size. The working distance for EBSD was 16 µm. Post-EBSD
analysis was conducted with EDAX OIM software (version 8, AMETEK Inc., Mahwah,
NJ, USA) to extract individual grain properties. A total of 164 grains were analyzed with
nanoindentation and EBSD, with 18 grains located on the crack path and 146 grains in the
surrounding uncracked bulk material.

3. Results and Discussion
3.1. Grain Structure Revealed by EBSD for Bulk Analysis

To corroborate the grain structure and crystallographic properties with nanohardness,
EBSD maps were resized to match the nanoindentation grid arrays on the SEM images of
cracks #1–#5, as shown for crack #1 in Figure 4 and for cracks #2–#5 in Figures S1–S4. The
crack regions in the SEM morphology images (Figures 4a and S1a–S4a) were outlined by
red boxes. Image quality (IQ) and inverse pole figure (IPF) maps (Figure 4b,c, respectively)
reveal the grain structure around the cracks; the colors of grains in the IPF map correspond
to the grain orientation per the IPF legend. The indents are visible in the IQ maps to help
identify the relative locations of indents to grains and grain boundaries (GBs). In Figure 4d,
the hardness of each individual indent was extracted and labeled below the indents. After
characterizing the EBSD-IQ maps, the locations of the indents were confirmed and were
categorized into three classifications: within grain, within twins (marked by square), and
on GBs (marked by circle).

3.2. Harndness Distritbution for the Bulk Analysis

The nanoindentation grid arrays are located around CISCC crack paths, with some
indents falling on cracked grains. To investigate whether hardness has an effect on the
CISCC path, the hardness distribution in the bulk (uncracked) grains was compared to
that in grains that are cracked, shown in Figure 5a. The bulk uncracked grains have an
average hardness of 1.94 ± 0.18 GPa collected from 146 indents in the grains around cracks
#1–#5, whereas the grains containing a crack have an average hardness of 1.89 ± 0.16 GPa
collected from 12 indents. Hence, there is no statistically significant difference in the
average hardness between the cracked versus uncracked grains, meaning that hardness is
not a meaningful predictor of CISCC cracking susceptibility of grains.

Bulk indents from uncracked grains were categorized into three different classifica-
tions: within grains, within twins, and on GBs. The hardness distributions for each of
these categories are shown in Figure 5b. For the indents located in normal grains (88 oc-
casions), twins (8 occasions), and on GBs (71 occasions), the average hardness values are
1.92 ± 0.17 GPa, 1.84 ± 0.13 GPa, and 1.95 ± 0.20 GPa, respectively. It is well known that
GBs of FCC polycrystalline metals have higher strength [54] and hardness than grain interi-
ors due to the strain gradient [55] and dislocation nucleation [56,57] at GBs from plastic
deformation. Nevertheless, the difference in hardness between the GB and grain or twin
interiors is not statistically significant either.

The Schmid factor (m) and Taylor factor (M) are measures of shear stress on the
individual grain slip systems when the polycrystalline material is under uniaxial stress.
If a grain is oriented in such a way that has a high Schmid factor and low Taylor factor,
the higher resolved shear stress promotes easier plastic deformation. The m and M of
both uncracked and cracked grains where indents are located are extracted from the
EBSD analysis and plotted relative to the corresponding hardness values in Figure 6a,b
(note that the indents located on the GBs are omitted from this Schmid factor and Taylor
factor analysis). There is no apparent difference in m and M distribution between cracked
and uncracked grains, nor is there a significant correlation between hardness and m or
M. Figure 6c,d are the IPF maps of the grain orientation distributions of the bulk HAZ
and cracked grains. The IPF is plotted from the pole vector that aligns with the crack
propagation direction. It can be observed that there is no specific texture developed in the
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HAZ after exposure to MgCl2 and there is also no preferential grain orientation in which
SCC tends to grow. It is thus concluded that individual grain orientation is not a controlling
factor that determines TGCISCC propagation.
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3.3. Hardness Mapping and Individual Grain Analysis with NanoBlitz

As observed in Section 3.2, there is no significant hardness and orientation difference
between the cracked and uncracked grains based on the bulk nanoindentation and EBSD
analysis. Thus, NanoBlitz tests were performed around the crack tips to assess the hardness
at a finer scale, specifically within the individual cracked grains. NanoBlitz results are
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summarized in Figure 7 for crack #6 and in Figures S5 and S6 for cracks #7–#8. These figures
are all composite figures showing the hardness maps in part (a) for the cracks shown in
part (b), and the EBSD IQ and IPF maps with GBs marked in blue in parts (c) and (d). In
order to locate the crack path and corresponding grains, the hardness maps were overlayed
by the IQ maps, and crack paths were traced with black arrows. Based on the hardness
maps, cracks are not always located in solely hard or soft regions.
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crack area marked in red rectangle; (c,d) EBSD-IQ and IPF maps, with GBs marked in blue, crack path
traced with red dashed arrow corresponding to intergranular hardness profiles shown in Figure 8,
and orange arrow indicating direction of intragranular hardness profiles shown in Figure 9.
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Figure 9. NanoBlitz maps with corresponding intragranular line scan hardness profile along the
arrowed path from the crack to the GB within a cracked grain for cracks #6–#8.

Figure 8 shows the intergranular hardness distribution along the crack path for cracks
#6–#8, whereas Figure 9 shows the intragranular hardness distribution within a single
cracked grain for cracks #6–#8. When examining the line scan of hardness along the crack
paths (Figure 8), it can be observed that the cracks propagate through both hard and soft
grains, which further confirms the conclusion drawn from Section 3.2. Moreover, the cracks
appear to propagate along grains having alternating high and low mechanical hardness.
This behavior is consistent with previously reported observations that crystallographic
hardness—namely, Schmid (m) and Taylor (M) factor mismatch—control the crack propa-
gation tendency in 304L stainless steel welds [27]. Specifically, our previous work showed
that cracks tend to propagate either from crystallographically hard to crystallographically
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soft grains (i.e., high m, low M grains to low m, high M grains), or vice versa. The current
results corroborate that mechanical (indentation) hardness has a similar influence on crack
propagation as crystallographic hardness.

Additionally, when focusing on the intragranular hardness variation within an
individual cracked grain (direction of hardness scan marked with orange arrows in
Figures 7c, S5c and S6c), it is found that the material closest to the crack tends to be harder
than the surrounding material within the same grain. In other words, the hardness de-
creases when moving away from the crack within a grain, as shown in Figure 9. This
observation suggests that the crack propagation induces strain hardening within a plastic
zone immediately surrounding the crack, which is supported by crack tip plasticity mecha-
nisms within the archival literature. The highly localized stress and strain around the crack
tip leads to a higher density of dislocations, and thus, localized strain hardening during
crack propagation [58,59]. As the crack propagates in randomly oriented polycrystalline
materials, some grains experience higher shear stress, and thus, undergo more plastic defor-
mation than the immediate neighboring grains ahead of the crack tip due to the orientation
of their slip systems with respect to the applied load. This leads to the heterogeneous
distributions in plastic deformation and local strain between different neighboring grains
during crack propagation, and could explain the resultant strain concentrations in certain
cracked grains [60]. Additionally, GBs are common obstacles for dislocation glide [61–63]
and can lead to a pile-up of dislocations, and consequently, local strain hardening within
the region surrounding the crack tip [64,65].

4. Conclusions

Nanoindentation mapping was conducted over CISCC paths in the HAZ of a 304L
stainless steel weld. Nanoindentation maps were conducted at two different spatial resolu-
tions, 50 µm and 10 µm, to evaluate the effects of intergranular mechanical hardness and
intragranular hardness, respectively. The major conclusions are:

• Grain boundaries and twins do not show a significant impact on hardness compared
to randomly oriented grains in the SS 304L HAZ.

• Grain-level mechanical hardness and orientation are not the primary controlling
factors that determine the propagation of TGCISCC in the SS 304L HAZ.

• Within an individual cracked grain, hardness is generally highest immediately around
the crack due to the elevated dislocation density and strain hardening ahead of crack
tips during TGCISCC propagation.

• Nanoindentation techniques corroborate advanced multiscale electron microscopy
techniques in identifying CISCC susceptibility and qualitatively assessing CISCC-
induced strain hardening.
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