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Abstract: In this paper, the VPSC (visco-plastic self-consistent) model was improved by considering
the effect of heating rate. The hot compression deformation behavior and texture evolution of AA7075
were studied based on the improved VPSC model and EBSD (electron back-scattering diffraction).
The stress–strain curves, inverse pole figure (IPF), and orientation distribution function (ODF) of
the material were analyzed by combining TSL-OIM-Analysis, MTEX, and other analysis software.
By observing the changes in grain structure and micro-texture of the material before and after hot
compression deformation, the influence of macro-deformation conditions on the microstructure
evolution of the material was studied, and the evolution law of grain structure and micro-texture
was analyzed. It was found that the hot deformation parameters have significant effects on the
stress–strain curve characteristics and micro-texture evolution of AA7075 during hot deformation.
Copper {112} <111> and {011} <111> are the main textures, and the strength and distribution of typical
textures such as Copper {112} <111>, Cube {001} <100>, and Goss {011} <100> show regularity with the
change in deformation conditions. Through comparing the predicted results of the improved VPSC
model and experimental data, it is distinct that the improved VPSC model is suitable to predict the
micro-texture evolution of AA7075 during hot compression. Finally, the sensitivity of micro-texture
evolution to hot compression parameters such as heating rate was analyzed.

Keywords: visco-plastic self-consistent model; AA7075; EBSD; texture evolution

1. Introduction

In recent years, the prediction and control of the microstructure and properties of
metals during deformation have been an important research direction in the field of mate-
rials science around the world, based on the study of the evolution of metal deformation
texture [1–5]. As a typical high-strength superhard aluminum alloy of the Al-Zn-Mg-Cu
series, AA7075 has a strength of 500~700 MPa. It has the advantages of low density, high
strength, high fracture toughness, and good processability. Nowadays, AA7075 can replace
traditional steel materials in automobiles, high-speed trains, and aerospace.

A number of researchers have focused on the metal deformation process and used
various models to analyze the evolution of the microstructure of materials qualitatively.
Bunge [6] points out that the texture distribution of the material affects 20 to 50% of the
material properties. Therefore, the study of texture distribution and evolution during
thermal deformation is crucial for analyzing the mechanism of the microstructure evolution
of materials. Crystal plasticity models show a competitive advantage in predicting the
extrusion texture of aluminum alloys. The theory of crystal plasticity is based on the
materials’ macroscopic deformation behavior and micro-texture parameters. It takes the
dislocation mechanism of crystal deformation as the starting point to describe the elasto-
plastic deformation process of materials from the essence of physics. The study of the
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plastic deformation of materials at the grain level is an essential theory for the simulation
of the plastic deformation behavior of materials at the micro level.

Surya et al. [7] studied the texture evolution of the face-centered cubic metal OFHC
Copper during simple deformation using the improved Taylor model and realized the
elastic-visco-plastic constitutive single crystal model in the finite element framework. It is
found that there are some differences between the simulation results and the experimental
results because the Taylor model itself does not consider the grain interaction in the
material. Kumar et al. [8] studied the effects of strain rate on the yield strength and
flow stress of aluminum alloy 5754 under uniaxial (tension and compression) and simple
shear loading and used the VPSC model to simulate the evolution of the initial fabric
composition of aluminum alloy 5754 during uniaxial tension and simple shear loading. The
results show that the VPSC model can adequately simulate the deformation of aluminum
alloy 5754 under simple loading. However, the author does not further consider the
influence of factors such as the amount of deformation and deformation temperature in the
loading process. Guo [9] predicted the significant deformation behavior of OFHC copper,
316 austenitic stainless steel, and AZ31 magnesium alloy under different loading modes
based on the E-VPSC (elastic-viscoplastic self-consistent) model and analyzed the texture
evolution using different linearization models and strain hardening parameters. The results
show that the Secant, Tangent, Affine, and Meff linearization models can better predict the
significant deformation behavior of FCC materials.

Currently, research on the hot deformation behavior of aluminum alloys focuses
mainly on the constitutive equation and micro-texture after hot deformation. To our
knowledge, there are few studies on the texture development process and prediction by the
VPSC model. Raja [10] has studied the isothermal compression deformation behavior of
Al-7068 alloy in the T6 state. The results show that the microstructure evolution during hot
compression is carried out through the CDRX mechanism. The analysis of transmission
electron microscopy confirmed that the precipitates became coarsening with the increase
in processing temperature and the decrease in deformation rate. Yuan [11] investigated
the influence of hot extrusion temperature on the mechanical properties and micro-texture
evolution of aluminum alloy 1060 based on the VPSC model. The results show that the
micro-texture has a more significant influence on the anisotropy of mechanical properties
under the condition of high-temperature hot extrusion. Dong [12] investigated the effects
of deformation before compression in different directions and degrees on the anisotropic
mechanical properties of 6061 aluminum alloy sheets based on the VPSC model. The
authors found that the primary deformation mechanism of aluminum alloy in the plastic
deformation phase is slip, and the texture gradually evolves from Cube texture to rotational
Cube texture with increasing deformation. Fan [13] established the VPSC model for 6014
aluminum alloy based on the texture and mechanical properties data. The effects of
tensile deformation on the mechanical properties and R-value of 6014 aluminum alloy
under different conditions were investigated. The results show that the VPSC model
can reasonably predict the texture of aluminum alloy 6014 under different deformation
conditions and that the Cube texture significantly affects the R-value in different directions.
However, the effects of heating rate and the amount of deformation on the micro-texture
evolution of materials after hot compression have not been taken into account in the
above studies.

This paper improved the VPSC model by considering the heating rate. Furthermore,
the micro-texture evolution of AA7075 under different hot compression conditions was
predicted based on the improved VPSC model. While the orthogonal experiments consid-
ering the hot compression parameters such as heating rate and the amount of deformation
were conducted. The hot deformation behavior and microstructure evolution of AA7075
during hot compression deformation were studied by means of microstructure observed
by EBSD and stress–strain curve measured by hot compression experiment. Then, the
improved VPSC model was validated. Finally, the sensitivity of the micro-texture evolution
of AA7075 to hot compression deformation parameters was analyzed.
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2. Materials and Methods

The AA7075 used in this study is a tensile bar, its chemical composition is shown in
Table 1, and the sample with the size of ϕ8× 12 mm is made by wire cutting. In order
to improve the inhomogeneity of the AA7075 tensile bar, it is necessary to homogenize
the material. The homogenization temperature is 460 ◦C, holding time is 24 h, and the
homogenized microstructure is retained by water quenching.

Table 1. Chemical composition of AA7075.

Zn Mg Cu Mn Fe Si Cr Ni Ti Al

5.67 2.80 1.64 0.30 0.25 0.09 0.22 0.05 0.06 Balance

The Gleeble-3800 thermal simulation testing machine (DSI, St. Paul, MN, USA) per-
formed the isothermal hot compression test. During hot compression, the contact surface
between the two ends of the sample and the indenter was coated with a lubricant and
a graphite plate to reduce the influence of friction on the test results. At the same time,
thermocouples were welded to the center of the sample to measure the temperature, as
shown in Figure 1. The Gleeble-3800 thermal simulator automatically collects the stress,
strain, and temperature data.
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Figure 1. Clamping diagram of the hot compression test sample.

In the hot compression experiment, lubricants and graphite plates are used to minimize
the influence of friction, but the influence of friction on the deformation of the sample
cannot be eliminated in the actual compression process. The friction force causes the
sample to deform unevenly during hot compression, and the cylindrical sample is usually
a drum-shaped cylinder with a larger diameter after hot compression, as shown in Figure 2.
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The acquired displacement data are modified and combined with Equation (1) to
calculate the actual stress and strain of the sample.

σ = σ0C2

2[exp(C)−C−1]

ε = ln h
h0

C =
2mR0

√
h0
h

h

(1)

Here, σ0 and σ represent the stress before correction and the actual stress after correc-
tion, ε represents the actual strain, and C represents the friction correction coefficient. The
physical meaning of h, h0, R0, Rm, and Rt is shown in Figure 2. The scheme for the hot
compression experiment provides an orthogonal experiment with four factors and three
levels. The individual factors and the levels are listed in Table 2.

Table 2. Orthogonal experiment table.

No.

Factors

Heating Rate
(◦C/s)

Temperature
(◦C)

Strain Rate
(s−1)

Amount of
Deformation

(%)

1 1 350 0.01 50
2 1 400 0.1 60
3 1 450 1 70
4 10 350 0.1 70
5 10 400 1 50
6 10 450 0.01 60
7 100 350 1 60
8 100 400 0.01 70
9 100 450 0.1 50

In order to investigate the evolution of micro-texture after a hot compression experi-
ment, EBSD samples of AA7075 were prepared after mechanical. In mechanical polishing,
the sample surface is polished with 120 µm sandpaper, 3 µm, and 0.3 µm polishing cloth
until several shallow scratches are formed. EBSD analysis is based on the Kikuchi band.
The electron beam is emitted onto the sample with the scanning electron microscope and
diffracted at the lattice plane of the irradiated crystal or grain. By analyzing the diffraction
pattern with TSL-OIM7 software, the grain size and crystal orientation in the specified
region can be determined. The basic principle is shown in Figure 3. In the analysis, we use
the MTEX toolbox in MATLAB to display the EBSD data to process the texture information
and finally compare it with the results predicted by the improved VPSC model.

Metals 2022, 12, x FOR PEER REVIEW 4 of 23 
 

 

{
 
 
 

 
 
 𝜎 =

𝜎0𝐶
2

2[𝑒𝑥𝑝(𝐶) − 𝐶 − 1]

𝜀 = 𝑙𝑛
ℎ

ℎ0

𝐶 =
2𝑚𝑅0√

ℎ0
ℎ

ℎ

 (1) 

Here, 𝜎0 and 𝜎 represent the stress before correction and the actual stress after cor-

rection, 𝜀 represents the actual strain, and 𝐶 represents the friction correction coefficient. 

The physical meaning of ℎ, ℎ0, 𝑅0, 𝑅𝑚, and 𝑅𝑡 is shown in Figure 2. The scheme for the 

hot compression experiment provides an orthogonal experiment with four factors and 

three levels. The individual factors and the levels are listed in Table 2. 

Table 2. Orthogonal experiment table. 

No. 

Factors 

Heating Rate 

(°𝐂/𝐬) 

Temperature 

(°𝐂) 

Strain Rate 

(𝐬−𝟏) 

Amount of  

Deformation 

(%) 

1 1 350 0.01 50 

2 1 400 0.1 60 

3 1 450 1 70 

4 10 350 0.1 70 

5 10 400 1 50 

6 10 450 0.01 60 

7 100 350 1 60 

8 100 400 0.01 70 

9 100 450 0.1 50 

In order to investigate the evolution of micro-texture after a hot compression experi-

ment, EBSD samples of AA7075 were prepared after mechanical. In mechanical polishing, 

the sample surface is polished with 120 µm sandpaper, 3 μm, and 0.3 μm polishing cloth 

until several shallow scratches are formed. EBSD analysis is based on the Kikuchi band. 

The electron beam is emitted onto the sample with the scanning electron microscope and 

diffracted at the lattice plane of the irradiated crystal or grain. By analyzing the diffraction 

pattern with TSL-OIM7 software, the grain size and crystal orientation in the specified 

region can be determined. The basic principle is shown in Figure 3. In the analysis, we use 

the MTEX toolbox in MATLAB to display the EBSD data to process the texture infor-

mation and finally compare it with the results predicted by the improved VPSC model. 

 

Figure 3. Schematic representation of the EBSD of single crystal planes.  Figure 3. Schematic representation of the EBSD of single crystal planes.



Metals 2022, 12, 1648 5 of 23

3. VPSC Model with Considering Heating Rate

The polycrystalline plastic mode is the key for the investigation of the plastic de-
formation behavior of materials. Benefiting from nearly a century of development, the
visco-plastic constitutive model of single crystal has a systematic theoretical basis [14–16].
Due to the influence of different grain orientations and grain boundaries in the plastic
deformation process of polycrystalline metal materials, the degree of freedom of boundaries
in the deformation process is extremely high, and the plastic deformation of any grain in the
polycrystalline structure is the result of the interaction of all grains. Therefore, it is compli-
cated to describe the plastic deformation behavior of polycrystalline materials based on the
visco-plastic constitutive relationship of the single crystal. Scholars have proposed several
plastic models for polycrystals using various simplified methods based on the theory of
single crystal plasticity to better study the plastic deformation process of polycrystalline
materials. The most representative of these models are the Taylor model [17], the Sachs
model, the self-consistent visco-plastic model [18], and the elastic-plastic self-consistent
model [19]. The Taylor and Sachs models do not consider the internal relationships between
the grains and therefore have significant limitations. In this work, the self-consistent visco-
plastic model is used for the analysis. The VPSC was first proposed by Kroner [20]. Hill [21]
proposed the Hill model by improving the existing polycrystalline model. Although the
model is based on the visco-plastic polycrystal theory of large deformation and is limited
by the loading conditions, the Hill model provides a basis for numerical simulation of
plastic deformation of polycrystals. Based on the Hill model, Molinari et al. [22] gradually
generalize the deformation mechanisms such as twinning, dislocation, and slip. C.N. Tome
and R.A. Lebensohn have extended this model so that the self-consistent visco-plastic
model can be applied to the plasticity of various materials, the plasticity of multiphase
metals, and the process of texture evolution can be further studied.

The improved VPSC model considers the effect of temperature rise rate. On the basis
of the MTS (mechanical threshold stress) model, Fourier law and Newton cooling equation
are introduced to describe the heat exchange and heat flux density in the heating process.
The change of temperature field is affected by many factors, in this study, the following
assumptions are made to the model: (1) First, the mode of contact between material and air
is free convection. (2) Secondly, the material is regarded as isotropic in the process of heat
conduction, and the density of the material, thermal expansion coefficient, and thermal
conductivity do not change with temperature. (3) Finally, the heat conduction between
the material and the instrument is not considered. Based on the above assumptions, the
density of heat flux in heat conduction can be expressed by the following formula:

q = −λ ∂T
∂n = −λ·gradT

q = h f (Ts − T0)
(2)

q is the heat flux, λ is the thermal conductivity of 7075 aluminum alloy (usually
10 W/(m·K)), gradT is the temperature gradient (represents the temperature change rate),
h f is the heat exchange coefficient, Ts is the material temperature, and T0 is the ambient
temperature (usually 25

◦
C).

3.1. Crystal Kinematics

The deformation of a single crystal can be described by the deformation gradient
tensor Fc

ij and the velocity gradient tensor Lc
ij.

Fc
ij =

∂xi
∂Xj

Lc
ij =

∂
.
uc

i
∂xj

(3)
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Here, X represents the initial coordinates of a point in the undeformed crystal, x(X)
represents the final coordinates of a point in the deformed crystal, and u = x(X) − X
represents the displacement of the point.

3.2. Constitutive Behavior and Homogenization of Single Crystals

Nonlinear rate-sensitive equations can describe the local visco-plastic constitutive
behavior of polycrystals. 

εij(x) = ∑
s

ms
ij γs(x) =

γo ∑
s

ms
ij(

ms
kl σkl(x)

τs
o

)
n

γs
(x) = γ0

(
ms

kl σkl(x)
τs

o

)n

(4)

In the above formula, εij(x) is the deviatoric strain-rate, γs
(x) is the local shear rate, γo

is the normalization factor, and n is the rate-sensitivity exponent.

3.3. Self-Consistent Equation

Each crystal is an ellipsoid embedded in an effective medium representing polycrystals.
Since the properties of the medium are unknown, it is necessary to construct a polycrystal
model by iterative self-consistency. In order to achieve self-consistency, the weighted
average strain rate of polycrystals must be consistent with the macroscopic state, as follows:
(the parentheses < > denote the average value on the particles obtained by weighting the
respective volume fraction.)

Eij = ε
(r)
ij (5)

The local constitutive equation and self-consistent equation are as follows:

ε
(r)
ij = M(r)

ijkl σ
(r)
kl + ε

o(r)
ij = M(r)

ijkl B
(r)
klmnΣmn + M(r)

ijklb
(r)
kl + ε

o(r)
ij (6)


Mijkl = 〈M(r) : B(r)〉

Eo
ij = 〈M(r) : b(r) + εo(r)〉 (7)

3.4. Linearization Method

VPSC uses a self-consistent model to describe the relationship between grains and
their surrounding media (Equation (6)). Different linearization methods can be used to
solve M(r)

ijkl and ε
o(r)
ij . There are mainly four kinds of linearization methods (Secant, Affine,

Tangent, and Meff), as follows:

Secant :


M(r),sec

ijkl = γo ∑s
ms

ijm
s
kl

τs
o

(
ms

pqσ
(r)
pq

τs
o

)
n−1

ε
o(r),sec
ij = 0

(8)

Affine :


M(r),a f f

ijkl = m·γo ∑s
ms

ijm
s
kl

τs
o

(
ms

pqσ
(r)
pq

τs
o

)
n−1

ε
o(r),a f f
ij = (1− n)ε(r)

(9)
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Tangent :


M(r),tg

ijkl = m·γo ∑s
ms

ijm
s
kl

τs
o

(
ms

pqσ
(r)
pq

τs
o

)
n−1

ε
o(r),tg
ij = 0

(10)

Meff :


M(r),me f f

ijkl = me f f ·γo ∑s
ms

ijm
s
kl

τs
o

(
ms

pqσ
(r)
pq

τs
o

)
n−1

ε
o(r),tg
ij = 0

(11)

In the Meff linearization method, the parameter me f f is used to express the interaction
strength between the grain and the medium (usually, me f f = 10).

As stated earlier, different choices are possible for the linearized behavior at the grain
level, the results of the self-consistent scheme depend on this choice. Guo et al. [9,23,24]
have proved that different linearization methods in the VPSC model have an influence on
the prediction results, and pointed out that the Secant linearization method and Tangent
linearization method are better than other linearization methods. The difference caused by
the linearization method is mainly reflected in the treatment of the interaction tensor, and
the self-consistent results obtained by different linearization methods are different.

3.5. Voce Hardening and MTS Type Hardening

In the VPSC model, Voce law or MTS model is used to describe the effect of threshold
stress τs on deformation.

The characteristic of Voce hardening is that the threshold stress changes with the
cumulative shear strain in each grain.

τ̂s = τs
o + (τs

1 + θs
1Γ)·

(
1− exp

(
−Γ

∣∣∣∣ θs
0

τs
1

∣∣∣∣)) (12)

Here, Γ = ∑s ∆γs is the cumulative shear in the grain; τo is the initial critical shear
stress; θo is the initial hardening rate; θ1 is the asymptotic hardening rate; (τo + τ1) is the
inverse extrapolated critical shear stress; the geometric significance of τo, τ1, θo, and θ1 is
shown in Figure 4.
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The MTS model is characterized by a dependence of the threshold stress with strain
rate, accumulated strain, and temperature in each grain of the form. Rate and temperature
effects are accounted for by τs, given by the MTS model.

τ

µ
=

τa

µ
+ Si

( .
ε, T
) τ̂i

µ0
+ Sε

( .
ε, T
) τ̂ε

µ0
(13)

The temperature T is expressed by the equation with the heating rate as a variable:

T = T0 +
λ·gradT

h f
(14)

4. Discussion
4.1. Fitting and Analysis of Stress-Strain Curve

In this study, the elastic stiffness matrix (Equation (15)) is used as the initial input
parameter of the VPSC model. The VPSC model can only operate on the determined
elastic stiffness matrix and does not support the operation of the elastic stiffness matrix as a
variable. Moreover, at present, the exact functional expression of the elastic stiffness matrix
with temperature is not clear. This part can refer to the works of Lebensohn [18] and the
VPSC specification written by their team in detail. The elastic tensor matrix (Equation (15))
used in this paper was obtained by consulting the relevant literature of AA7075. The elastic
tensor L of AA7075 used in this work is as follows:

L =



108.2 61.3 61.3
61.3 108.2 61.3
61.3 61.3 108.2

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

28.5 0 0
0 28.5 0
0 0 28.5


GPa (15)

AA7075 is a standard face-centered cubic (FCC) material, and its slip plane is {111}
with the slip direction of 〈110〉. When using the VPSC program for calculation, it is
necessary to take all slip systems as input parameters and specify the conditions for adding
the beam in the macroscopic coordinate system of the material, usually the macroscopic
stress Σ and the macroscopic strain rate D. The loading model used in this work is uniaxial
compression, and the corresponding parameters are:

D =


.

ε11 0 0
0

.
ε22 0

0 0
.

ε33

; Σ =

0 0 0
0 0 0
0 0 σ33

 (16)

In the macroscopic stress, only σ33 is unknown, and the sum of the diagonal elements of
the macroscopic strain rate should be 0. In this study, different Voce hardening parameters
are used to fit the stress–strain curves under different deformation conditions [9,25]. The
hardening parameters of the materials used in the simulation are listed in Table 3 below.

Figure 5 shows the experimental results under different deformation conditions and
the stress–strain curves simulated by VPSC, where Figure 5a–i corresponds to the experi-
mental number (1)~(9). It is found that the improved VPSC model and the corresponding
Voce hardening parameters can well fit the stress–strain curves under different deforma-
tion conditions.
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Table 3. Material hardening parameters in simulation.

No.
Hardening Parameter

τo/MPa τ1/MPa θo/MPa θ1/MPa

1 4.2 18 1000 0
2 2 17.5 1200 0.8
3 2.2 17.5 800 1.2
4 4 21 800 0.6
5 3.8 21 1600 0.1
6 2.6 7.5 250 0.7
7 4.3 25.5 1000 0.7
8 5.5 8.5 500 0
9 5.5 9 1000 1
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spond to the experimental groups (1) to (9) in Table 2, respectively).

At the initial stage of deformation, the stress increases rapidly to the peak value with
the increase in strain, at this time, the material does not have enough driving force to
dynamically recover, so work hardening plays a dominant role. As the strain continues
to increase, the stress curve decreases, which indicates that the material has undergone
dynamic softening and the effect of work hardening is partially offset. When the strain
increases to a certain extent, the stress–strain curve is close to the horizontal line, which
indicates that the material has entered the steady deformation stage, and the work harden-
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ing and dynamic softening reach the dynamic equilibrium. At last, part of the stress–strain
curve shows an obvious upward trend, which is mainly due to the increasing diameter of
the cross-section in the process of hot compression, which leads to the increase in friction.
Some of the stress–strain curves show obvious periodic fluctuations, which are usually
caused by the alternation of dynamic softening and work hardening.

The results show that the change in deformation conditions will lead to significant
changes in flow stress. In the process of hot compression, deformation temperature and
strain rate are the main factors affecting the stress–strain curve. Based on the analysis
of the stress–strain curve, it is found that the flow stress decreases with the increase in
deformation temperature, and the corresponding strain decreases when the flow stress
reaches the peak, so the material is easier to enter the steady-state deformation stage. The
flow stress increases with the increase in strain rate. The lower the strain rate is, the smaller
the corresponding strain is when the flow stress reaches the peak value, and the material is
more prone to steady-state deformation. Two reasons are the leading causes of the above
trends: (1) When the temperature increases, the thermal motion of the atom increases, the
deformation resistance decreases, dislocation climbing and slip are easier to occur, and the
dynamic softening effect is enhanced. The flow stress and peak strain decrease, and the
material is easier to enter the steady deformation stage. (2) The higher the strain rate is,
the shorter the unit strain time is, the dynamic softening can’t be carried out fully, and the
work hardening is dominant, which leads to the increase in flow stress. In addition, as
the deformation rate increases, the deformation time becomes shorter, the heat loss in the
deformation process decreases, and the temperature effect increases.

4.2. Anlysis of Microstructure Evolution

The micro-texture of AA7075 was analyzed by EBSD observation. Figure 6 shows the
IPF and ODF diagrams of the initial condition of the AA7075 (without heating and hot
compression treatment). ODF can show the orientation distribution of the crystal more
directly, and the texture information can be described accurately and quantitatively by
ODF. The initial texture shown in Figure 6 is used as the starting texture input for the
VPSC model. By analyzing the ODF diagram and the crystal orientation distribution maps
(Figure 7e), it is found that Goss {011} <100>, Copper {112} <111>, Cube {001} <100>, and
{011} <111> are the main texture components, and the texture intensity of Copper {112}
<111> is the highest. There is also a small amount of Brass {011} <211>, R {124} <211>, and
Brass-r {111} <112> textures. It can be clearly found from IPF that the materials used in
this work mainly show <101> + <112> fiber textures before hot compression deformation,
which is probably due to the pretreatment of the bars used in this study. Usually, the as-cast
materials without deformation exhibit random textures, while the FCC materials are easy
to show fiber texture when subjected to uniaxial tension or compression.
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Figure 7 shows the microstructure of the AA7075 sample in the initial state (with-
out heating and hot compression treatment). In the analysis of EBSD data, there are two
methods to characterize the local misorientation, one is the KAM (kernel average misorien-
tation) method (kernel based), and the other is the GOS (grain orientation spread) method
(grain based). Both the KAM diagram and GOS diagram can directly represent the local
strain distribution in the material. From the analysis principle, the conclusion obtained by
analyzing GOS should be consistent with that obtained by analyzing KAM. GOS can be
used to measure the deformation degree of grain structure. The smaller the GOS value of a
single grain is, the smaller the deformation degree of the grain is. In the initial state, the
GOS values of samples are concentrated in the range of 1–5. Further analysis of Figure 7
shows that the partition fraction of low-angle grain boundaries (LAGB) is about 61.5% (the
misorientation angle is less than 10

◦
), and most of the grain sizes are distributed in the

range of less than 30 µm.
The grain boundary distribution maps and GOS diagrams after thermal deformation

were listed in Figures 8 and 9 ((a)–(i) corresponds to the experimental number (1)~(9)),
respectively (corresponds to Figure 7c,d). The results show that with the increase in defor-
mation, the grains are refined and elongated perpendicular to the compression direction.
The fiber structure and grain breakage occurred under the condition of 70% deformation.
When the deformation temperature is 350 ◦C, the grain shape is continuous and uniform,
the grain boundary is smooth, and a large number of LAGB are formed in the grains. With
the increase in deformation temperature, the grain size becomes bigger gradually. When the
deformation temperature reaches 400 ◦C, a few fine equiaxed grains are distributed around
the grain boundary of large grains, and it is speculated that dynamic recrystallization may
have occurred in the process of deformation. When the deformation temperature further
increases to 450 ◦C, some grain boundaries show a zigzag shape, and the proportion of
LAGB decreases. The number of fine equiaxed crystals further increases, and the size of
equiaxed crystals increases. This may be due to the fact that the formation of dynamic
recrystallization is a thermal activation process, when the temperature increases, the atomic
motion increases, the dislocation resistance decreases, and dislocation slip and dislocation
climbing are more likely to occur. This leads to an increase in recrystallization formation
and growth rate, and dynamic recrystallization softening occurs. When the strain rate is
0.01 s−1, the grain boundaries are clear and the grains are fine and uniform. When the strain
rate increases to 1 s−1, the grain boundary tends to be blurred, and the non-uniformity of
grain deformation increases. At higher temperatures (400 ◦C and 450 ◦C), fine equiaxed
grains appear obviously around the grain boundary when the strain rate is 0.01 s−1, and
the number and size of fine equiaxed grains decrease with the increase in strain rate. The
reason for the above behavior may be that during plastic deformation at a high strain
rate, the grains do not have enough time to complete dislocation, dynamic recovery and
dynamic recrystallization do not occur in time, and work hardening plays a dominant role.
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Existing studies have shown that the stacking fault energy is the key factor to de-
termine the occurrence of dynamic recovery and dynamic recrystallization [26–28]. In
the process of hot deformation, the thermal activation energy increases, the different sign
dislocations in the metal counteract, and the subgrain merge with each other, which is
called dynamic recovery, which is the mechanism and characteristic of dynamic recovery.
When the dynamic recovery cannot completely offset the dislocations produced during the
material deformation, the dislocations accumulate gradually, and when the dislocations
accumulate to a certain extent, it will lead to recrystallization. Dynamic recovery is easy
to occur in metal with high stacking fault energy. The stacking fault energy of aluminum
alloy is high, so dynamic recovery plays a dominant role in hot working. Partial dynamic
recrystallization occurs under the conditions of large deformation and high temperature.
However, under the conditions of large deformation and high temperature, aluminum
alloy will also have a certain degree of dynamic recrystallization.
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Figure 7. Microstructure of AA7075 in initial state. (a) Grain size of AA7075 in the initial state;
(b) misorientation angle of AA7075 in the initial state; (c) grain boundary distribution of AA7075 in
initial state; (d) GOS diagram of AA7075 in initial state; (e) crystal orientation distribution of AA7075
in initial state.
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Figure 8. Boundary angle distribution maps after hot compression deformation. (The subgraph
captions (a–i) correspond to the experimental groups (1) to (9) in Table 2, respectively).
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Figure 9. The GOS diagrams obtained from the thermal compression deformation experiment. (The
subgraph captions (a–i) correspond to the experimental groups (1) to (9) in Table 2, respectively).
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Each group of samples shows different preferred orientations under different defor-
mation parameters. In subsequent sections, the sensitivity of the evolution of the main
components of micro-textures (Copper {112} <111>, and {011} <111>) to hot compression pa-
rameters (heating rate, the amount of deformation, temperature, strain rate) was analyzed.
Table 4 shows the typical textures in FCC materials. Table 5 shows the partition fraction of
Copper {112} <111> and {011} <111> corresponding to each group of experiments.

Table 4. Typical texture.

Name {hkl} <uvw> (ϕ1,Φ, ϕ2)

Cube {001} <100> 0, 0, 0
R-Cube {001} <110> 45, 0, 45

Goss {011} <100> 0, 45, 0
Copper {112} <111> 90, 35, 45
Brass {011} <211> 35, 45, 0
{111} {111} <110> 0, 55, 45
{111} {111} <112> 90, 55, 45

S {123} <634> 59, 37, 63
R {124} <211> 57, 29, 27

Table 5. The partition fraction of Copper {112} <111> and {011} <111>.

No.

Factors Partition Fraction (%)

Heating Rate
(◦C/s)

Temperature
(◦C)

Strain Rate
(s−1)

Amount of
Deformation

(%)

Copper
{112} <111> {011} <1

¯
11>

1 1 350 0.01 50 6.6 7.4
2 1 400 0.1 60 3.7 6.5
3 1 450 1 70 4.8 6.7
4 10 350 0.1 70 2.3 7.6
5 10 400 1 50 6.2 5.6
6 10 450 0.01 60 3.4 3.3
7 100 350 1 60 6.3 7.0
8 100 400 0.01 70 2.8 3.5
9 100 450 0.1 50 7.4 9.1

4.3. Effect of Deformation on Microstructure

The sensitivity of Copper {112} <111> and {011} <111> textures to hot compression
deformation parameters was analyzed in Figure 10. The results show that with the increase
in deformation, the partition fraction of Copper {112} <111> texture decreases significantly,
while that of {011} <111> texture decreases at first and then increases.

The IPF and ODF diagrams obtained after EBSD analysis are shown in
Figures 11 and 12 ((a)–(i) corresponds to the experimental number (1)~(9)).

With increasing deformation, the maximum intensity of the grain orientation decreases.
Comparing the IPF diagram before (Figure 6a) and after (Figure 11) hot compression, it
is found that there is no correlation between the amount of deformation and the main
components of the fiber texture. As shown in the IPF diagram, the maximum intensity of
fiber texture increases slightly with the increase in deformation. Further analysis of the ODF
diagram (Figure 12) shows that the intensity of Cube {001} <100> texture increases with
increasing deformation, while the intensity of R {124} <211> texture and Goss {011} <100>
texture decreases with increasing deformation. The maximum intensity of the Copper {112}
<111> texture and {011} <111> texture does not change obviously. In the same deformation
conditions, the larger the deformation, the longer the deformation.
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Figure 10. Sensitivity analysis of textures to hot compression deformation parameters. (a) Cooper
{112} <111>; (b) {011} <111>.

4.4. Effect of Deformation Temperature on Microstructure

Based on the analysis of grain structure (Section 4.2), it is found that, with the increase
in deformation temperature, the proportion of LAGB gradually decreases, and the propor-
tion of large grain size, which is higher than the average grain size, gradually increases.
The above behavior may be attributed to the grains not having enough time to complete
dislocation and slip, dynamic recovery and dynamic recrystallization not occurring in time,
and work hardening playing a dominant role during plastic deformation at a high strain
rate. Furthermore, it is found that the maximum intensity of grain orientation decreases
with increasing temperature, and the overall intensity of texture gradually decreases with
increasing temperature. The analysis of the IPF diagram shows that the intensity of the
whole fiber texture decreases slightly with increasing temperature, the <112> fiber texture
almost disappears, and the <100> fiber texture with weak intensity appears in Figure 11g.
When the temperature reaches 450C, the primary fiber texture type is still<011> + <112>,
but the intensity of <011> + <112> fiber textures decrease. Further analysis of the ODF
diagram shows that: (1) The intensity of the Cube {001} <100> texture decreases with
increasing temperature; (2) the intensity of the Goss {011} <100> texture first decreases
and then increases with increasing temperature, which is probably due to the Cube {001}
<100> partly changed to Goss {011} <100>; (3) the partition fraction of R {124} <211> texture
increases with increasing temperature, but its maximum intensity decreases; (4) Copper
{112} <111> and {011} <111> are still the main components of the texture, but the intensity
decreases with increasing temperature. The partition fraction of both Copper {112} <111>
and {011} <111> decrease at first and the increase with the increase in temperature.
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4.5. Effect of Strain Rate on Microstructure

In the process of hot deformation, the strain rate will directly affect the deformation
time of the material. When the strain rate is low, the deformation time of the material is
longer, and the dislocation can be fully carried out in the form of climbing and slip. When
the strain rate is high, the deformation time is short, the dislocation cannot be fully carried
out, and the deformation energy is difficult to be released. According to the analysis of the
IPF diagram, it is found that when the strain rate is 0.01 s−1, the fiber texture of the material
is still <101> + <112>. When the strain rate increases to 1 s−1, the main fiber texture changes
to <101> + <115>. The maximum intensity of fiber texture increases with the increase in
strain rate. Further analysis of the ODF diagram shows that: (1) The intensity of Cube
{001} <100> decreases with increasing strain rate. (2) The intensity of Goss {011} <100> first
increases and then decreases with increasing strain rate, which could be due to the fact
that the Cube {001} <100> is partially changed to Goss {011} <100> with increasing strain
rate, and Goss {011} <100> is changed to other texture types as the strain rate continues to
increase. (3) The intensity of Copper {112} <111> changes little with the increase in strain
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rate. (4) The intensity of {011} <111> increases when the strain rate increases from 0.01 s−1

to 0.1 s−1, then changes little when the strain rate increases from 0.1 s−1 to 1 s−1. (5) The
partition fraction of Copper {112} <111> increases with the increase in strain rate, while
that of {011} <111> increases at first and then decreases.

4.6. Effect of Heating Rate on Microstructure

The effect of heating rate on the micro-textures evolution of AA7075 was considered
hot in this study. Combined with the comparative analysis of grain boundary distribution
and GOS diagram before and after hot compression deformation, it is found that at the
heating rate of 100

◦
C/s, the proportion of LAGB in the material after hot compression

deformation is higher than 10
◦
C/s and 1

◦
C/s, and the partition fraction of deformed

grains with GOS value greater than 5 also increases. Further analysis of the IPF diagram
and ODF diagram before and after hot compression deformation shows that the intensity
of Copper {112} <111> and {011} <111> increases with the increase in heating rate, and the
partition fraction decreases at first and then increases. The intensity and partition fraction
of Cube {001} <100> and Goss {011} <100> do not show obvious regularity with the change
of heating rate.

When the material is heated at a low heating rate, the material has enough time
for dynamic recovery and dynamic recrystallization during the heating process, which
consumes the internal storage energy of the material to a certain extent. When the heating
rate increases, the whole heating process is completed in a few seconds, and the material
does not have time to release internal storage energy during the heating process. Some
studies have also pointed out that the heating rate in the heating process will have an effect
on the precipitated phase and dispersed phase of the material [29–31], which may also be
one of the reasons why the heating rate will affect the micro-texture of the material after
hot compression deformation. However, to further explain the cause and mechanism of
this change, it is necessary to carry out TEM or in situ analysis of the materials.

Among the three heating rate levels designed in this study, 10 ◦C/s and 100 ◦C/s are
high heating rates. Generally, in the hot compression experiments, the heating rise rate used
by researchers is less than 1 ◦C/s (usually 0.01 ◦C/s or 0.1 ◦C/s). Therefore, the heating
rates of 10 ◦C/s and 100 ◦C/s designed in this case belong to the level of high-temperature
rise rate. The accurate threshold of heating rate needs to be verified and analyzed by
more in-depth experiments, and the specific threshold value cannot be determined only
according to the experimental results in this study.

5. Prediction Results and Analysis
5.1. Model Verification

The different states of hot deformation of the AA7075 are predicted using the secant
linearization method on the basis of the improved VPSC model. The Voce hardening
parameters of the materials used in the simulation are listed in Table 3. Figures 13 and 14
((a)–(i) corresponds to the experimental number (1)~(9)) are the IPF and ODF of the AA7075
after hot deformation, which were calculated by the improved VPSC model. Compared
with the measured IPF and ODF, the micro-texture distribution and maximum intensity of
the prediction results were consistent with the experimental results. As mentioned above,
the material will undergo non-uniform deformation due to the influence of friction in the
actual thermal deformation process (Section 2), and fine recrystallized particles are observed
in the thermal deformation process (Section 4.2). At present, the VPSC model cannot
fully simulate the non-uniform deformation and recrystallization during the material
deformation process, which may also be the main reason for the difference in details
between the predicted results and the experimental results. The error of the prediction
result of the texture evolution trend of AA7075 during hot compression deformation by the
improved VPSC model is allowable in the study. Therefore, the improved VPSC model is
validated to predict the texture evolution of AA7075 during hot compression deformation.
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5.2. Analysis of Prediction Results of the Improved VPSC Model

Comparing the prediction results of the model with the experimental results show
that the IPF predicted by the improved VPSC model is mainly composed of <011> + <113>
fiber texture (a few are <011> + <115> fiber textures), while the main fiber textures in the
experimental IPF are <011> + <112>, but the maximum intensity of both are close to each
other, and both are <011> fiber texture. In the IPF from the experiment, the texture intensity
of <011> + <112> fiber first increases and then decreases with the increase in deformation
temperature, but there is no certain regularity between the fiber texture intensity and the
amount of deformation. The partition fraction of <011> + <113> fiber predicted by the
improved VPSC model increases with the deformation amount and temperature increase.
These predicted results are consistent with the fiber texture evolution obtained from the
experimental results, the improved VPSC model can well predict the fiber texture evolution
trend of AA7075.
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Further analysis of the texture composition reveals that the ODF predicted by the
improved VPSC model mainly contains six types of textures: Copper {112} <111>, R {124}
<211>, Cube {001} <100>, Goss {011} <100>, Brass {011} <211>, and {011} <111>. Among
them, the intensity of Copper {112} <111> and {011} <111> textures is higher than the
other textures, which is consistent with the experimental results of ODF. The intensity
and proportion of Cube {001} <100>, R {124} <211>, Goss {011} <100>, and Brass {011}
<211> in the ODF predicted by the improved VPSC model are higher than the experimental
results, but the maximum intensity distribution of each main texture is consistent with
the experimental results. In the predicted results, the texture intensity of Copper {112}
<111>, Goss {011} <100>, and {011} <111> increase with the increase in strain rate, which is
consistent with the experimental results. According to the prediction, the texture intensity
decreases with the increase in deformation temperature and increases with the increase in
strain rate. These trends are also consistent with the experimental results.
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6. Conclusions

1. Before hot compression, the main components of the texture of AA7075 bars consist
of Cube {001} <100>, Goss {011} <100>, Copper {112} <111>, {011} <111>, and <011>
+ <112> fiber textures. It is found that the grain refines continuously, and the fiber
structure and grain fragmentation occur with the increase in deformation. When
the deformation temperature is higher than 400

◦
C, fine equiaxed grains begin to

appear. When the strain rate is 0.01 s−1, the grain boundaries are clear, and the grains
are fine and uniform. When the strain rate increases to 1 s−1, the grain boundary
tends to be blurred, and the non-uniformity of grain deformation increases. At
higher temperatures (400 ◦C and 450 ◦C), the number and size of fine equiaxed grains
decrease with the increase in strain rate.

2. The increase in deformation can promote the formation of Cube {001} <100> texture to
some extent. With the increase in deformation, the partition fraction of Copper {112}
<111> texture decreases significantly. It is found that the Cube {001} <100> texture
partially changes to Goss {011} <100> texture when the temperature is above 400

◦
C.

The partition fraction of both Copper {112} <111> and {011} <111> decrease at first
and the increase with the increase in temperature. The intensity of texture increases
with the increase in strain rate. The partition fraction of Copper {112} <111> increases
with the increase in strain rate, while that of {011} <111> increases at first and then
decreases. The intensity of Copper {112} <111> and {011} <111> increases with the
increase in heating rate, and the partition fraction decreases at first and then increases.

3. The deviation between the predicted results of the improved VPSC model and the
experimental results is in the acceptable range. The texture distribution and maximum
intensity of the predicted results agree with the experimental results, which proves
that the improved model used in this work is suitable for predicting the texture
evolution of AA7075 during hot compression. In follow-up research, the validity of
the model can be further verified by using a larger span of experimental parameters
and compared with the current research results.
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