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Abstract: The orthotropic steel deck is widely used in long-span steel bridges due to its simplicity
and efficiency. The welded joint of the U-rib to e deck panel area is extremely sensitive to fatigue
cracks. In this study, an orthotropic steel deck with an arc-shape stiffener was proposed that aimed
to alleviate the fatigue cracks and enhance the fatigue resistance in long-span steel bridges. Based
on the Mingzhu Bay steel bridge, the proposed steel deck FE model was first established. Then, the
moving vehicle load was applied to investigate the impact of the arc-shape stiffener on the fatigue
stress amplitude and distribution. The Miner fatigue cumulative damage theory was employed to
evaluate the fatigue life of the orthotropic steel deck with arc-shaped stiffener, and comparative
analyses were carried out. Finally, the results show the maximum stress of the orthotropic steel deck
with an arc-shaped stiffener is reduced by 15%, and the fatigue life is improved by 40% compared
with the OSD.

Keywords: arc-shaped stiffener; finite element model; fatigue resistance; fatigue life evaluation;
orthotropic steel bridge deck

1. Introduction

The orthotropic steel bridge deck (OSD) is widely used in long-span bridges due to
its light weight, high strength, and construction efficiency [1–5]. In recent years, bridges
such as the Jiangyin Yangtze river bridge, the Qingma bridge, and the Hong Kong–Zhuhai–
Macao bridge have all adopted an orthotropic steel bridge deck design [6,7]. This type
of deck system comprises concrete pavement, steel deck, welded transverse diaphragms,
and longitudinal U ribs. However, as a number of weld joints exist in OSD, it is sensitive
to fatigue, especially at the welded joints from the rib to deck and U rib to transverse di-
aphragm [8–11]. Large numbers of fatigue cracks were found in the existing bridge [12–14].
Fatigue cracks are typical problems for OSD and seriously endanger the durability and
safety of steel bridge structures.

During the past decades, many efforts were made to investigate the fatigue perfor-
mance of the OSD. Bu et al. [15] established a finite element model of an orthotropic steel
bridge deck to study the influence of the longitudinal position and shape of the initial
crack on the fatigue crack propagation process. Jiang et al. [16] considered the probability
distribution of random factors for the location of the initial crack, such as the randomness of
wheel load, material properties, and initial crack length. Maljaars et al. [17,18] established
a linear elastic fracture mechanics model for typical fatigue cracks. The welded joint of
the bridge deck was analyzed. Xiao et al. [19] employed finite element software to study
the stress analysis and fatigue assessment of steel orthotropic bridge decks and joints.
Yu et al. [20] carried out fatigue tests on the typical weld structure details of a steel bridge
panel, and the results showed that cracks are prone to occur at the weld position between
the longitudinal ribs and the bridge deck outside the longitudinal ribs. Yuasa et al. [21] used
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a discrete Markov process to simulate fatigue crack growth by considering the resistance of
the crack growth process and the randomness of external load. Heng et al. [22] evaluated
the fatigue properties of welded joints of orthotropic steel bridge panels with U-shaped
ribs with thick edges and compared the fatigue properties with traditional U-shaped ribs,
the use of a U rib with thickened edges enhanced the fatigue strength of rib-to-deck joints.

In these studies, the fatigue performance was analyzed by experimental and theoretical
methods. As for structural improvement attempts for fatigue problems in OSD, few studies
are reported in the literature review. From the structural point of view, the newly designed
arc-shaped stiffener was proposed on the top of the bridge deck, where the U rib weld joint
is located, as shown in Figure 1.
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Figure 1. Schematic diagram of OSD with arc-shaped stiffener.

For engineering applications, the design was based on the actual bridge project of the
Mingzhu Bay steel bridge. In this study, the finite element model was established, and the
comparative analysis was performed under the moving vehicle load. The sectional stress
distribution, crack features, and fatigue life evaluations were studied and presented here.

A novel fatigue resistance steel bridge deck design was proposed in this study. For
typical fatigue problems in the existing OSD, the new design can reduce the stress am-
plitude caused by a moving vehicle load. The thought of this design is to improve the
stress distribution evenly and reduce the stress amplitude in order to enhance the fatigue
resistance performance. Based on the existing OSD type, the arc-shaped stiffener was
advised to mold with the steel deck to avoid the welding. By thickening the steel deck with
an arc-shaped stiffener where the U rib welded seam is located below, a more even stress
distribution on the steel deck can be obtained. Furthermore, the better cost-effective goal
can be achieved by adding a small area of steel arc during the engineering application.

2. Engineering Background

The Mingzhu Bay bridge main bridge is 1016 m and adopts (96 + 164 + 436 + 164 + 96 + 60
= 1016 m) medium-span six-span continuous steel truss arch bridges ((60 + 3× 96 = 348 m) is
approach bridge). The main span of the Mingzhu Bay bridge is 436 m, which is the largest
three-stringed steel arched bridge in the world [23]. The main bridge layout is shown in
Figure 2.

The Mingzhu Bay steel bridge adopts a double orthotropic steel deck arrangement
with a two-way eight-lane highway on the upper layer and sidewalks on both sides, as
shown in Figure 3. The width of the main bridge panel is 43.2 m. The lanes are based on
the median divider with a 2% inclination. Both sides of the lower deck are reserved for rail
traffic dual lanes, and the pipeline channel is reserved in the middle. The thickness of the
steel deck is 16 mm and U ribs are at every 600 mm spacing. The transverse diaphragm is
placed every 3 m along the bridge.
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3. Material and Methods
3.1. Design of OSD with the Arc-Shaped Stiffeners

Most of the fatigue cracks were found at the welded joint between the U rib and bridge
deck panel [24,25]. To reduce the stress amplitude of the steel bridge panel, the arc-shaped
stiffener was placed on the bridge deck panel where the welded joint of the U rib and
bridge deck panel was located vertically. The stiffener was designed as a round arc-shaped
structure and could be factory hot rolled with a steel deck panel. The arc height is 25 mm
at maximum, and the concrete pavement layer is 55 mm, which is the same as the Mingzhu
Bay bridge. To cover the joint area of the rib to the deck, the opening size of the arc is
designed to be 150 mm, which was about 10 times the U rib welded seam. The design
layout was based on the Mingzhu Bay steel bridge deck and is shown in Figure 4.
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3.2. Material

The steel deck of the Mingzhu Bay bridge is made of Q370qD steel, the elastic modulus
of steel plate material is 206GPa, and Poisson’s ratio is 0.28. The chemical composition and
mechanical properties are listed in Tables 1 and 2. The arc-shaped stiffener also uses the
same steel material as the steel deck in the FE model.

Table 1. The chemical composition of Q370qD(%) [26].

C Si Mn P S Als Nb V Ti N

≤0.14 ≤0.55 1.00–1.60 ≤0.020 ≤0.010 0.010–0.045 0.010–0.090 0.010–0.080 0.006–0.030 ≤0.0080

Table 2. The mechanical properties of Q370qD [26].

Thickness (mm) Yield Strength (MPa) Tensile Strength
(MPa)

Elongation after
Fracture (%)

≤50
50–100

≥370
≥360 ≥510 20

3.3. Finite Element Model

The 3D finite element bridge model was established by Midas/Civil, as shown in
Figure 5. The whole model has 6676 nodes and 10,768 elements in total, which consist
of 81 truss elements, 8067 beam elements, and 2620 shell elements. The finite element
model of the 3 spans and 5 U-ribs bridge deck with/without arc-shaped stiffener was
established, respectively, using Abaqus software. The C3D8 solid element was employed.
The models were 9 m long from the longitudinal direction and 2.4 m wide from the
transverse direction, as shown in Figure 5. The fixed constraint was applied at the bottom
of the diaphragm plate.
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In order to validate the FE model, the single U rib specimen under wheel load 150 kN
was conducted to obtain the strains data from four different positions, as shown in Figure 6.
The strain data were multiplied with Young’s modulus to obtain the stress at these positions.
The same wheel load condition was applied to the FE model and the stress comparison
was carried out, as listed in Table 3. The results shows the deviation is 10%, which shows a
good agreement.
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Table 3. Stress comparison.

Strain Gauge 1 Strain Gauge 2 Strain Gauge 3 Strain Gauge 4

Test FEM Test FEM Test FEM Test FEM

Stress 128.5 124.8 132.1 140.8 128.1 117.4 135.5 137.91
Deviation 2.5% 6.7% 8.3% 1.8%

The traffic flow was predicted based on the traffic volume statistics [28]. Vehicles are
divided into seven fatigue vehicle models M1–M7 according to the axle number and axle
load. The vehicle load statistics and traffic flow statistics are shown in Table 4.

Table 4. Fatigue traffic model and traffic flow statistics [28].

Vehicle
Model Type Axle Vehicle Model (Axle Weight, kN, Axle Spacing, mm) Total Weight

(kN)
The Proportion
of Total Traffic

Daily Traffic
Flow

M1 2
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Table 4. Cont.

Vehicle
Model Type Axle Vehicle Model (Axle Weight, kN, Axle Spacing, mm) Total Weight

(kN)
The Proportion
of Total Traffic

Daily Traffic
Flow

M6 5
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468 13.92 1453

Note: The number of the front axle is 2 tires and the ground contact area of each tire is (0.3 × 0.2) m2. The other
axles are 4 tires and the ground contact area of each tire is (0.6 × 0.2) m2.

According to the fatigue cracks that often occur in orthotropic steel bridge panels and
considering the distribution of vehicle loads along the transverse position, the transverse
loading can be divided into three loading conditions: on the U ribs, across the U rib, and
on the middle of U ribs, as shown in Figure 7. Based on the literature [29,30], fatigue failure
mainly occurs at the welding position between the U rib and deck panel and the welding
position between the U rib and diaphragm. Moreover, the FE model was validated by
fatigue tests in [27]. The two concern points were selected, as shown in Figure 7.
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3.4. Fatigue Life Evaluation

The fracture mechanics method was employed to analyze the steel deck in this
study [10,31–33]. This method assumes the inevitable initial crack defect in the welded
joint and the total fatigue life only counts the crack growth stage. The intensity factor
amplitude of the crack tip is used to control the crack propagation and the Paris equation
was established to describe the relationship between the crack growth rate and the intensity
factor amplitude [34] in Equation (1):

da/dN = C(∆K)m (1)

where C and m are the material constants; ∆K is the stress intensity factor.
Concerning initial and critical crack sizes, the fatigue life of structural members

or welded joints in the crack growth stage can be obtained by integrating the Paris
Equation (1).
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4. Results
4.1. Stress Analysis of Steel Bridge Panel

The Dload subroutine was programmed in Fortran based on the statics in Table 3, and
the M1–M7 fatigue moving vehicle load was applied on the bridge model. To investigate
the stress state of the OSD and OSD with arc-shaped stiffener steel deck, the fatigue vehicle
models M1–M7 were loaded on the U-rib with a speed of 500 mm/s. The stress state of the
fatigue vehicle model M7 loading is shown in Figure 8. See Table A1 in Appendix A for
M1–M6 stress contours.
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As shown in Figure 8, the stress amplitude of the OSD with the arc-shaped stiffener
is lower compared with the OSD. However, the stress distribution of the OSD with the
arc-shaped stiffener is more even in a wide range area due to the added stiffener. More
area was employed to withstand the wheel load and the stress amplitude was reduced.
When the fatigue vehicle models M1–M7 passed the FE model, the cyclic stress history of
the two concern points on the steel deck was extracted for the following fatigue analysis.
Additionally, the rain-flow counting method [35] was used to extract the stress amplitude
and the number of cycles, as shown in Table 5.

4.2. Fatigue Life Evaluation

Based on the theory of fracture mechanics, the equivalent stress amplitude equation is
listed in Equation (2). When the stress amplitude ∆σ is smaller than the fatigue stress limit
∆σL, fatigue failure will not occur [36]. As the stress amplitude ∆σ is larger than the ∆σL,
∆σi ≥ ∆σL, the equivalent stress amplitude is obtained from Equation (2).

∆σe =

[
∑

ni{∆σi}m

∑ ni

] 1
m

(2)

where ni is the corresponding cycles; m is the material constant.

Table 5. Stress range and corresponding cycles of concern points.

Stress Range ∆σ
Classification/MPa

Number of Cycles Recorded

Concern Point 1 Concern Point 2

OSD OSD with
Arc-Shaped Stiffener OSD OSD with

Arc-Shaped Stiffener

0–5 15,302 24,387 23,634 31,016
5–10 4418 3246 493 270

10–15 73 1762 1616 1616
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Table 5. Cont.

Stress Range ∆σ
Classification/MPa

Number of Cycles Recorded

Concern Point 1 Concern Point 2

OSD OSD with
Arc-Shaped Stiffener OSD OSD with

Arc-Shaped Stiffener

15–20 0 0 358 358
20–25 0 0 683 460
25–30 0 0 135 135
30–35 0 0 1689 1689
35–40 0 0 1466 1466
40–45 0 0 460 460
45–50 0 0 0 73
50–55 0 0 73 0

The fatigue limit of concern points ∆σL is 28.34 MPa according to the China Highway
Steel Bridge Code [37]. The stress amplitude value of concern points is listed in Figure 9.
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As seen in Figure 9, the maximum stress amplitude of concern point 1 is less than the
fatigue limit of 28.34 MPa. Concern point 1 assumes an infinite life without considering the
fatigue life. The maximum stress of concern point 2 is greater than the fatigue limit, and
the fatigue life was evaluated with the fracture mechanics method. The equivalent stress
amplitude of concern point 2 is shown in Table 6.

Table 6. Equivalent stress amplitude.

Bridge Panel Type OSD OSD with Arc-Shaped Stiffener

∑ ni 4506 4283
∆σe/Mpa 30.35 30.66

The stress amplitude in Paris Equation (1) is expressed by equivalent stress amplitude,
and Equation (3) can be obtained as follows:

N =
∫ a f

a0

da
C(∆K)m =

∫ a f

a0

da
C
(
Y∆σe

√
πa
)m =

2
(2−m)C

(
Y∆σe

√
π
)m

(
a0.5(2−m)

f − a0.5(2−m)
0

)
(3)

where a f is the critical crack length; N is the fatigue life when the initial crack extends to
the critical crack length a0.
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The initial crack length was recommended as 0.1–0.5 mm [38,39]. In this study, the
initial crack length a0 was 0.1–0.5 mm, and the critical crack a f was 0.8 times the thickness.
When the crack length a/plate width is <0.1, the solution of the infinite plate is adopted,
and the crack stress intensity factor: is Y = 1.12. According to the steel fracture toughness
and crack propagation rate [40], for structural steel, m = 3, c = 5.69× 10−12. As the C, m,
Y, ∆σe, a0 and a f values are put into Equation (3), the fatigue life of concern points can be
obtained under different initial crack lengths, as shown in Table 7.

Table 7. The fatigue life of concern.

Initial Crack Length (mm)
The Fatigue Life of Concern (Year)

OSD OSD with Arc-Shaped Stiffener

0.1 339 563
0.2 240 397
0.3 196 324
0.4 169 281
0.5 151 252

5. Discussion
5.1. Impact of the Arc-Shaped Stiffener on Stress Amplitude

To study the impact of the arc-shaped stiffener, the fatigue stress state of the proposed
OSD with arc-shaped stiffener and OSD was studied under a moving vehicle load. A
comparative study was conducted with OSD to investigate the fatigue stress amplitude
and stress distribution mechanism. The dynamic response of concern point 1 and 2 under
seven fatigue moving vehicle models M1–M7 was extracted from numerical results, as
shown in Figure 10.
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As seen in Figure 10, at concern point 2, the stress amplitude of the OSD with the
arc-shaped stiffener is about 15% lower than the OSD, especially at the maximum stress.
While the stress of concern point 2 is significantly greater than that of concern point 1, the
stress state is almost the same as the OSD.

5.2. Impact of the Arc-Shaped Stiffener on Fatigue Life

The fatigue life of the OSD and OSD with arc-shaped stiffener was evaluated with
an initial crack from 0.1–0.5 mm. The fatigue stress of concern point 1 was smaller than
the fatigue stress limit, therefore, fatigue performance was not considered. The fatigue life
of concern point 2 was evaluated based on the fracture mechanics method, and different
fatigue lives were obtained by assuming different initial cracks, as shown in Figure 11.
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As seen in Figure 11, the fatigue life of the bridge panel gradually decreases as the
initial crack gradually increases. Furthermore, the fatigue life of the OSD with the arc-
shaped stiffener is higher than the OSD.

In general, the stress state and distribution on the bridge deck are extremely crucial
for fatigue performance. When the vehicles pass the bridge, the bridge deck panel will
generate different cyclic stress cycles. The stress amplitude is smaller than the limit, which is
28.34 MPa, therefore, the fatigue performance is not considered. Once the stress amplitude
reaches the limit, it will trigger the fatigue life evaluation. To enhance fatigue resistance,
reducing the stress amplitude in terms of improving the stress distribution is the efficient
and economical way. However, the stress distribution on the bridge panel is related to its
geometric structure. From the structural point of view, the proposed steel bridge deck can
reduce the stress amplitude and employ more area on the deck to withstand the moving
wheel load with the arc-shaped stiffener on the bridge deck. Different moving vehicle
loads only affect the stress amplitude, not the stress distribution. Furthermore, the welding
process may cause stress concentration and it will have a serious impact on fatigue life
evaluation. Hence, the stiffener was recommended with a prefabricated molding process.

6. Conclusions

In this paper, the newly designed OSD with the arc-shaped stiffener was proposed
and studied through numerical analysis. The fatigue performance was studied under the
seven fatigue moving vehicle load. The fatigue stress state and distribution mechanism
were analyzed. With the arc-shaped stiffener, the stress amplitudes of the proposed steel
bridge panel were reduced by 15% with common OSD. The stress distribution was more
even in a wider range area. The fatigue life of the proposed bridge panel was enhanced
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by 40% compared with common OSD. Therefore, the proposed OSD with the arc-shaped
stiffener can alleviate the fatigue crack propagation and enhance the fatigue resistance of
steel bridge panels.

During the past decades, most of the long-span steel bridges adopted OSD due to
its efficiency. However, the typical fatigue crack failure of OSD is always a challenge for
bridge engineers after years of service, and it endanger the safety of the steel bridge. The
proposed steel bridge deck can reduce the stress amplitude and extend the maintenance
period to achieve better cost-effective goals compared with the common OSD. It has great
potential for application in the future.
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Appendix A

Stress contours of OSD and OSD with the arc-shaped stiffener under fatigue moving
vehicle load (M1–M6).

Table A1. Stress state of steel bridge deck under moving vehicle M1–M6 (MPa).

Vehicle Model Type (1) OSD (2) OSD with the Arc-Shaped Stiffener

M1
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