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Abstract: Dislocation dynamics has been an intensive research subject in materials science and en-
gineering due to the significant roles it plays in plastic deformation and the hardening of metals,
fracture mechanics, and the fabrication of semiconductor thin films. However, a long-standing
problem from the three-dimensional dislocation dynamics is that the motion and interaction of
dislocation loops heavily depend on the loop-segment sizes, which substantially reduces the accuracy
of simulation. We herein propose a new three-dimensional dislocation dynamics model together
with its physical background. The proposed model incorporates the inherent interactions among
differential dislocation segments. The simulation results on motion of Frank–Read sources demon-
strate that the proposed model can resolve the paradoxical segment-dependent phenomenon in
dislocation dynamics.

Keywords: dislocation dynamics; dislocation loop; Frank–Read source; modeling and simulation;
metallic materials

1. Introduction

Metallic materials contain crystal defects in their microstructures, which can be point,
line, surface, or volume defects. These defects locally disturb the regular arrangement
of atoms. Their presence, especially the presence of the line defects (dislocation loops),
essentially determines the strength and plastic deformation of crystalline solids.

Partly because the macroscopic plastic responses of metals are primarily controlled by
the nucleation, motion, annihilation, and interaction of dislocations in them, dislocation
dynamics has been of great interest to researchers and engineers in the past several decades.
Analytical solutions to this problem are impossible in most cases due to the inherent
complexity of dislocation loops. Various discretization techniques are widely employed
instead, which are known as discrete dislocation dynamics. With the rapid development
of computational technology, a lot of important research work on dislocation dynamics
has been made since the 1980s. Dislocation dynamics was first applied to two-dimensional
(2D) straight, infinitely long dislocations [1–4], and then to the much more complicated
three-dimensional (3D) dislocation loops in the infinite domain [5–20].

While computational methods have been proposed to model the motion, evolution,
and interactions of 3D dislocation arrays, an open question associated with these methods
is how to discretize dislocation loops, since inappropriate selection of dislocation segments
causes unrealistic responses, as indicated by Gómez-García, Devincre, and Kubin [21].
Ghoniem et al. [11] also showed a strange “velocity jump” phenomenon, illustrated in
Figure 1a, in which the movements near the two pinning points of a straight dislocation loop
can jump as the number of line segments increases. Such an unreasonable phenomenon
contradicts with the numerical approaches that finer discretized meshes employ in order to
obtain more accurate solutions. As a matter of fact, simulation results are influenced by the
artificial selection of the number of segments and meshes, as shown in Figure 1b, which
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casts doubts on the reliability of simulations in dislocation dynamics. The current paper
aims to investigate the reasons behind such abnormal appearances and to develop a novel
model of dislocation motion and dynamics.
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Figure 1. Simulation results from a classical dislocation dynamics model for a straight dislocation
loop: (a) the dislocation segment jumps near the pinning points in the first time-step as the number
of segment increases; (b) dislocation positions are dependent on the number of segments during the
dislocation loop’s motion and evolution processes.

2. Methodology

With a given three-dimensional dislocation loop, the conventional dislocation-dynamics
methods are based on the following governing equation [22]:

BijVj = Fi (1)

where Fi (i = 1, 2, 3) represents the local glide force per unit length exerting on the dislocation
loop, Bij (i, j = 1, 2, 3) is the second-rank tensor of dislocation drag coefficients, and Vj (j = 1, 2, 3)
is the local velocity of the dislocation. Furthermore, BijVj is also called the drag force of
the dislocation. It is noted that all equations are written with tensorial indicial notation
(i.e., the free indices take values from 1 to 3 and the repeated indices are summed from 1 to
3 unless explicit statements are indicated [23,24]). From the Peach–Koehler formula [25],
glide force Fi can be expressed as follows:

Fi = −bjσjknkti (2)

where σjk is the second-rank stress tensor, bj the Burgers vector of the dislocation, nk the
unit normal to the slip plane, and ti the in-plane unit normal to the dislocation loop. It is
noted that the Peach–Koehler formula-based glide force Fi is always in the same direction
of ti, perpendicular to the dislocation loop. Contributions to the stresses σjk may come from
the applied stresses and the self-stresses due to the dislocation loop itself. The self-stresses
induced by a dislocation itself is best found using Brown’s formula [26] or Gavazza and
Barnett’s equation [27] to avoid singularity issues.

Mathematically, the combination of Equations (1) and (2) indicates that the dislocation
velocity Vj is determined by the glide force Fi, as long as the size of the dislocation and
applied loads are given. Further investigation shows that the glide force Fi is completely
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derived, independent of the velocity variation along the dislocation line. Therefore, Equa-
tion (1) is essentially an algebraic equation rather than differential equation, from which
the velocity Vj can be calculated without the need of discretization processes. If the entire
dislocation loop is segmented into many pieces of lines, the nodes at the ends of segments
may jump because of the certain averaging approaches involved. That is the reason why
the abnormal appearance occurs in Figure 1a causing the dislocation positions in Figure 1b
dependent on the number and size of segments during its motion processes.

From a physical point of view, the abnormal phenomenon that dislocation motion is
dependent on segment size is due to the fact that only a minor portion of the interaction
between adjacent segments is taken into consideration in Equation (1). In the mechanics
theory of dislocations, a dislocation is considered as a continuous tube. Because of the stress
field external to the tube, the elastic interaction between adjacent dislocation segments is
represented by the contribution of self-stresses in Equation (2). However, as illustrated
in Figure 2a, the local interaction due to the core structure of the tube is not taken into
account in Equation (2). Such local interactions have been exemplified by the Finnis–Sinclair
interatomic potential [28] and the interatomic bondings in dislocation cores [29], implying
that the local interactions be taken into account in the framework of dislocation dynamics.
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Figure 2. (a) Interactions of adjacent differential dislocation segments can be divided into two parts.
(b) Free-body diagram of a differential dislocation segment with forces acting on it.

Based on the above arguments, the local interaction can be assumed to adhere to the
viscous law as follows:

Qi(s) = ηij
∂Vj(s)

∂s
(3)

where Qi signifies the shear force between adjacent differential segments, ηij denotes the
second-rank tensor of the local interaction of dislocation segments, and s represents a
local one-dimensional coordinate along the dislocation loop. From the free-body diagram
for a tubed dislocation segment, as shown in Figure 2b, a revised governing equation of
dislocation dynamics can be derived as follows:

BijVj(s)− ηij
∂2Vj(s)

∂s2 = Fi(s) (4)

It is noted that the above governing equation considers both the elastic and local
interactions between dislocation segments.
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3. Numerical Implementation

Similar to the standard finite element method, the numerical approach applied herein
discretizes the dislocation loop into M curved segments, each of which has Ms nodes. The
coordinates and velocities at any point on a segment are given as follows:

ri =
3Ms

∑
j=1

Nij(u)rs
j ; Vi =

3Ms

∑
j=1

Nij(u)Vs
j (5)

where ri is the coordinate of a point on the segment, rj
s is the node coordinate of the segment,

Vj
s is the velocity vector of the segment, and Nij (u) is the interpolation function dependent

on the parameter u(−1 ≤ u ≤ 1). The weak form of Equation (4) for each segment can then
be rewritten as follows:

3Ms

∑
j=1

(
Ksη

ij + KsB
ij

)
Vs

j = Fs
i (i = 1, 2, . . . , 3Ms) (6)

where Ksη
ij =

∫ 1
−1 ηlm

∂Nli
∂s

∂Nmj
∂s du, KsB

ij =
∫ 1
−1 J2BlmNli Nmjdu, Fs

i =
3Ms

∑
k=1

∫ 1
−1 J2Nji NjkFd

k du

with J = ‖∂s/∂u‖ being the Jacobian and Fd
k (i = 1, 2, . . . , 3Ms) as the local force at the

nodes. With the assembly processes, the corresponding global equation is obtained
as follows:

3MP

∑
j=1

(
Kη

ij + KB
ij

)
Vj = Fi (i = 1, 2, . . . , 3MP) (7)

where Mp is the total number of nodes of the dislocation loop, and Kη
ij and KB

ij are obtained

by assembling Ksη
ij and KsB

ij , respectively. Solving Equation (7) with appropriate constraints
on Vj

(
j = 1, 2, . . . , 3Mp

)
, the node velocities, as well as the velocity of the entire dislocation

loop, can be computed.
The time span is also discretized into many time steps. If the velocity Vj at time step ti,

say,
{

Vj
}

ti
, has already been obtained by solving Equation (7), then the dislocation position

at the next time step ti+1 can be obtained as follows:{
rj
}

ti+1
=
{

rj
}

ti
+
{

Vj
}

ti
(ti+1 − ti) (8)

4. Results and Discussion

The critical stress necessary to activate a Frank–Read source of dislocation and its
evolution have been a major topic in the theory of dislocation dynamics. Foreman [30] was
the first to employ computer technology to determine the equilibrium shape and critical
stress of a Frank–Read source by continuously adjusting node positions until the dislocation
reached an equilibrium state. This method, however, cannot simulate the evolution of a
Frank–Read source with any great degree of precision. Devincre and Condat [31] applied a
3D dislocation dynamics model to simulate the evolution and evaluate the critical stress
of a Frank–Read source. While various dislocation dynamics models have been actively
researched since then, the ability to simulate the evolution of dislocations is still limited by
the inherent complexity of this problem, as previously indicated in Section 1.

With the newly developed governing equations and numerical scheme derived in this
paper, the motion, bowing, evolution, and critical stress of a Frank–Read source are exam-
ined herein. Without losing any generality, the parameters are selected as follows: the Burg-
ers vector b = 2.86 , the distance between the two pinning points L = 1000b = 2860 , shear
modulus µ = 71.0 GPa, Poisson’s ratio ν = 0.3333, drag coefficient B = 1.0× 10−4 Pa·S,
local interaction η = 1.0× 10−20 N·S, and time step ∆t = 5.0× 10−12 s (second). Figure 3
shows the direct comparison between the current model and classical dislocation dynamics
simulation. Figure 3a shows the shapes of a Frank–Read source after the first-time step
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simulated using the classical model and the current model, respectively, demonstrating that
the current model is robust, while the classical simulation maintains a peculiar “velocity
jump” phenomenon at the beginning steps. Also, Figure 3b shows that the current model
quickly stabilizes and converges when the number of dislocation segments approaches 20;
yet, for the classical model, dislocation positions are heavily dependent on the number of
segments during the motion and evolution processes of the Frank–Read source.
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Figure 3. Comparison between the current model and classical dislocation dynamics simulation at
(a) the first-time step of a straight dislocation loop and at (b) the 200th time-step during the evolution
process of the dislocation.

Furthermore, Figure 4 illustrates the simulation results for the equilibrium bowing-out
of the Frank–Read source and its motion and evolution processes. Specifically, Figure 4a
demonstrates that, for an initial edge dislocation Frank–Read source subject to an applied
stress no greater than the critical stress, the equilibrium positions are dependent on applied
stresses. The results are in good agreement with those given by Foreman [30]. If the applied
stress is greater than the critical stress, the annihilation mechanism of Frank–Read source is
activated. The entire dislocation evolution of such a case is shown in Figure 4b, exhibiting
that the dislocation decelerates, accelerates, and then remains at an almost constant speed
during the entire expansion process. For a Frank–Read source with a smaller length, our
model can still converge quickly and accurately predict the critical stress, as shown in
Figure 4c. The effect of local interaction in a dislocation core is also investigated with the
change of η values of the Frank–Read source, showing in Figure 4d that weak interaction
yields early evolution and annihilation of the Frank–Read dislocation loop.

Figure 5 demonstrates the relationship between calculated critical stresses and segment
numbers. The new model demonstrates excellent stability for various segment sizes. The
calculated critical stresses quickly converge to the solution given by Foreman [30], while
the results from the classical model heavily depend on the segment size and the artificial
‘manipulations’ during the simulation processes.
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Figure 4. Simulation results for equilibrium bowing-out of the Frank–Read source and its motion
and evolution processes: (a) Equilibrium positions of an initial edge dislocation of relative length
L/b = 1000 under different applied stresses; (b) Evolution of the dislocation with strong local interac-
tion under the action of an applied stress of 2.0 µb/L; (c) Equilibrium positions of the dislocation of
relative length L/b = 500 under different applied stresses; (d) Evolution of the dislocation with weak
local interaction under the action of an applied stress of 2.0 µb/L. The time between neighboring
evolution lines is δt = 2.0× 10−10 S.
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5. Conclusions

In our proposed model, we fully take into account the local interaction between
dislocation segments to resolve the long-standing paradoxical problem mentioned in the
literature [11,21]. As expected, the determinations of equilibrium shape and critical stress
are insensitive to the values of drag coefficient tensor Bij and local interaction tensor ηij
of the dislocation, provided that they vary within a reasonable range. For example, it is
10−5 ∼ 10−3 Pa·S for Bij and 10−24 ∼ 10−19 N·S for ηij in our simulation of the Frank–Read
source. In contrast, the evolution profiles of the dislocation from the conventional models
are heavily dependent on the values of Bij. Under the action of applied stresses larger than,
but comparable to, the critical stress, the dislocation expansion speed varies greatly in the
multiplication process. However, the dislocation velocity does not vary appreciably if the
applied stress is sufficiently large. It is interesting that if we divide η = 10−20 N·S by the
cross-sectional area of the dislocation tube, we can find η/πr2

c = 3.89× 10−2 Pa·S, which
falls into the normal range of material viscosity coefficients. It can be surmised that the
intrinsic local interaction within a dislocation loop may be determined with the molecular
dynamics methods. Yet, experimental approaches to determining the interaction parameter
ηij would surely be of significant benefit. Finally, it should be noted that the new dislocation
dynamics model applies not only to the Frank–Read sources but also to general dislocation
dynamics problems.
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