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Abstract: Thin-walled cast alloys are one of the most significant enhancements for automotive
applications. This paper aims to evaluate the applicability of the “Generalized Incremental Stress-
State dependent damage MOdel” (GISSMO) in modern thin-walled cast alloys. Comprehensive
experimental tests are carried out to assess the instability and fracture strains on three thin-walled
structure alloys that are commonly used. Numerical studies are conducted on the two most common
modeling methods, shell-based and tetrahedral models. The parameters in GISSMO are calibrated
using theoretical fitting and the inverse analysis approach. Comparisons of the shell-based and
tetrahedral-based models with the test results and shell elements are carried out. The characteristics
of the two modeling methods are discussed, including element formulas, extrapolating the hardening
curves, and mesh-size dependency. It is evaluated that both modeling methods could be applied to
thin-walled cast alloys in satisfying agreement.

Keywords: thin-walled cast alloys; incremental damage model; fracture model; tetrahedral elements

1. Introduction

Due to the lightweight demand and low manufacturing cost, cast aluminum alloys
have been widely used for automotive applications such as in suspensions, wheels, engine
blocks, and bodies. Cast aluminum alloys usually show poor ductility, most of which
are lower than 5%. Recently, the extra-large thin-wall casts made by highly ductile Al-Si-
Mg alloys are highly desirable, which are supposed to have a ductility larger than 10%.
However, the large dimension and complex shapes make the accuracy of finite element
predictions on the crashworthiness of parts much more difficult. Tetrahedral elements are
required in these simulations, so the applicability of the common plasticity models needs
revisiting, especially for the fracture model.

Numerous works have reported criteria for metal fracture in the literature. The first
and second strength theories may be suitable for brittle materials. The first strength theory
assumes that material fracture destruction occurs as long as the maximum tensile principal
stress σ reaches the limit. In contrast, the second strength theory takes that the material
fracture occurs when the maximum elongation strain ε comes the maximum elongation
strain limit.

On the other hand, a ductile fracture is vast and can be very complex. A maximum
shear stress criterion σ1− σ2 < [σ], as the third strength theory, gives better agreement with
experiments in yield and fracture for some ductile materials, and the aberration energy

density theory
√

σ2
1 + σ2

2 + σ2
3 − σ1σ2 − σ2σ3 − σ3σ1 < [σ], as the fourth strength theory is

suitable for plastic material.
Material failure criteria dependent on current stress states, loading history, and strain

rate were developed with experimental technology in the 20th century [1]. McClintock,
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Rice, and Tracey observed that higher hydrostatic stress led to faster void growth and
decreased ductility [2,3]. Then, Gurson developed a criterion for ductile fracture [4], the
stress triaxiality η = σm/σ is proposed in fracture modeling, σm is the hydrostatic stress,
and σ is the equivalent stress. Bao and Wierzbicki found that the equivalent plastic failure
strain is not decreasing monotonically against stress triaxiality. It increases with triaxiality
in the range of 0 to 0.4. [5]. Mae et al. calibrated a cast aluminum alloy and found the
ductility of the Bao–Wierzbicki fracture locus [6]. Bai and Wierzbicki then proposed the
modified Mohr-Coulomb (MMC) model, which argued that the strain to failure must
depend not only on triaxiality but also on the third stress invariant parameter Lode angle
θ [7]:

cos(3θ) =
3
√

2 J3

2 J23/2 (1)

Since the range of angle θ is 0 < θ < π/3, the Lode angle parameter θ is usually used
instead in practice as

θ = 1− 6θ

π
(2)

which is in the range of −1 < θ < 1. Lou et al. constructed a criterion to consider
the damage accumulation based on the MMC model [8]. Lee et al. better explored the
numerical analysis of the structural components using ductile fracture criteria associated
with the Lode angle parameter for cast aluminum [9]. The inelastic response of the material
was softened after sufficient damage had accumulated, then the material failed when the
material damage reached a critical value [10].

In the case of modern metallic alloys, it is increasingly difficult to describe the failure
behavior with traditional analytical criteria. Non-proportionality becomes one of the
general issues in the prediction of material failure. The “Generalized Incremental Stress
State dependent damage MOdel” (GISSMO) is a phenomenological damage model. It
describes the evolution of ductile damage and the onset of fracture with non-linear damage
increments. Different fracture criteria could be coupled with the proper plasticity model.
Moreover, GISSMO intrinsically concerns the strain path change during deformation.

Most studies concerning plasticity and fracture models of metals focus on the shell and
fine hexahedral elements [9,11–16]. To our knowledge, few reports were found to apply
tetrahedral elements in failure simulation [17,18]. The suitability of tetrahedral elements
for structural fracture simulations remains a question.

The present study aims to evaluate the applicability of GISSMO for predicting the
plasticity and fracture responses for thin-walled cast aluminum alloys of automotive
components. Various mechanical tests elements were conducted with the corresponding
numerical analysis using both shell and tetrahedral elements. First, experimental methods
were demonstrated with a wide range of stress triaxiality, Lode angle parameter values,
and the corresponding results of three cast aluminum alloys. Second, constitutive mod-
els describing the metal plasticity and ductile fracture behavior were compared. Third,
influence factors on the simulations were carefully investigated.

2. Materials and Methods
2.1. Studied Material

Table 1 shows three typical thin-walled cast aluminum alloy components from the
automotive industry, spoke, torsional longitudinal beam, and rear body were chosen to
determine the plasticity and fracture properties. MAT 1 (A356), MAT 2 (A383), and MAT 3
(C611) represent the commercial aluminum alloys used for the wheel rim, longitudinal
beams, and rear body, respectively. The nominal thicknesses of the specimens for the three
alloys were 2.5 mm, 2.3 mm, and 3.5 mm, respectively. It is also worth noting that MAT 3 is
a heat-treatment-free alloy.
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Table 1. Experimental conditions for designed specimens.

Test # Specimen Desired η Desired θ

a Tensile 0.33 1
b R5 notched 0.5 0.35
c Center hole 0.38 0.85
d R20 notched 0.40 0.80
e Tensile–shear 0.10 0.25
f Shear 0.0 0.0

2.2. Experimental Methodology

Six types of experiments were conducted to generate the fracture model, representing
a wide range of triaxiality and Lode angle parameter values to determine the material
properties at quasi-static conditions, as shown in Figure 1 and Table 1.
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Figure 1. Specimen configuration for the tests (unit: mm): (a) Tensile, (b) R5 notched, (c) Center hole,
(d) R20 notched, (e) Shear, and (f) Tensile-shear.

The tensile test was designed based on a sub-size ASTM-E8M specimen performed to
obtain the elastoplastic behavior. The desired stress triaxiality was about 0.33. However, it
may shift to a higher value after necking. So, the center hole test was designed to obtain
the fracture behavior under 0.33.

R5 and R20 were designed to obtain fracture behaviors under high-stress triaxiality.
Moreover, since the necking under these tests was delayed, they could help characterize
the plasticity model. Tensile–shear and shear tests were conducted to obtain the ductility
under small stress triaxiality states.

Due to the limit of dimensions of the wheel rim, R20 and tensile–shear tests were left
out for MAT 1. Additionally, to guarantee the stress state of the thick material MAT 3, the
dimensions of its specimens were doubled.

Tests were performed using the universal testing machine, as described in Figure 2.
All tests were performed at least three times. The deformation up to fracture was captured
using a digital camera, and the displacement and strain data were calculated with the
digital image correlation (DIC) software VIC-2D.
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Figure 2. Experimental methodology. Zwick Z020 universal test machine and DIC system.

2.3. Experimental Results

Figure 3 shows the stress vs. strain curves from the quasi-static tension tests of three
alloys. The material from the spoke (MAT 1) had the most significant yield and tensile
strengths but minor elongation, less than 5%. On the contrary, MAT 2 was the weakest alloy
in this study, with the best elongation, which was more than 20%. The alloy’s ductility was
outstanding, and the rupture occurred lately after necking. MAT 3, the heat-treatment-free
alloy, had a yield strength higher than MAT 2 and a tensile strength lower than MAT 1. The
elongation was about 10%, which led to a higher working harden. Moreover, two typical
failure behaviors were demonstrated. It could be found that MAT 1 and MAT 3 ruptured
rapidly after necking happened, while MAT 2 had an extended post-necking elongation.
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Figure 3. Engineering stress vs. strain curves of the three alloys.

Figure 4 presents the experimental curves of the fracture specimens. The low-elongation
MAT 1 gave poor test repeatability, while MAT 2 and MAT 3 showed satisfying repeatability.
In R5 and R20 specimen tests, for MAT 1 and MAT 3, the loading dropped rapidly after
peak force. However, for MAT 2, the loading dropped smoothly.
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Figure 4. Experimental results (horizontal axis unit: mm; longitudinal axis: N).

3. Characterization of Plasticity and Fracture Behaviors with GISSMO

The commercial FE simulation software LS-DYNA was commonly used to characterize
the plasticity and fracture behaviors of the cast alloys. GISSMO was one of the advanced
fracture models implemented in LS-DYNA. One crucial aspect is the damage accumulation
rule, written as:

∆D =
n

ε f (η)
D1−1/n∆εp (3)

where D, η, ∆εp, and n are the current values of damage, triaxiality, increment of plastic
strain, and damage exponent, respectively. The fracture strain ε f (η) is a function of
triaxiality. When D reached 1.0, a fracture occurred. It enabled GISSMO to give a more
accurate depiction of fracture for non-proportional stress paths. Similarly, the instability
value was also accumulating:

∆F =
n

εcrit(η)
F1−1/n∆εp (4)
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A softening on the material was enabled after instability, written as:

σ = σ

[
1−

(
D− Dcrit
1− Dcrit

)m]
(5)

where F is the current value of instability, the instability strain εcrit(η) is also a function of
triaxiality. Dcrit is the damage value when F = 1 and m is the fading exponent. Both ε f (η)
and εcrit(η) can be defined with tabulated curves in GISSMO.

3.1. Shell-Based Model

First, shell element-base models were built as benchmarks, then tetrahedral element-
based models were established. An isotropic model (MAT_024) was used to describe the
elastic-plastic behaviors with an associated flow rule. The commonly used Belytschko–Tsay
formula (ELFORM 2) was adopted in the shell element with a mesh size of 0.5 mm. The
Voce–Swift isotropic hardening law was used to characterize the plastic hardening behavior
before failure for the materials [19]:

σ = w · As ·
(
Cs + εp

)Bs + (1− w) ·
(

Av + Bv ·
(

1− e−cvεDv
p
))

(6)

where σ and εp denote the effective stress and effective plastic strain, respectively, and
Ai, Bi, and Ci represent material constants (i = c, s). They were obtained from tensile
test results before necking, as shown in Figure 5. The similarity of the two fittings was
relatively high in the before-necking fragment. Divergence became more significant in
the large-strain range, so w was used as an adjustable weighting factor in extrapolating
the post-necking behavior by comparing R5 notched experimental and numeric results, as
shown in Figure 6 and the fitted model parameters were listed in Table 2.

Metals 2022, 12, x FOR PEER REVIEW 7 of 16 
 

 

axiality. When 𝐷 reached 1.0, a fracture occurred. It enabled GISSMO to give a more ac-
curate depiction of fracture for non-proportional stress paths. Similarly, the instability 
value was also accumulating: Δ𝐹 = ௡ఌ೎ೝ೔೟ሺఎሻ 𝐹ଵିଵ ௡⁄ Δ𝜀௣  (4)

A softening on the material was enabled after instability, written as: 𝜎 = 𝜎തሾ1 − ቀ஽ି஽೎ೝ೔೟ଵି஽೎ೝ೔೟ቁ௠ሿ  (5)

where 𝐹 is the current value of instability, the instability strain 𝜀௖௥௜௧ሺ𝜂ሻ is also a function 
of triaxiality. 𝐷௖௥௜௧ is the damage value when 𝐹 = 1 and 𝑚 is the fading exponent. Both 𝜀௙ሺ𝜂ሻ and 𝜀௖௥௜௧ሺ𝜂ሻ can be defined with tabulated curves in GISSMO. 

3.1. Shell-Based Model 
First, shell element-base models were built as benchmarks, then tetrahedral element-

based models were established. An isotropic model (MAT_024) was used to describe the 
elastic-plastic behaviors with an associated flow rule. The commonly used Belytschko–
Tsay formula (ELFORM 2) was adopted in the shell element with a mesh size of 0.5 mm. 
The Voce–Swift isotropic hardening law was used to characterize the plastic hardening 
behavior before failure for the materials [19]: 𝜎 = 𝑤 ⋅ 𝐴௦ ⋅ ൫𝐶௦ + 𝜀௣൯஻ೞ + ሺ1 − 𝑤ሻ ⋅ ቆ𝐴௩ + 𝐵௩ ⋅ ቀ1 − 𝑒ି௖ೡఌ೛ವೡ ቁቇ  (6)

where 𝜎 and 𝜀௣ denote the effective stress and effective plastic strain, respectively, and 𝐴௜, 𝐵௜, and 𝐶௜ represent material constants (𝑖 = 𝑐, 𝑠). They were obtained from tensile test 
results before necking, as shown in Figure 5. The similarity of the two fittings was rela-
tively high in the before-necking fragment. Divergence became more significant in the 
large-strain range, so 𝑤 was used as an adjustable weighting factor in extrapolating the 
post-necking behavior by comparing R5 notched experimental and numeric results, as 
shown in Figure 6 and the fitted model parameters were listed in Table 2. 

 

 
Figure 5. True stress–plastic strain curves and hardening-law fittings before necking: (a) MAT 1, (b) 
MAT 2, and (c) MAT 3. 

Figure 5. True stress–plastic strain curves and hardening-law fittings before necking: (a) MAT 1,
(b) MAT 2, and (c) MAT 3.

Metals 2022, 12, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 6. Isotropic hardening-law fittings before necking using R5 test results: (a) MAT 1, (b) MAT 

2, and (c) MAT 3. 

Table 2. Material parameters fitted for three alloys. 

MAT 𝑨𝒔 𝑩𝒔 𝑪𝒔 𝑨𝒗 𝑩𝒗 𝑪𝒗 𝑫𝒗 𝒘 

MAT 1 383.143 0.09532 2.20 × 10−5 267.504 94.2477 40.0521 0.68908 0.5 

MAT 2 319.5 0.15532 1.2 × 10−5 267.504 186.023 6.12133 0.41562 0.5 

MAT 3 488.515 0.22313 1.9 × 10−5 306.092 221.370 11.5027 0.68509 0.39 

In general, tabulated failure and instability locus led to the flexibility in GISSMO but 

also the disadvantage that accurate calibrations required practical skills. To conquer this 

problem, LS-OPT was used in an inverse modeling approach to obtain the magnitude of 

the equivalent plastic failure strains and instability strains [20–22], as shown in Figure 7. 

First, the parameter space was determined using the designed triaxiality values for both 

fracture and instability curves. Then, the sequential response surface methodology con-

structed an approximation between the parameters to the target value. In this study, the 

target was a summary of the force-displacement curve similarity between experimental 

and simulation results using dynamic time warping from the six tests. Additionally, sev-

eral simulations were conducted iteratively in the loop of the differential evolution algo-

rithm to minimize the target value [23]. The magnitudes of the strain values obtained from 

the optimization procedure were shown in Figure 8. 

  

Figure 6. Isotropic hardening-law fittings before necking using R5 test results: (a) MAT 1, (b) MAT 2,
and (c) MAT 3.



Metals 2022, 12, 1850 7 of 14

Table 2. Material parameters fitted for three alloys.

# As Bs Cs Av Bv Cv Dv w

MAT 1 383.143 0.09532 2.20 × 10−5 267.504 94.2477 40.0521 0.68908 0.5
MAT 2 319.5 0.15532 1.2 × 10−5 267.504 186.023 6.12133 0.41562 0.5
MAT 3 488.515 0.22313 1.9 × 10−5 306.092 221.370 11.5027 0.68509 0.39

In general, tabulated failure and instability locus led to the flexibility in GISSMO but
also the disadvantage that accurate calibrations required practical skills. To conquer this
problem, LS-OPT was used in an inverse modeling approach to obtain the magnitude of the
equivalent plastic failure strains and instability strains [20–22], as shown in Figure 7. First,
the parameter space was determined using the designed triaxiality values for both fracture
and instability curves. Then, the sequential response surface methodology constructed an
approximation between the parameters to the target value. In this study, the target was a
summary of the force-displacement curve similarity between experimental and simulation
results using dynamic time warping from the six tests. Additionally, several simulations
were conducted iteratively in the loop of the differential evolution algorithm to minimize
the target value [23]. The magnitudes of the strain values obtained from the optimization
procedure were shown in Figure 8.
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Figure 8. Optimized failure and instability loci using GISSMO for shell-based models: (a) MAT 1,
(b) MAT 2, and (c) MAT 3.

The black lines in Figures 9–11 show the comparison of load-displacement curves
obtained from numerical and experimental data for the cast aluminum alloys. The shell-
based model FE results predicted the elastoplastic and failure behaviors of the alloys with
reasonable accuracy.
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Mesh-size dependence is a well-known issue and plays a significant role in finite
element analysis of ductile fracture prediction. After instability, plastic strain tends to
depend significantly on the mesh size. GISSMO used tabulated regularization factors
to adjust the fracture curve to the corresponding element size [24]. In this case, 2.5 mm
and 5 mm were chosen to calibrate the regularization factors. The simulation of a large
tensile specimen, three times the original size, was carried out with the calibrated curves,
as shown in Figure 12c. It indicated that GISSMO could provide a near-perfect match for
these shell-based models with the mesh-dependency regularization factors.
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3.2. Tetrahedral-Based Models

First, mesh behavior and convergence rate of four common tetrahedral element for-
mulations in LS-DYNA were investigated for tetrahedral-based models. The element
formulations are the one-point constant stress element (ELFORM 10), one-point constant
stress with nodal pressure averaging element (ELFOREM 13), S/R quadratic with nodal
rotation element (ELFORM 4), and point 10-noded element (ELFORM 16).

For instance, the force-displacement curves of the R5 notched specimen of MAT 2
obtained from simulations of the four formulas were compared with those from the ex-
periments and shell-based simulations. The initial hardening curve was as same as the
shell-based model. All the formulas overestimated the strain-hardening. Moreover, the
time-consuming comparison was listed in Table 3. As Figure 13a, ELFORM 16 gave the
most likely prediction but was also the most time-consuming. ELFORM 13 indicated an
acceptable accuracy at minor strain conditions and was reasonably time-consuming. How-
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ever, it deviated from the experimental data by approximately 10% at large strain. ELFORM
4 element model started shifting from a relatively minor strain, and the differences were
enlarged along with strain. ELFORM 10, on the other hand, gave a much higher response
at the very beginning. The results indicated that the ELFORM 16 and 13 elements could
be the candidates for accurate reproduction of experiments, and ELFORM 13 was the
more effective one. Recalibrating the weighting factor w could solve the overestimating
problem in the ELFORM 13 model. As seen in Figure 13b,c, with w = 0, the improved
simulation result using ELFORM 13 matched the experimental result in an acceptable
agreement in all strain ranges. ELFORM 13 could be the best choice for tetrahedral models
in crashworthiness simulations.

Table 3. CPU times for tetrahedral element models (R13.0 MPP with Intel® Xeon® E5-2687W).

ELFORM 4 ELFORM 10 ELFORM 13 ELFORM 16

149 s 43 s 49 s 205 s
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based GISSMO.

A similar pattern was also found in MAT 1. The weighting factor w = 0 reproduced the
experimental result with reasonable accuracy. However, in MAT 3, the original hardening
curve from the shell-based model with w = 0.39 was also suitable for the tetrahedral-based
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model, as seen in Figure 14. It might be attributed to the higher working harden and the
rapid failure after peak force. So, the extrapolating factor did not influence the mechanical
behavior of the models significantly.
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Figure 14. Extrapolating curves of tetrahedral-based models for (a) MAT 1 and (b) MAT 3.

Second, the GISSMO model parameters from the shell-based model were also applied
in the tetrahedral models for MAT 2, seeing the blue line in Figure 13d. It demonstrated
a noticeable fracture delay and led to an overestimation of structural integrity. Thus, the
failure locus in the tetrahedral-based model should be lower even if the weighting factor
was already decreased. It indicated that the GISSMO parameters should be recalibrated
for different element formulas, even for MAT 3, which used the same hardening curve in
the shell-based model. The failure and instability loci used in tetrahedral-based models
were shown in Figure 15, and the simulation results were demonstrated with blue lines in
Figures 9–11. The models presented good agreement between simulations and experiments.
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Figure 15. Optimized failure and instability loci using GISSMO for tetrahedral-based models:
(a) MAT 1, (b) MAT 2, and (c) MAT 3.

Additionally, 2.5 mm and 5 mm meshes were also investigated concerning the sen-
sitivity to mesh dependence. The specimen’s geometry was the same as the shell-based
model; at least three layers of elements were divided in the specimen models. The solid
lines in Figure 16a show the regularization factors of the three different alloys, which were
very different from the ones used in shell-based models. Simulation results in these mesh
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sizes were displayed in Figure 16b. It became evident that well-calibrated regularization
factors in GISSMO could provide a satisfying match in most cases. It is worth noting that
the mesh-size sensitivity of MAT 1 was very low. It indicated that the mesh dependency
could be ignored in well-defined tetrahedral-based models with low-ductility materials.
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Another important point when working with tetrahedral elements was the possibility
of using a one-layer element model for thin-walled complex-shaped structures. The size
dependence for these models was also investigated using the original tensile specimens. As
shown in Figure 17, the one-layer model showed a pronounced delay in failure for MAT 1
and MAT 2, while an acceptable match for MAT 3. In some cases, the regularization factors
were unsuitable for the one-layer element model. It could also be attributed to the higher
working harden and the rapid failure after necking. The dashed lines in Figure 16a show
the recalibrated factors used in one-layer models, and better matching simulation results
were obtained.
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4. Discussion

To better understand their differences, a discussion and comparison of the GISSMO
failure models for both shell- and tetrahedral-based models.

The type of element formulas used in the tetrahedral-based model could significantly
influence the simulation results. Four different types were evaluated and compared, which
indicated that the model was susceptible to the element type. Both ELFORM 16 and
ELFORM 13 could reproduce the experiments in good agreement, but with less time
consumption, ELFORM 13 could be the best candidate for the tetrahedral-based model for
crashworthiness simulations.

Despite contrasting differences, with recalibrating the weighting factor in extrapolating
harden curves, instability, and failure strain loci, satisfying results could be achieved
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with both shell-based and tetrahedral-based models. Shell-based parameters used in the
tetrahedral-based model usually led to overestimating the force and delay in fracture.
However, the heat treatment-free alloy (MAT 3) presented a similar hardening behavior in
both shell-based and tetrahedral-based models.

Moreover, GISSMO could also provide a satisfying match for all element sizes and
formulas with good calibration of the regularization factors. It is difficult to affirm if the
tetrahedral-based model was more or less sensitive to mesh size.

Nevertheless, the alloy from the spoke (MAT 1) results indicated that the poor elonga-
tion alloys could be insensitive to the mesh size in tetrahedral-based models.

In addition, the one-layer tetrahedral-based model, though not recommended, showed
more sensitivity to the mesh size. Further recalibration for the regularization factors was
required for these models.

5. Conclusions

This paper studied the material fracture behaviors of three commercial cast aluminum
alloys in the automotive industry with very different mechanical behaviors using GISSMO.
Six different types of specimens were designed and tested with a large variety of stress
states at failure. Some main conclusions can be drawn:

1. With the well-calibrated parameters, GISSMO could reproduce the test results with
good agreement for the multiple stress states.

2. Optimization with LS-OPT was a feasible way to calibrate the parameters for GISSMO
and avoid the requirement of practical skills.

3. The part structures tests and simulations should be conducted in future work to
evaluate whether the tetrahedral-based model with GISSMO is suitable.
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