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Abstract: The three primary steps in the production of tungsten carbide WC and titanium carbide
TiC powders are the preparation of the green mixture, carbidization by furnace annealing, and ball
milling of the annealed products. This work performed a comprehensive parametric investigation of
these three steps. The impact of several factors was examined including the carbon precursor, the
mass and diameter of the milling bodies (balls), the milling time and speed, the temperature and
length of the annealing process, the height of the powder in the furnace boats, and the rate at which
the furnace boats move. Regression models for every stage of the process were verified by 10-fold
validation and used to optimize the synthesis sequence, resulting in high-quality WC and TiC with
a grain size below 2 microns and a content of free carbon below 0.1%. Additionally, solid solution
(W,Ti)C was fabricated by mechanochemical synthesis from the elemental mixtures; however, further
modification of this technique is necessary because of the observed relatively high concentration of
residual free carbon (0.2–0.8%) and contamination by Fe.

Keywords: tungsten carbide; titanium carbide; carbidization; pressureless sintering; parametric
study; statistical analysis

1. Introduction

Hard alloys based on the refractory carbides of transitory metals contained in one or
two metal binders are used in particular to satisfy increased performance requirements
for cutting procedures [1]. Carbides are often utilized in cutting tools or coatings due to
the carbide’s great hardness and durability, leading to enhanced performance and cost-
efficiency of the machining tools [2,3]. The most popular materials for drilling, stamping,
and cutting instruments are hard alloys based on tungsten carbide (WC), particularly
those doped with Co [4]. Numerous industrial uses for tungsten carbide (WC) and its
composites include wear-resistant components for hot rolling mills and drawing dies,
mining and cutting tools, precise drilling tips, and sandblast nozzles [5]. Recently, WC has
been employed in the catalysis industry to replace noble metals such as palladium (Pd),
platinum (Pt), and iridium (Ir) [6]. In proton exchange membrane (PEM) fuel cells, it may
also be utilized as a catalyst. Its special qualities including high hardness and strength,
superior corrosion resistance, high-temperature stability, and high Young’s modulus are
relevant to all of these uses. The main issue with these alloys is their high cost, which is
a result of the expenditure involved in producing the original WC and Co powders. The
major causes of such are the prohibitively expensive conventional methods of producing
WC powder and the slow rates of solid-phase reaction.
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There are several ways to make WC powder including heating tungsten–carbon
mixtures in carbon tubes to temperatures of 2800 ◦C in microwave ovens or interacting
them with hydrogen, methane, and vacuum at temperatures of 1400–2000 ◦C [4,7]. Typically,
W metal and C are combined in a solid-state process at temperatures between 1200 and
2000 ◦C in a controlled environment to produce tungsten carbide. This procedure is
expensive due to the high temperatures and extended time required by the slow diffusion
rates of solid-state reactions. Due to the effective wetting of liquid Co to WC, this ensures
the efficient liquid phase sintering of hard metal [8–12]. Co is used extensively as an
alloying compound to increase the mechanical strength and corrosion resistance of WC
alloys, although doing so raises the cost of manufacture [13–16]. Ni, Cr, Cu, Mo, Al, Si, and
Fe are other elements that are accessible and have comparable effects [17–21]. Transient
metal carbides such as TiC, TaC, and NbC are frequently used to enhance the properties of
WC–Co hard alloys to reduce diffusion wear caused by the -phase (Ti, Ta, Nb, W)C that
forms during sintering [1,12,22]. TiC carbide is the most desirable material for the doping
of WC–Co systems from a scientific and industrial standpoint. The potential for TiC to be
used as a doping agent is related to its physical, chemical, mechanical, and operational
properties [23]. The primary causes of the high strength, high durability, and heat resistance
of WC–TiC–Co alloys include the good thermal stability and great oxidation stability of TiC.

In the hard alloy WC–TiC–Co, there are four distinct phases: WC, TiC, (Ti,W)C, and
Co binder. The metallic binder ensures efficient densification during sintering due to the
high wettability of the carbide particles by cobalt. Crucially, the cobalt binder also endows
the hard alloy with increased fracture toughness (resistance towards dynamic impacts) due
to the binder’s plasticity. The microstructure and mechanical characteristics of WC–TiC–Co
carbides are significantly influenced by the WC/TiC granulometric ratio [24]. The TiC
component in WC–TiC–Co alloys typically does not exceed 18 weight percent because TiC
is significantly more brittle than WC [25]. Since the ionic radii between W and Ti are similar,
WC and TiC form (Ti,W)C solid solution. Typically, the (W,Ti)C grains have a core-shell
structure [26]. The rim includes the (Ti,W)C phase with a greater W concentration whereas
the core contains the original TiC or (Ti,W)C powder [26]. The partial dissolving of TiC
and WC in the liquid-fluid binder and subsequent epitaxial deposition of the solid solution
(Ti,W)C on the undissolved TiC grains cause the development of the rim around the TiC
grains [27]. Small amounts of TiC additives cause all of the raw TiC grains to dissolve in
the binder, leaving just grains (Ti,W)C [28]. Because W atoms do not penetrate TiC well,
their distance of diffusion from the rim to the nucleus is only a few nanometers [29]. The
microstructure of WC–TiC–Co carbides is dispersed with bigger (Ti,W)C and TiC phases
as reinforcement for the WC–Co matrix. WC grains are smaller than TiC grains. The
cutting efficiency and performance of hard-alloy bits are improved by doping WC–Co with
sub-micron TiC [30–33]. This is carried out to make the bits harder, more wear-resistant,
and less susceptible to thermal softening during cutting.

Rigid technological requirements and a slow rate of solid-phase reaction define con-
ventional methods for producing WC, TiC, and Ti (C, N) powders [4,7]. Recently, different
methods have been employed to create tungsten carbide particles [34] including the spray
conversion process (SCP) [35], chemical vapor deposition (CVD) [36], combustion synthesis
(CS) [37–39], wire explosion process, and mechanical alloying (MA) [40,41]. Mechanical
alloying is one of the most alluring of these techniques [41]. It is easy to use, does not
require expensive machinery or high temperatures, and may also be used to reduce metal
oxides and manufacture hard alloys using much cheaper oxide precursors rather than
elemental powders [40,42]. The mechanochemical synthesis of transitional metal carbides
from chloride precursors has also been reported. [43] The reduction of oxide or chloride pre-
cursors is achieved by the addition of a reducing agent—most often magnesium or calcium
hydride. The reaction between the reducing agent and oxide is highly exothermic, leading
to rapid heating in the contact area between the solid phases, which in turn promotes
solid-state diffusion [40,44–48]. High-temperature mechanochemical synthesis (HMS) is a
common method for mechanochemical activation, which speeds up the solid-phase interac-
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tion of reaction mixture components [45,49,50]. The potential use of mechanically induced
solid-phase processes is connected to their usage in technology, particularly in developing
novel “dry” technological processes that are more economical and ecologically friendly
than the current ones. The mechanochemical synthesis of metal powders involves the use
of substances that change the structure and properties of powders under non-equilibrium
conditions of particle formation at significant temperature and pressure gradients, which
are responsible for starting physical and chemical processes such as phase transitions and
chemical reactions [44,45]. However, despite the evident advantages of the mechanochemi-
cal synthesis, the phase purity of the product, conversion rate, and possible contamination
due to the wear of the milling bodies (steel balls) remains a concern [51]. Therefore, the
mechanochemical synthesis of carbide ceramics for hard alloys has to be compared to
traditional furnace-based manufacturing to check which technique is more viable.

Mechanochemical synthesis is not the only way to produce desirable carbide ceramics
from inexpensive oxide precursors. One of the alternatives was suggested by Koc, who
developed a three-step process in which the oxide powders were first coated with carbon
by the cracking of propylene (C3H6); second, mixed with a substantial amount of carbon
black; and finally treated at temperatures in the range of 600–1400 ◦C for 2 h in flowing Ar
or 10% H2–Ar atmosphere to synthesize WC. Wang et al. [52] reported that high-quality
WC powders of 100 nm size can be synthesized by carbothermal reduction using acetylene
black as a carbon source [53]. Ke et al. achieved one-step synthesis and sintering of WC–Co
and WC-(Ti,W)C-Co hard metals using carbon black, Co, WO3, and TiO2 as raw materials
by combining the carbothermal reduction of oxides and the liquid phase sintering of hard
metal in one annealing cycle [54,55]. The heating rate plays an important role in controlling
the carbide particle growth mechanism [56]. Sub-10 nm carbide particles can be produced
by carefully controlling the sintering conditions, which accentuates the necessity for the
development of comprehensive predictive models of the milling and annealing operations
in the carbide production cycle [57].

Currently, there is a lack of systematic multi-parameter statistical investigations of
WC and TiC synthesis, since most published articles performed a limited single-parameter
optimization. In particular, no comparisons are available between the intermittent and con-
tinuous sintering modes in furnaces as well as between conventional furnace synthesis and
mechanochemical synthesis. In this work, a systematic parametric study was performed
on the synthesis of WC, TiC, and WC–TiC powders by the means of high-temperature
synthesis and mechanochemical synthesis. The sintering experiments were performed
using three carbon precursors, a range of milling conditions employed for the preparation
of the reactive mixture and for refinement of sintering products (diameter of milling bodies
16–32 mm, ball mass 200–300 g, milling time 30–150 min, milling speed 20–40 rpm), and
sintering conditions (temperature interval of 1000–1700 ◦C, duration 30–150 min, the height
of powder in the boats was 10–20 mm, boat movement speed 10–25 mm/min) were investi-
gated. For the mechanochemical synthesis, the duration of 15–60 min was used. Detailed
regression models were constructed for the investigated processes to enable improved
control of the synthesis.

2. Materials and Methods

The following powders were used as precursors: (I) Metals Ti and W (RusRedMet, St
Petersburg, Russia) with a purity of >99% and a particle size within the range of 40–60 µm
and (II) three forms of carbon powders: carbon black, GISM grade graphite, GK grade
graphite, with a purity of 99% and a particle size of 7–10 µm. Mixtures of the following
compositions were used: WC—93.9% W + 6.1% C; TiC—80% Ti + 20% C; (W,Ti)C—71.9%
W + 18.8% Ti + 9.3%C.

Elemental powder mixtures were prepared using the ball mill WiseMixSBML (DAI-
HAN Scientific, Wonju-Si, Republic of Korea) equipped with 250 mL steel jars and 6 mm
steel balls. The different sintering runs constituting the experimental matrix were con-
ducted in a graphite tube furnace in a nitrogen atmosphere. For each run, at least three
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samples were sintered concurrently. Two sintering modes were employed. In the first
(intermittent) mode, the alumina boat with the samples was placed in the middle of the
furnace’s hot zone, then the furnace was heated to the sintering temperature at a rate of
10 ◦C/min, followed by a soak at the dwelling temperature for a specific time, and free
cooling to the room temperature. In the second (continuous) mode, the furnace was heated
up to the sintering temperature, then the boat containing the sample was inserted at the
beginning of the furnace and moved through the furnace at a certain speed, referred to as
the boat movement speed. The experiments in the second mode were conducted to emulate
the conditions relevant to continuously operating industrial furnace equipment.

For the mechanochemical synthesis of (W,Ti)C, 18 g batches of W + Ti + C mixture were
used for HEBM treatment in a double-station planetary ball mill (Activator-2s, Activator,
Moscow, Russia). The ball (stainless steel, 6 mm in diameter) to powder mixture weight
ratio was 20:1. Before milling, the jar (stainless steel, 250 mL incapacity) was sealed,
vacuumed, and filled with 99.998% pure argon up to 4 atm. The milling speed was 694 rpm
at a rotational coefficient of K = 1.

The size of the resulting powders was determined via laser diffraction analysis using
a Fritsch Analysette 22 Microtec Plus instrument (Fritsch, Idar-Oberstein, Germany). As-
milled composite ceramic powers were subjected to magnetic separation using an LSV dry
separator (SOLLAU, Velký Ořechov, Czech Republic) for the elimination of iron impurities.
The phase composition of the synthesized and sintered powders was measured by XRD
analysis on a Dron-4 installation (JSC “Burevestnik”, Saint-Petersburg, Russia) using CuKα

radiation, 2θ range 10–110◦, 0.1◦ step, and 6 s exposition time. Spectra were treated using
the JCPDS database (International Centre for Diffraction Data, Newtown Square, PA, USA).

Free carbon content (Cfree) was measured using a modified Meerson–Samsonov tech-
nique (i.e., wet chemical dissolution in hot chromic–sulfuric–iodic acid mixtures. All
free carbon during the dissolution was oxidized to carbon dioxide, which was measured
coulometrically as a function of the oxidation time [58]. Total carbon content (Ctotal) was
measured using the elemental analyzer ELEMENTRAC CS-i (Eltra GmbH, Haan, Germany)
using combustion in an induction furnace and the subsequent analysis of the gaseous
carbon dioxide.

The structures of powdered and compact materials were studied by scanning electron
microscopy (SEM) on an S-3400 N microscope (Hitachi, Tokyo, Japan) equipped with a NO-
RAN energy-dispersive X-ray spectrometer (EDX) (Thermo Fisher Scientific, Waltham, MA,
USA). The average grain size was measured from SEM micrographs of a milled powder, us-
ing a line-intercept method and taking into account at least 50 grains. A three-dimensional
correction factor of 1.2 was used, meaning that individual grains were approximated by
spheres. For the measurements, a confidence interval (95%) was used, which corresponded
to 2 sigma on each side of the mean.

The mixture quality coefficient Q was calculated based on the variance in the particle
distribution observed by SEM and EDS. After the imaging of the samples, random secants
were drawn, and the component particles were recorded in the order in which the secant
line intersects them. After the data collection, analysis of variance (ANOVA) was performed
on the dataset to ascertain the homogeneity of the mixture (higher variance corresponds
to better mixing). The variance contains three parameters: mixture variance, analytical
variance, and sampling variance. The variability due to sampling is very difficult to
determine, thus, in practice, it is usually neglected. The analytical variance was determined
by the repetition of the measurements on the same samples. It is important to note that the
parameter Q does not represent the true variance in the mixture composition, but rather a
convolution between it and other variance sources. This estimation was taken into account
by calculating a confidence interval (95%) that corresponded to 2 sigma on each side of
the mean.

The statistical treatment of the data produced in the parametric study was treated using
Minitab 21.1 software (Pennsylvania State University, Pennsylvania, PA, USA). Regression
models were constructed for every dataset and further used for response optimization.
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Individual desirability was calculated for each response and weighted by the importance
assigned to it on a scale from 1 to 10. It should be noted that the importance score has to be
selected arbitrarily by the investigator. These values were combined to determine the com-
posite, or overall, the desirability of the multi-response system. An optimal solution occurs
where composite desirability obtains its maximum. Therefore, the response optimization
is most effective when interpreted in conjunction with relevant subject matter expertise
including background information, theoretical principles, and knowledge obtained through
observation or previous experimentation.

3. Results and Discussion

In this work, five datasets were produced in relation to the furnace synthesis of TiC and
WC and used to construct regression models (Supplementary Tables S1–S12, Supplementary
Figures S1–S6).

3.1. Titanium Carbidization

Regression analysis was performed with the Cfree, Ctotal, and TiC grain size outputs vs.
temperature (T) and carbon source inputs using 10-fold cross-validation and the stepwise
selection of terms (α to enter = 0.15, α to remove = 0.15). The initial dataset is provided
in Supplementary Table S1. The Pareto plot of parameter significance and residual plots
(normal probability plot, vs. fits, histogram, versus order) are shown in Supplementary
Figures S1–S3. The main effects and interaction plots from the derived regression models
are presented in Figure 1. Residuals were homoscedastic and normally distributed. For the
Cfree output, the following regression equations (Equations (1)–(3)) were obtained for the
three used carbon precursors (Figure 1c):

For Carbon black precursor: Cfree, % = −1.31 + 0.00349 T − 0.000001 × T2 (1)

For GISM precursor: Cfree, % = 10.25 − 0.01161 T + 0.000004 × T2 (2)

For GK precursor: Cfree, % = 1.80 − 0.00060 × T (3)

where T—temperature, ◦C.
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For the GK precursor, the free carbon content showed a linear dependence on tempera-
ture (T). For the precursors carbon black and GISM, the dependences had a weak quadratic
term. A cutoff threshold of 1.65 was used to select statistically significant members of the
model. The adjusted R2 (coefficient of determination) for the model was 89.74%; how-
ever, the 10-cross validation produced a relatively low R2 value of 40.02% (Supplementary
Table S2). This might be related to the partial overfitting of the model in relation to the
influence of GISM precursor on the free carbon content, since the fitted curve showed a
counter-intuitive inflection point at ~1550 ◦C (Figure 1c).

Supplementary Table S3 provides the detailed characterization of the constructed
regression model of grain size evolution during TiC carbidization. The adjusted R2 for
the model was 94.75%; the 10-cross validation produced an R2 value of 87.89% (Supple-
mentary Table S3). Supplementary Figure S2 provides the Pareto chart of the standardized
coefficients and residual plots for the constructed regression model of TiC grain size
evolution during TiC carbidization. A cutoff threshold of 1.574 was used to select statis-
tically significant members of the model. Residual distribution was homoscedastic and
normally distributed.

For the particle sizes, the following regression equations (Equations (4)–(6)) were
obtained (Figure 1b):

Carbon black: Particle size (microns) = −11.00 + 0.01200 × T (4)

GISM: Particle size (microns) = −17.00 + 0.01600 × T (5)

GK: Particle size (microns) = −8.40 + 0.00900 × T (6)

where T—temperature, ◦C.
For the total carbon content (Figure 1a), the following regression equations were

obtained (Equations (7)–(9)):

Carbon black: Ctotal (%) = 9.500 + 0.006 × T (7)

GISM: Ctotal (%) = 9.800 + 0.006 × T (8)

GK: Ctotal (%) = 9.400 + 0.006 × T (9)

where T—temperature, ◦C.
Supplementary Table S4 provides the detailed characterization of the constructed

regression model of grain size evolution during TiC carbidization. The adjusted R2 for the
model was 89.61%; the 10-cross validation produced an R2 value of 89.55% (Supplementary
Table S4). Supplementary Figure S3 provides the Pareto chart of the standardized coeffi-
cients and residual plots for the constructed regression model of the total carbon content in
TiC after carbidization. A cutoff threshold of 1.55 was used to select statistically significant
members of the model. Residual distribution was homoscedastic and normally distributed.

Overall, the increase in temperature increased the total carbon content, and decreased
the content of free carbon (although in the case of the GISM carbon precursor, the model
predicted a slight increase in free carbon content above 1550 ◦C, probably indicating
overfitting of the model), and produced larger TiC grains (Figure 1).

The developed model was used for response optimization. From the three output
parameters (total carbon content, free carbon content, TiC grains size), the optimal outcome
was the maximum total carbon content, minimum free carbon content, and minimum
TiC grain sizes. Since the maximum carbon content and minimum TiC grain sizes are
mutually contradictory (an increase in temperature leads to lower free C content, but
results in grain coarsening—Figure 1b,c), they were assigned different importance: 10 for
total C content and free C content, and 2 for TiC grain size. The weight of all targets was
chosen as 1 (Table 1). Three solutions were generated (Table 1) and compared using a
composite desirability metric. The best composite desirability was achieved for solution
1—annealing at 1700 ◦C using carbon black precursor, which was predicted to produce
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TiC with a 9.4 micron size, 0.49% free C, and 19.7% total C content. Confidence intervals,
prediction intervals, and standard error fits are also provided in Table 1.

Table 1. Response optimization for the TiC carbidization process based on the developed regression
model. SE—standard error, CI—confidence interval, PI—prediction interval.

Parameters

Response Goal Lower Target Upper Weight Importance

Particle size,
microns Minimum 3.5 11.0 1 2

free C, % Minimum 0.5 1.2 1 10

C, % Maximum 17 20.0 1 10

Solutions

Solution Temperature,
◦C Carbon Source Particle Size,

microns Fit
free C, %

Fit
C, %
Fit

Composite
Desirability

1 1700.00 Carbon black 9.4 0.49 19.7 0.82

2 1700.00 GK 6.9 0.78 19.6 0.70

3 1644.81 GISM 9.3 0.81 19.7 0.63

Prediction Confidence

Variable Setting Response Fit SE Fit 95% CI 95% PI Measurements

Temperature,
◦C 1700 Particle size,

microns 9.4 0.374 (8.554, 10.246) (8.018, 10.782) 8.9 ± 1.3

Carbon source Carbon black free C, % 0.49 0.052 (0.3643, 0.6186) (0.3059, 0.6769) 0.51 ± 0.17

Variable Setting C, % 19.7 0.146 (19.379, 20.021) (19.059, 20.341) 19.3 ± 1.1

CI—confidence interval, PI—prediction interval, SE—standard error of the regression.

3.2. Homogenization of W + C Mixture before Furnace Annealing

Regression analysis was performed with mixture homogeneity Q (%) output vs. ball
diameter, mm (D), ball mass, g (M), milling time, min (t), and mill rotations per minute (V)
input using 10-fold cross-validation and the stepwise selection of terms (α to enter = 0.15,
α to remove = 0.15). The initial dataset is provided in Supplementary Table S5. The
Pareto plot of parameter significance and residual plots (normal probability plot, vs. fits,
histogram, vs. order) are shown in Supplementary Figure S4. A cutoff threshold of 1.50
was used to select statistically significant members of the model. Residual distribution
was homoscedastic and normally distributed. The model showed very high coefficients of
determination. The adjusted R2 for the model was 98.50%; the 10-cross validation produced
an R2 value of 96.77% (Supplementary Table S6). The following regression equation was
obtained (Equation (10)):

Q = −89.5 + 1.746 × Db + 1.186 × Mb + 0.0553 × tm + 0.0256 × V − 0.02667 × Db
2

− 0.002350 × Mb
2 − 0.00037 × tm

2 + 0.002216 × tm × Vm
(10)

where Q is the coefficient of homogeneity; Db is ball diameter (mm); Mb is ball mass (g); tm
is milling time (min); and Vm is the milling speed (rotations per minute).

The main effects plot for the mixture homogeneity is shown in Figure 2. The mixture
homogeneity increased linearly with the increase in the ball diameter. The ball mass had a
nonlinear effect on the mixture homogeneity—an increase in ball mass from 200 to 250 g
improved the mixture homogeneity, whereas a further increase in the ball mass to 300 g
decreased the mixture homogeneity. The increased milling time resulted in a nearly linear
improvement in the mixture homogeneity. The rotational speed had a less pronounced
nearly linear effect.
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The two-parameter interaction plots were constructed based on the developed regres-
sion model to analyze the interplay between the investigated parameters (Figure 3). For
every plot, two of the parameters were fixed and two were varied along the X and Y axes.
When ball mass and milling time were fixed, the homogeneity increased nearly linearly
with an increase in the milling speed and ball diameter (Figure 3a), and a homogeneity of
92–95% was achieved at a 35-mm ball diameter and 40 rotations per minute (rpm) milling
speed. When the ball diameter and milling speed were fixed (Figure 3b), the dependence of
mixture homogeneity on the ball mass and milling time reached a maximum (>95%) at the
intermediate ball mass value (260 g) and the highest tested milling time (150 min). When
the milling time and milling speed were fixed (Figure 3c), the highest mixture homogeneity
(>98%) was achieved at the smallest investigated ball mass (200 g) and largest investigated
ball diameter (35 mm). When the ball diameter and ball mass were fixed (Figure 3d), the
highest mixture homogeneity (>98%) was achieved at the highest investigated milling
speed and duration. With the ball mass and milling speed fixed (Figure 3e), the highest
homogeneity (>95%) was achieved at an intermediate milling time (~120 min) and the
highest ball diameter (35 mm). With the ball diameter and milling time fixed, the highest
homogeneity was achieved at the intermediate ball mass (230–250 g) and highest milling
speed (37.5–40 rpm).
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Since both main effects (Figure 2) and two-parameter interactions (Figure 3) had some
strong nonlinearity, the regression model is particularly useful for finding the globally
optimal solution (100% mixture homogeneity). Two solutions were generated (Table 2)
and compared using a composite desirability metric. A desirability of 1 was achieved
for both solutions, indicating that a 100% mixture homogeneity could be attained using
two different mixing conditions: (1) 25 mm balls, 250 g ball mass, 117 min milling time,
40 rotations per minute, and (2) 35 mm balls, 217 g ball mass, 150 min milling time, and
40 rotations per minute. The confidence intervals, prediction intervals, and standard error
fits are also provided in Table 2. The first developed mixing condition combination (25 mm
balls, 250 g ball mass, 117 min milling time, 40 rotations per minute) was used to prepare
the mixtures for the subsequent carbidization.

Table 2. Response optimization for the W + C mixture homogenization based on the developed
regression model. SE—standard error, CI—confidence interval, PI—prediction interval.

Parameters

Response Goal Lower Target Upper Weight Importance

Mixture homogeneity,
% Target 78 100 110 1 1

Solutions

Solution
Ball

diameter,
mm

Ball mass, g Milling time,
min

Mill
rotations per

minute

Mixture
homogene-

ity, %
Fit

Composite
Desirability

1 25 250 117 40 100 1.00

2 35 217 150 40 100 1.00

Prediction confidence

Variable Setting Response Fit SE Fit 95% CI 95% PI Measurements

Ball diameter, mm 25

Mixture
homogeneity,

%
100 0.629

(98.684,
101.316)

(98.073,
101.927) 99.1 ± 0.6

Ball mass, g 250

Milling time, min 117

Mill rotations per
minute 40

CI—confidence interval, PI—prediction interval, SE—standard error of the regression.

3.3. Carbidization of Homogenized W + C Mixture in the Furnace

Regression analysis was performed with the free carbon content (%) output versus
temperature, ◦C (T), annealing duration, min (ta), the height of powder in the boats, mm
(hp), and boat movement speed, mm/min (Va) input parameters, using 10-fold cross-
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validation and the stepwise selection of terms (α to enter = 0.15, α to remove = 0.15). The
initial dataset is provided in Supplementary Table S7. Pareto plots of parameter significance
and residual plots (normal probability plot, vs. fits, histogram, vs. order) are shown in
Supplementary Figures S4 and S5. A cutoff threshold of 1.485 was used to select statistically
significant members of the model. Residual distribution was homoscedastic and normally
distributed. The adjusted R2 for the model was 92.97%; the 10-cross validation produced
an R2 value of 91.86% (Supplementary Table S8). Since the dataset related to the continuous
annealing mode was collected separately, the dataset and model parameters are provided
in Supplementary Tables S9 and S10.

The following regression equations were obtained (Equations (11) and (12)):

Free carbon, % = 8.26 − 0.00996 × T − 0.001542 × ta + 0.02433 × hp + 0.000003 × T2 (11)

Free carbon, % = 55.64 − 0.08056 × T + 0.1265 × Va + 0.000029 × T2 − 0.000084 × T × Va (12)

where T—temperature, ◦C; ta—annealing duration, min; hp—the height of powder in the
boats, mm; Va—boat movement speed, mm/min.

The main effects plot for the free carbon content in WC after annealing is shown in
Figure 4. The free carbon content decreased nonlinearly with an increase in temperature.
The minor inflection point on the free carbon vs. annealing temperature curve at ~1050 ◦C
was an artifact of the quadratic equation and should be disregarded. The increase in
annealing duration linearly decreased the content of free carbon. Interestingly, the free
carbon content increased linearly with the increase in the height of powder in the boats. This
increase is probably related to the uneven distribution of the temperature field in the furnace.
The boat movement speed did not affect the free carbon content in the 10–20 mm/min
interval, but the increase in boat movement to 25 mm/min caused a rise in the free carbon
content due to insufficient soaking of the annealed mixture in the high-temperature zone of
the furnace.
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The two-parameter interaction plots were constructed based on the developed re-
gression model (Figure 5). At T ≥ 1400 ◦C, the free carbon content was below 0.2% at
all investigated annealing durations (Figure 5a). Similarly, at T ≥ 1300 ◦C, the content of
free carbon was below 0.3% at all investigated boat movement speeds (Figure 5b). This is
unsurprising since the boat movement is analogous to the annealing duration. Interestingly,
the increase in the height of the powder in the boat always led to an increase in the free
carbon content. At 120 min annealing duration, the free carbon content below 0.2% could
be achieved only at the height of the powder in the boats below 16 mm and temperatures
above 1300 ◦C (Figure 5c). For the fixed temperature, the duration of annealing and the
height of powder in the boats required to achieve a certain free carbon content had a linear
relationship (Figure 5d). A free carbon content below 0.3% could be achieved at a height of
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powder below 13 mm and an annealing duration above 130 min. Details for the regression
analysis are provided in Table S10.
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Figure 5. Two-parameter interaction plots for the free carbon content in WC after annealing in a
furnace. Interaction plots represent the combined influence of duration and temperature (a), boat
movement and process temperature (b), the height of powder in boats and temperature (c), the height
of powder in boats, and duration (d).

The developed regression model was used to find the global optimum solutions that
would allow for minimizing the content of free carbon in the carbidized WC. Since the
annealing duration and boat movement speed essentially represent the same parameter,
Equation (11) was used for the optimization. Three solutions were generated (Table 3) and
compared using a composite desirability metric. The desirability of 1 was achieved for all
three solutions, indicating that a free carbon content below 0.1% could be attained using
three different annealing conditions: (1) temperature 1400 ◦C, duration 107 min, the height
of powder in the boats 10 mm; (2) temperature 1400 ◦C, duration 180 min, the height of
powder in the boats 14.65 mm; (3) temperature 1346.5 ◦C, duration 180 min, the height
of powder in the boats 10 mm. Confidence intervals, prediction intervals, and standard
error fits are also provided in Table 3. The first developed mixing condition combination
(temperature 1400 ◦C, duration 107 min, height of powder in the boats 10 mm) was used
for further experiments on ball milling of the carbidized WC.
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Table 3. Response optimization for WC carbidization based on the developed regression model.
SE—standard error, CI—confidence interval, PI—prediction interval.

Parameters

Response Goal Lower Target Upper Weight Importance

Free carbon, % Target 0 0.001 1.6 1 1

Solutions

Solution Temperature,
◦C

Duration,
min

Height of
powder in
boats, mm

Free
carbon, %

Fit

Composite
Desirabil-

ity
Solution

1 1400.00 107 10 0.001 1.00 1

2 1400.00 180 14.65 0.001 1.00 2

3 1346.5 180 10 0.001 1.00 3

Prediction confidence

Variable Setting Response Fit SE Fit 95% CI 95% PI Measurements

Temperature, ◦C 1400

Free carbon,
%

0.001 0.0552
(−0.1128,

0.1148)
(−0.2880,

0.2900) 0.15 ± 0.08
Duration, min 107

Height of
powder in boats,

mm
10

CI—confidence interval, PI—prediction interval, SE—standard error of the regression.

3.4. Ball Milling of Carbidized WC

Regression analysis was performed with the WC grain size (microns) output versus
the ball-to-powder ratio, milling duration (min), and milling speed (rotations per minute—
rpm) using 10-fold cross-validation and stepwise selection of terms (α to enter = 0.15, α to
remove = 0.15). The initial dataset is provided in Supplementary Table S11. Pareto plots of
parameter significance and residual plots (normal probability plot vs. fits, histogram vs.
order) are shown in Supplementary Figure S6. A cutoff threshold of 1.485 was used to select
statistically significant members of the model. Residual distribution was homoscedastic
and normally distributed. The following regression equation was obtained (Equation (13)):

DWC = 74.64 − 14.82 × R − 0.0831 × tm − 2.133 × Vm + 2.36 × R2 +

0.000196 × tm
2+ 0.02548 × Vm

2
(13)

where DWC—WC grains size (microns), R—balls to WC ratio, tm—milling duration (min),
Vm—milling speed (rpm).

The adjusted R2 for the model was 97.47%; the 10-cross validation produced an R2

value of 96.87% (Supplementary Table S12). The main effects plot for the WC grain size
after ball milling is shown in Figure 6. The two-parameter interaction plots are provided in
Figure 7. The WC grain size decreased nonlinearly with the increase in the ball-to-powder
ratio, milling duration, and milling speed.
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Figure 7. Two-parameter interaction plots for the WC grain sizes after ball milling. Interaction plots
represent the combined influence of milling duration and ball-to-WC ratio (a), milling speed and
milling duration (b), and milling speed and ball-to-WC ratio (c).

The developed regression model was used to find the global optimum solutions that
would allow for minimizing the grain size of the carbidized WC after ball milling. Three
solutions were generated (Table 4) and compared using a composite desirability metric.



Metals 2022, 12, 2144 14 of 20

The desirability of 1 was achieved for two out of three solutions, indicating that a grain
size of 1.8 microns could be attained using the following conditions: Ball to WC ratio of 2,
milling duration 150 min, milling speed 40 rpm. Confidence intervals, prediction intervals,
and standard error fits are also provided in Table 4.

Table 4. Response optimization for WC ball milling after carbidization. SE—standard error, CI—
confidence interval, PI—prediction interval.

Parameters

Response Goal Lower Target Upper Weight Importance

WC grain size Minimum 3 22 1 1

Solutions

Solution Ball to
WC ratio

Milling
duration,

min

Milling speed,
rpm

WC grains
size
Fit

Composite
Desirability Solution

1 2 150 40 1.83 1.00 1

2 1.8 150 40 3 1.00 2

3 1.75 150 40 3.35 0.98 3

Prediction confidence

Variable Setting Response Fit SE Fit 95% CI 95% PI Measurements

Ball to WC ratio 2

WC grains size 1.83 0.421 (0.967, 2.702) (−0.104,
3.774) 1.9 ± 0.4Milling duration, min 150

Milling speed, rpm 40

CI—confidence interval, PI—prediction interval, SE—standard error of the regression.

Figure 8 provides the SEM micrographs of WC after carbidization (1400 ◦C, 107 min,
the height of powder in boats 10 mm; Figure 8a,b) and after subsequent ball milling (ball to
WC ratio = 2, milling duration 150 min, milling speed 40 rpm; Figure 8b,c) according to the
optimized conditions. The average grain size of the produced WC was below 2 microns,
corresponding to the prediction of the model (Figure 8d). The free carbon content in the
milled WC was below 0.1%.
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3.5. Mechanochemical Synthesis of WC from an Elemental Mixture

Additionally, the mechanochemical synthesis of complex (W,Ti)C carbide in the high-
energy planetary centrifugal mill Activator 4 M was studied. A total of 86.3 g of tungsten
powder, 8.4 g of titanium powder, and 3.2 g of carbon black were used to start the car-
bidization process. Since some carbon black collects on the walls of the drum during the
mechanochemical production process, more soot was used. In an argon environment at
p = 3 to 5 atm, over the course of 5 to 60 min, mechanochemical synthesis was performed
using an Activator 4 M planetary ball mill with a planetary disk rotation speed of 800 rpm
and drum rotation speed of 1200 rpm. When tungsten powder and carbon black were
subjected to mechanochemical treatment for 5–15 min, the existence of unreacted carbon
black and tungsten with lattice parameters (a = 3.155 Å) was discovered, according to the
XRD data. A quantitative study of a mechanically activated equimolar combination of
tungsten powder and carbon black revealed some “losses” of the latter, which may have
been brought on by soot buildup on the walls of the planetary ball mill.

The complete transformation of the initial powders of tungsten and carbon black
occurred when the mixtures were processed for 30 min. When processing for more than
30 min, rubbing of iron on the resulting powder was observed. Table 5 shows the chemical
and phase composition of the tungsten carbide powder obtained by the mechanochemical
synthesis method.

Table 5. Chemical and phase composition of the mechanochemically synthesized WC.

Mechanochemical
Synthesis Duration, min

Content, w.% Phase Composition

C Total C Free Fe (W,Ti)C W2C

15 4.76 0.9 - 66.2 33.4

30 5.55 0.17 - 77.8 21.9

45 5.6 0.16 1.1 77.5 22.1

60 5.61 0.14 3.6 78.2 21.3

The results in Table 5 and Figure 9 demonstrate that the produced complex carbide
did not match the specifications because it contained a sizable quantity of free carbon and
iron. It has been demonstrated that (W,Ti)C powder can be produced using mechanochem-
ical synthesis, however, further research needs to be conducted to determine the best
mechanochemical synthesis conditions for producing tungsten carbide with a low content
of iron and free carbon.

To ascertain the mechanism of formation of the (W,Ti)C solid solution during the
mechanochemical synthesis, interface reaction diagrams (Figure 10a,b) were constructed
based on the ab initio data from the Materials Project database. Since we did not have a
reliable estimation of the temperature within the milling jars during the mechanochemical
synthesis, the formation energy values were approximated at 100 ◦C using the approach
developed by Bartel et al. [59]. At this temperature, the W–Ti–C diagram contains four
stable binary phases (WTi, WC, TiC, Ti2C, Ti8C5) and one ternary phase Ti4WC5, along
with five more metastable phases: W9C4, W2C, Ti3C2, TiWC2, Ti4WC5. Among these
phases, TiC had the highest formation energy (−0.794 eV/atom), while WTi had the lowest
(−0.04 eV/atom). Due to its low formation energy, it is unlikely that the WTi intermetallic
plays a prominent role in the investigated mechanochemical process. Therefore, one can
reasonably expect that the mechanochemical synthesis process begins with the reaction of
Ti and W, with carbon leading to the formation of the respective most thermodynamically
stable binary carbides (Figure 10b,c), followed by the diffusion between the TiC and WC
grains, which produces the final (W,Ti)C solid solution. The binary carbides TiC and WC
presumably formed not in a single step, but through a series of intermediate stable or
metastable carbides, following the general sequences W–W2C or W9C4–WC (Figure 10a)
and Ti–Ti2C–Ti8C5–TiC (Figure 10b). This proposed reaction sequence corresponds to the
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previously reported mechanochemical synthesis of WC [51]. Likewise, the interaction
between WC and TiC can produce intermediate ternary phase Ti4WC5 due to its relatively
high formation energy (−0.662 eV/atom), until the formation of the single-phase solid
solution (W,Ti)C is accomplished.
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3.6. Limitations and Further Scope for Improvement

The regression models developed in this work have some limitations, which should be
addressed in the future. Although rare, instances of incorrect interpolation of data by the
regression models do occur—as evident from some surprising local inflections in some of
the main effect plots (left panels of Figures 4 and 6). One example is the curve corresponding
to the effect of the ball-to-WC weight ratio during the ball milling of sintered WC on the
WC grain size (Figure 6, left panel). This curve contains a minor inflection point around the
ball-to-WC ratio of ~1.9, which has no physical meaning beneath it and is an artifact of the
constructed regression equation. This problem can be mitigated by increasing the density
of the dataset, thus reducing the interpolation errors. This approach is straightforward and
fail-proof but inflates the number of necessary experiments. Another possible approach to
remove the incorrect interpolations is to increase the number of members in the polynomial
regression equation by introducing higher-degree parameter interactions. However, when a
relatively low-density dataset is employed, introducing high-degree parameter interactions
risks overfitting the model and decreasing its predictive power.

4. Conclusions

This work undertook a systematic parametric study on the three main stages of WC
and TiC powder manufacturing—preparation of the green mixture, carbidization by furnace
annealing, and ball milling of the annealed products. The influence of multiple parameters
was investigated—carbon precursor, mass and diameter of milling bodies (balls), milling
time and speed, temperature and duration of annealing, the height of powder in the furnace
boats, and speed of movement of the furnace boats. Regression models for every stage
of the process were verified by 10-fold validation and used to optimize the synthesis
sequence, resulting in high-quality WC and TiC with a grain size below 2 microns and a
content of free carbon below 0.1%. Additionally, solid solution (W,Ti)C was produced by
mechanochemical synthesis from the elemental mixtures; however, the observed relatively
high content of residual free carbon (0.2–0.8%) and contamination by Fe require further
optimization of this process.

Supplementary Materials: The supplementary materials containing the initial datasets details of the
statistical calculations can be downloaded at: https://www.mdpi.com/article/10.3390/met1212214
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