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Abstract: Ti–6Al–4V alloys undergo a multiple phase transformation sequence during electron beam
powder bed fusion (EB-PBF) additive manufacturing, forming unique dislocation substructures. Thus,
determining the dislocation density is crucial for comprehensively understanding the strengthening
mechanisms and deformation behavior. This study performed time-of-flight neutron diffraction (TOF-
ND) measurements of Ti–6Al–4V alloys prepared via EB-PBF and examined the dislocation density in
the as-built and post-processed states using convolutional multiple whole profile (CMWP) fitting. The
present TOF-ND/CMWP approach successfully determined the bulk-averaged dislocation density
(6.8 × 1013 m−2) in the as-built state for the α-matrix, suggesting a non-negligible contribution of
dislocation hardening. The obtained dislocation density values were comparable to those obtained
by conventional and synchrotron X-ray diffraction (XRD) measurements, confirming the reliability of
the analysis, and indicating that the dislocations in the α-matrix were homogeneously distributed
throughout the as-built specimen. However, the negative and positive neutron scattering lengths of Ti
and Al, respectively, lowered the diffraction intensity for the Ti−6Al−4V alloys, thereby decreasing
the lower limit of the measurable dislocation density and making the analysis difficult.

Keywords: additive manufacturing; electron beam powder bed fusion (EB-PBF); Ti−6Al−4V alloy;
duplex microstructures; hot isostatic pressing (HIP); time-of-flight neutron diffraction (TOF-ND);
convolutional multiple whole profile (CMWP); dislocation density

1. Introduction

Additive manufacturing (AM) technologies, which produce three-dimensional (3D)
objects in a layer-by-layer manner, offer distinct advantages including part/production
flexibility, efficient material and energy usage, and reduced lead times [1–3]. The major
target areas include the aerospace, medical, dental, energy, and transportation industries.
Although a variety of metal AM processes have been proposed [1,4], the electron beam
powder bed fusion (EB-PBF) process [5,6] offers particular benefits, such as negligible
residual stress and distortion of built parts. Moreover, a wide range of process parameters,
such as the power and scanning speed of the electron beam, and a unique preheating
procedure [7,8], are beneficial for minimizing building defects. Therefore, EB-PBF has been
applied to a variety of metals and alloys, such as titanium [9–16], biomedical Co–Cr–Mo al-
loys [17–19], Ni-based superalloys [20–25], steels [26–29], copper [30,31], and high-entropy
alloys [32–36].
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In the EB-PBF process, a high-energy electron beam scans a metal powder bed, creat-
ing a highly localized melt pool that enables rapid heating and cooling [4,5]. Accordingly,
during PBF fabrication, Ti–6Al–4V alloy, a titanium alloy typically used for various ap-
plications in the aerospace and biomedical industries [37–40], experiences a martensitic
transformation from the body-centered cubic (bcc) β-phase to hexagonal close-packed (hcp)
α’-martensite [11,13,41,42], which is generally unachievable in conventional manufacturing.
The fully α’-martensitic microstructure that is obtained in laser beam PBF (LB-PBF) gener-
ally exhibits high strength while sacrificing its ductility [13,41]. Furthermore, in the EB-PBF
process, α’-martensite is held for several hours at an elevated temperature that is similar to
the preheating temperature, leading to an equilibrium α + βmicrostructure [11]. Thus, the
decomposition behavior of α’-martensite is crucial for understanding the microstructural
evolution and ultimately optimizing its mechanical properties.

The yield strength of the EB-PBF Ti–6Al–4V alloys with acicular α + βmicrostructures
has been generally modeled using the α-lath width, based on the traditional Hall–Petch
relationship [12,14]. However, multiple strengthening mechanisms are operative in metals
and alloys. Among the various factors involved in the strengthening of metallic materials, it
is generally challenging to determine the dislocation density quantitatively. The evolution
of dislocation substructures has been reported in various AM materials, particularly in LB-
PBF [43–45]. In a previous study by the current authors, synchrotron X-ray diffraction (XRD)
line-profile analysis was performed to examine the dislocation densities of EB- and LB-PBF-
processed Ti–6Al–4V alloys [46]. As expected, a high dislocation density (4.3× 1015 m−2)
was obtained for a fully martensitic LB-PBF Ti–6Al–4V alloy, significantly contributing
to the high strength that is generally observed in LB-PBF Ti–6Al–4V alloys. Although a
part of dislocations in the initially formed α’-martensite was diminished during the high-
temperature EB-PBF process, the dislocation density (6.1 × 1013 m−2) of the α-matrix of the
as-built EB-PBF specimen and its contribution (105–169 MPa) to the overall strengthening
mechanisms were not negligible. Notably, high-energy synchrotron radiation enabled the
simultaneous determination of the dislocation density for the α-matrix and nanosized
β-phase, and an enhanced dislocation accumulation in the β-phase was discovered. These
results highlight the significance of multiple phase transformations during in-process
high-temperature exposures.

Conversely, compared with the other characterization techniques, neutron diffraction
(ND) obtains bulk-averaged microstructural characteristics from a relatively large volume
(∼10 cm3) and helps establish a correlation with the macroscopic mechanical properties and
plastic deformation behavior. The ND technique was initially employed in the field of metal
AM to evaluate residual stress [47–49]. A pioneering study by Wu et al. [47] systematically
examined the laser scanning strategy (e.g., pattern, power, and speed) on the residual stress
of LB-PBF 316L stainless steels and indicated directions toward mitigating residual stress.
Wang et al. [48] emphasized that a location-dependent variation in composition, which orig-
inates from elemental volatilization during the AM process, could alter the reference lattice
spacing, generating experimental errors. Further, the application of ND to microstruc-
tural/mechanical behavior has been attracting attention [50–52]. Ghorbanpour et al. [52]
studied the stress−strain response of additively manufactured Inconel 718 at room and ele-
vated temperatures. The ND-based texture analysis was used to calibrate and validate the
developed elasto-plastic crystal plasticity model. Recently, by combining time-of-flight ND
(TOF-ND) measurements and Rietveld texture analysis (RTA) [53], the β-phase fraction in
an EB-PBF Ti−6Al−4V alloy was precisely determined [54]. Furthermore, a hierarchal tex-
ture evolution between the prior β-phase, acicular α-matrix, and β-phase at the α-interfaces
was observed. However, the application of ND microstructural analyses for additively
manufactured Ti−6Al−4V alloys is limited [55–59], indicating the need to examine the
potential feasibility of ND-based line-profile analysis.

In this study, TOF-ND measurements were performed on Ti−6Al−4V alloy specimens
prepared via EB-PBF at J-PARC, Japan, and the dislocation density using line-profile
analysis was evaluated. The results were compared with those obtained using conventional
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and synchrotron XRD measurements. A direct comparison of dislocation analysis based on
different techniques, such as XRD and ND, has rarely been reported; therefore, this study
can be highly beneficial for the material characterization community.

2. Materials and Methods
2.1. Sample Preparation

Ti−6Al−4V alloy samples that were employed in this study are similar to those
used in previous studies [46,54,60]. Cylindrical specimens with a diameter of ϕ18 mm
and height of 160 mm, where the longitudinal directions of the specimens were parallel
to the building directions (BDs), were prepared using an Arcam A2X system with the
standard raw powder and build parameters (Table 1) provided by the manufacturer. The
specimens were almost fully dense, with a representative relative density of 99.3%, as
determined using Archimedes’ principle. Table 2 lists the chemical composition of the
as-built specimens.

Table 1. Building parameters used for sample preparation.

Parameter Value

Powder size (µm) 45–100
Power (W) 240–1260

Scan speed (mm s−1) ~500
Layer thickness (µm) 50

Line offset (mm) 0.1
Focus offset (mA) 3

Dwell time (s) 20
Preheating temperature (◦C) 730

Table 2. Chemical composition of the as-built specimen used in this study (mass%).

Ti Al V Fe O N H

As-built Bal. 6.17 4.01 0.20 0.11 0.014 0.003
ASTM Grade 5 Bal. 5.50−6.75 3.50−4.50 ≤0.30 ≤0.20 ≤0.05 ≤0.015

To examine the effect of post-processing, hot isostatic processing (HIP) was performed
on the as-built specimens at 920 ◦C for 2 h under an argon gas pressure of 100 MPa.
Additionally, conventional heat treatment (HT) at 920 ◦C for 2 h was conducted in a muffle
furnace without applying atmospheric pressure. Hereafter, these specimens are referred to
as HIP and HT specimens. Both specimens were furnace-cooled in each piece of equipment
after the HT. The mechanical properties of the investigated specimens were summarized in
a previous study [60].

2.2. Electron Microscopy

Scanning electron microscopy (SEM) observations of the prepared specimens were
performed using a JSM-IT800 instrument (JEOL, Tokyo, Japan) operating at 15 kV. Cross-
sections parallel to the BD were prepared by grinding with emery papers and finished
with a mixture of colloidal silica suspension (OP-S, Struers, Tokyo, Japan), H2O2 solution,
and distilled water. Scanning transmission electron microscopy (STEM) observations and
energy-dispersive X-ray spectroscopy (EDS) mapping were performed on a dual spherical
aberration-corrected TITAN3 G2 60–300 S/TEM (FEI, Hillsboro, OR, USA) operating at
300 kV. A focused ion beam (FIB) process (Versa 3D Dual Beam, FEI, Hillsboro, OR, USA)
was employed for sample preparation for the STEM-EDS analysis.

2.3. Neutron Diffraction Measurements

TOF-ND measurements of the specimens were conducted at 500 kW using an iMATE-
RIA (BL20), J-PARC, Japan [61]. Samples with ϕ9.8 mm in diameter and a height of 30 mm
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were cut from the specimens. Each sample was fixed to a goniometer using a vanadium
tube (ϕ10 mm inner diameter), which was insensitive to neutron beams, during the TOF-
ND measurements. The acquiring time was ~30 min for each measurement. The iMATERIA
beamline consists of three types of detector banks: backscattering (BS), special environment
(SE), and low angle (LA), covering a wide range of scattering vectors. The ND datasets
used in this study were obtained simultaneously with those used in the previous study [54].

2.4. Line-Profile Analysis

The dislocation density was determined by the convolutional multiple whole profile
(CMWP) method [62,63] using the diffractogram obtained from the entire BS bank of the
iMATERIA. The measured profiles were fitted using convolution profile I as follows:

I = Is ⊗ Im ⊗ Ii (1)

where Is, Im, and Ii are functions of the crystallite size, microstrain, and instrumental
broadening, respectively. Ii was determined from standard LaB6 powder (SRM-660b, NIST).
Im is given as [64,65]:

Im= exp
(

–2π2g2L2〈ε2
g,L〉

)
(2)

where g is the absolute value of the diffraction vector, and L is the Fourier variable. The
dislocation density (ρ) was deduced from the mean square strain (〈ε2

g,L〉), as follows [64]:

〈ε2
g,L〉 =

(
ρCb2/4π

)
f (L/Re) (3)

where C, b, f, and Re are the average contrast factors of the dislocations, absolute value of
the Burgers vector, Wilkens function, and effective outer cutoff radius of the dislocations,
respectively [64–66]. The function f (L/Re) was determined for the distribution of disloca-
tions over the entire L range, from zero to infinity [64]. Diffractograms for CMWP analysis
require a high angle resolution; thus, datasets from the BS bank were employed.

3. Results
3.1. Microstructures

Figure 1 shows SEM backscatter electron (BSE) images of the specimens prepared in
this study. The as-built specimen (Figure 1a,b) had a fine acicular α + β microstructure,
where the α-lath width was determined to be 1.7 ± 0.2 µm [60]. The nanosized β-phase,
which was enriched with vanadium, exhibits a higher contrast at the α-lath interfaces. The
post-processed specimens exhibited coarser acicular microstructures while maintaining
α + β microstructures. A previous study [54] revealed that the volume fractions of the
β-phase in the as-built, HIP, and HT specimens were 4.9, 7.4, and 9.0 vol.%, respectively, as
determined via TOF-ND/RTA.

Figure 2a shows a bright-field (BF)-TEM image of the as-built specimen. α-Laths with
interfacial nanosized β-phase precipitates are observed. In the high-angle annular dark-
field (HAADF)-STEM image in Figure 2b, the higher contrast in the HAADF-STEM image
demonstrates the nanoscale β-phase precipitation that occurred at the α-lath interfaces.
The corresponding STEM-EDS mappings in Figure 2c–e represent the V-rich β-phase,
whereas Ti and Al, as α-stabilizing elements, are preferentially distributed in the α-matrix.
Figure 2f shows a high-magnification annular bright-field (ABF)-STEM image representing
the vicinity of the β-phase precipitate. Dislocations are observed in both the α-matrix and
the β-phase. Notably, a significant strain contrast is observed in the α-matrix surrounding
the β-phase precipitates, suggesting that dislocations are introduced via precipitation of
the β-phase. However, it is difficult to quantify the dislocation density using STEM images.
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Figure 2. (a) BF-TEM image, (b) HAADF-STEM image, and corresponding STEM-EDS maps of (c) Ti,
(d) Al, and (e) V for the as-built specimen. (f) Magnified ABF-STEM image showing the vicinity of
the β-phase precipitate.

3.2. Neutron Diffraction Patterns

Figure 3 shows the TOF-ND patterns for the as-built, HIP, and HT specimens obtained
from the BS bank of the iMATERIA. Multiple reflections are successfully detected for
each constituent phase; thus, the simultaneous determination of the dislocation density is
possible for both the α- and β-phases. Neither post-processing method changes the phase
constituents (i.e., α- and β-phases), although the β-phase fraction increases [54].
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iMATERIA beamline at J-PARC.

3.3. Dislocation Density

Figure 4 shows the result of the CMWP fitting for the diffractogram of the as-built
specimen. Both α- and β-phases are successfully fitted using the CMWP method. In
contrast, because of the lower peak broadening caused by the decreased dislocation density,
it was not possible to evaluate the dislocation densities of both post-processed specimens
by TOF-ND-based CMWP analysis.
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The results obtained from the CMWP fitting are listed in Table 3. For comparison, the
results obtained for the identical as-built specimens using conventional and synchrotron
XRD measurements [46] are also presented. The obtained dislocation density for the α-
matrix of the as-built specimen is 6.8 × 1013 m−2, which is consistent with those obtained
using the conventional and synchrotron XRD results for the same as-built specimen. No-
tably, the dislocation density of the nanosized β-phase could not be determined, although
multiple β-peaks that are suitable for the CMWP analysis are detected. Furthermore, the
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CMWP method can determine the crystallite size, which can be correlated with the size
of the dislocation arrays, subgrains, and cell structures [62], and the dislocation arrange-
ment parameter, which indicates the interactions between dislocations [64]. However, the
relatively low dislocation density in the order of 1013 m−2 increases the crystallite size to
several micrometers, resulting in negligible size effects. Therefore, these two parameters
are not shown.

Table 3. Dislocation density of the as-built Ti−6Al−4V specimen, as determined via TOF-ND mea-
surements and CMWP method. For comparison, those obtained from conventional and synchrotron
XRD measurements [46] are also listed.

Diffraction Source Phase Dislocation Density (m−2)

Neutron (this study) α (6.8 ± 0.7) × 1013

β −

Synchrotron radiation [46] α (6.1 ± 0.2) × 1013

β (7.7 ± 2.0) × 1014

Conventional X-ray [46] α (7.5 ± 0.5) × 1013

β −

4. Discussion

The dislocation densities of the as-built specimens determined from the TOF-ND data
are consistent with those obtained using conventional X-ray and synchrotron radiation
(Table 3). Thus, the current technique enables the reliable quantification of the as-built
dislocation structure. Notably, the current ND measurements captured considerably larger
sample volumes (ϕ9.8 mm × 30 mm) than those in the previous synchrotron XRD study
(a spot size of ~500 × 200µm2 and a sample thickness of ~1 mm) [46]. Thus, the similar
dislocation density values obtained in both techniques imply that dislocations were ho-
mogeneously distributed throughout the as-built specimen. The dislocation density of the
α-matrix (6.8 × 1013 m−2) is not significantly high but cannot be considered negligible
when modeling the strengthening mechanisms [46]. The dislocation substructure in the
α-matrix of the as-built specimen can be caused by the residual dislocations introduced
via the β→ α′ martensitic transformation. Moreover, Figure 2f suggests that the volume
expansion for the α′-to-β phase transformation could be an additional dislocation source
in the α-matrix, as visible strain contrasts are identified near the nanosized β-phase precip-
itates. Therefore, dislocation hardening evidently occurs in the as-built EB-PBF specimen.
By contrast, the dislocation density after heat treatment (i.e., HIP and HT samples) was
below the lower detection limit of the present TOF-ND line-profile analysis, even though a
conventionally prepared Ti–6Al–4V alloy specimen after annealing at ~700 ◦C contained
numerous dislocations [46]. Because AM Ti–6Al–4V alloys are often subjected to HIP, this
is also important in terms of strength.

The overall strengthening of duplex α + β titanium alloys is described as follows [67]:

∆σ = ∆σα (1 - fβ) + ∆σβ fβ (4)

where ∆σα and ∆σβ are the α- and β-phase strengths, respectively, and fβ is the volume
fraction of the β-phase. The strengthening mechanisms that should be considered in-
clude dislocation hardening for each phase, as described by the Bailey–Hirsch (or Taylor)
relationship [66]:

∆σD = αMTGbρ1/2 (5)

where ∆σD represents the increment in the yield strength owing to dislocation strengthen-
ing, and α, MT, G, and b are the dislocation interaction term, Taylor factor, shear modulus,
and magnitude of the Burgers vector, respectively. The crystallographic orientation dis-
tribution also affects the Taylor factor in the modeling of the strengthening mechanisms.
In a previous study [54], the phase fraction and crystallographic textures were precisely
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determined using Rietveld texture analysis [53] of TOF-ND data. Thus, the TOF-ND mea-
surements at the iMATERIA, which can simultaneously evaluate the dislocation density,
phase fraction, and texture, can potentially facilitate the comprehensive understanding
of the strengthening mechanisms of EB-PBF Ti−6Al−4V alloys. Notably, compared with
synchrotron XRD, the high penetration ability of the neutron source is beneficial for bulk-
averaged dislocation density determination, which is essential for establishing the relation-
ship between the microstructure and mechanical properties. However, determining the
dislocation density of the interfacial nanosized β-phase in the EB-PBF Ti−6Al−4V alloys
is challenging. The electron backscattering diffraction (EBSD) technique has previously
been employed to measure the distributions of geometrically necessary dislocations [68].
However, a certain step size (generally larger than ~30 nm) in the EBSD measurements is
not always sufficient to analyze the β-phase precipitates obtained in EB-PBF. Moreover,
conventional XRD measurements cannot detect multiple β-peaks that are suitable for the
CMWP analysis. Notably, in a previous study by the current authors [46], synchrotron XRD
line-profile analysis successfully determined the dislocation density in the as-built state for
the α-matrix and interfacial nanosized β-phase simultaneously. Furthermore, enhanced
dislocation substructures in the nanosized β-phase due to plastic accommodation were
observed. However, unlike the synchrotron XRD results [46], the dislocation density of
fine β-phase precipitates in the acicular duplex microstructure could not be determined by
the current ND measurements at J-PARC. For Ti−6Al−4V alloys, the neutron scattering
length values for Ti and Al are negative and positive, respectively, resulting in a lower
ND intensity. Thus, compared with the synchrotron XRD results [46], the accuracy of
the line-profile analysis of the Ti−6Al−4V alloys is potentially low, depending on the
measurement conditions. Thus, the optimization of the measurement conditions is critical.
Notably, increasing the beam power (up to 1 MW at J-PARC) is crucial for analyzing the
dislocation density of the β-phase.

5. Conclusions

In this study, TOF-ND measurements of as-built and post-processed EB-PBF Ti–6Al–4V
alloy specimens were performed to evaluate the dislocation density quantitatively using the
CMWP method. The obtained dislocation densities were compared with those determined
using conventional and synchrotron XRD measurements for the same specimen. The
findings of this study are summarized as follows:

(1) The as-built specimen exhibited a fine acicular α + β microstructure, attributable
to the β→ α′ martensitic transformation and subsequent decomposition of the α′

martensite during the EB-PBF process.
(2) The TOF-ND/CMWP approach that was utilized successfully determined the bulk-

averaged dislocation density for the α-matrix, revealing a non-negligible contribution
of dislocation hardening in the as-built specimen.

(3) The obtained dislocation density values were comparable to those obtained using
conventional and synchrotron XRD measurements, suggesting that CMWP fitting for
the same ND data provided a reliable dislocation density.

(4) The insignificant difference in dislocation density between XRD and ND suggested
that the dislocations that evolved during EB-PBF were homogeneously distributed
throughout the as-built specimen.

(5) The negative and positive neutron scattering lengths of Ti and Al, respectively, low-
ered the diffraction intensity of the Ti−6Al−4V alloys, potentially reducing the ac-
curacy of the analysis. The limitation of ND, as opposed to synchrotron XRD, is the
difficulty in dislocation analysis of nanoscale β-phase precipitates.
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