
Citation: Luesak, P.; Pitakaso, R.;

Sethanan, K.; Golinska-Dawson, P.;

Srichok, T.; Chokanat, P.

Multi-Objective Modified Differential

Evolution Methods for the Optimal

Parameters of Aluminum Friction

Stir Welding Processes of AA6061-T6

and AA5083-H112. Metals 2023, 13,

252. https://doi.org/10.3390/

met13020252

Academic Editor: Alfonso Paoletti

Received: 3 January 2023

Revised: 19 January 2023

Accepted: 26 January 2023

Published: 28 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Article

Multi-Objective Modified Differential Evolution Methods for
the Optimal Parameters of Aluminum Friction Stir Welding
Processes of AA6061-T6 and AA5083-H112
Peerawat Luesak 1, Rapeepan Pitakaso 1 , Kanchana Sethanan 2 , Paulina Golinska-Dawson 3,
Thanatkij Srichok 1,* and Peerawat Chokanat 4

1 Department of Industrial Engineering Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
2 Research Unit on System Modelling for Industry, Department of Industrial Engineering,

Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
3 Institute of Logistics, Poznan University of Technology, 60-965 Poznan, Poland
4 Artificial Intelligence Optimization SMART Laboratory, Department of Industrial Engineering,

Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
* Correspondence: thanatkij.s@ubu.ac.th

Abstract: This study introduces a modified differential evolution approach (MoDE) for evaluating
the optimal objective and parameter values of the friction stir welding (FSW) process of dissimilar
materials: AA5083 and AA6061. The aim of this study is to investigate the ultimate (UTS), maximum
hardness (MH), and minimum heat input (HI) of the weld zone. The controlled welding parameters
were shoulder diameter, rotation speed, welding speed, tilt angle, pin type, reinforcement particle
type, and tool pin movement direction. The D-optimal experimental design method was used to
create the experiment and obtain the mathematical model for optimizing the targeted objectives. The
optimal rotational speed, welding speed, shoulder diameter, tilt angle, pin-type, additive type, and
tool pin movement are 1162.81 rpm, 52.73 mm/min, 21.17 mm, 2.37 degrees, straight cylindrical,
silicon carbide, and straight movement direction, respectively. The optimal values for UTS, MH, and
HI are 264.68 MPa, 105.56 HV, and 415.26 ◦C, respectively. The MoDE outcome exceeded particle
swarm optimization (PSO), the original differential evolution algorithm (DE), and the D-optimal
design (experiment) results. The MoDE provides better UTS, MH, and HI than other approaches by
an average of 8.04%, 4.44%, and 2.44%, respectively. In particular, when comparing results produced
by using various approaches, we discovered that the MoDE results are 7.45%, 4.45%, and 3.50%
better than PSO, DE, and the experimental results, respectively. All methods were evaluated for
their reliability by comparing the results of actual experiments to those predicted by theory, and
we discovered that the MoDE yielded the smallest percentage difference between the two, at 1.49%,
while PSO and DE yielded differences of 5.19% and 3.71%, respectively.

Keywords: modified differential evolution method; ultimate tensile strength; maximum hardness;
minimum heat input; friction stir welding

1. Introduction

Aluminum alloys are prominent materials used in several industries, such as in
aircraft, railway bodies, electric cars, telecommunications, electric and electronic devices,
etc. Their outstanding properties include their high toughness, high corrosion resistance,
high strength, light weight, and good weldability [1–4]. Various aluminum alloys are used
in the construction of products with both similar [5,6] and dissimilar materials [1]. In
particular, aluminum grades AA5083 and AA6061 are used in the construction of aircraft,
marine vehicles, and railways [7,8], where it is necessary to join dissimilar aluminum
materials. The difficulty in using dissimilar materials in fusion welding stems from their
different properties, which lead to defects and changes to microstructures after welding.
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Therefore, the friction stir welding process (FSW) is used to create important position
joints to aid in reducing problems with changed structures and eliminate flaws in weld
seams [9,10], leading to superior weld quality [11,12] and decreasing the time needed to
join materials when compared with other welding processes [13–16].

The use of different material welding processes influences the weld seam’s desirability,
and an exceptional mechanical property obtained after welding is its high strength [17–21].
The many process parameters of two different types of material create several barriers for
the generation of high-performance weld seams. The use of different materials makes it
difficult to set the relative parameters in FSW and will affect the microstructure, making
it nonhomogeneous and potentially creating micro-cracks due to the different thermal
expansion processes of the material [22] and the heat generation process.

Given the information in Table 1, the most relevant factors for FSW are rotation speed
and welding speed. The objective of all studies is to figure out the optimal value for
these two factors. The shoulder diameters of the weld tool have been the subject of 20
out of 22 studies, but only 54.45% of researchers have been interested in determining its
ideal value in FSW. In this work, the parameters of each category have been investigated.
These parameters include pin type, the direction of tool movement, and reinforcement
particle type. Five researchers were interested in utilizing a straight cylindrical as the pin
tool [2,15,23–25], four researchers used a threaded cylindrical tool [2,18,26,27], and only
two researchers disclosed the effect of using a hexagonal cylindrical tool [23,24]. To the best
of our knowledge, there is no research that compares the use of all three types of tool pins.
Consequently, this is the first research gap identified in Table 1.

Silicon carbide [18–20,27–29] and aluminum oxide [26] are among the previously
studied reinforcing particle types (RPTs). In addition, there is no research comparing the
effectiveness of these two RPT. We will be the first researchers to compare the relative
effectiveness of these two RPTs in this study. Lastly, we discovered from past research
that the straight movement of the tool has been researched; however, no additional tool
movements have been studied, at least not for joining the target material. The efficiency of
these two types of tool movement, zigzag and circular movement, as described by [30,31],
has not yet been studied. This is the first study in the field of FSW to evaluate and compare
the effectiveness of different forms of tool movement. At this point, the gap in research that
we found is related with the parameters and the target response of the FSW used to join
AA5083 and AA6061, and they are outlined as follows:

(1) No research exists that can propose the optimal values for all factors and responses
involved. (1) Shoulder diameter (SD), rotation speed (RtS), welding peed (WS), tilt
angle (TA), tool pin movement direction (TPMD), reinforcement particles type (RPT),
and pin type are the relevant parameters (PT). (2) Ultimate tensile strength (UTS),
maximum hardness (MH), and heat input are the desired responses (HI).

(2) No research has uncovered the distinction between different tool pin movement
directions (TPMDs). Movements such as straight, zigzag, and circle are among the
TPMDs suggested by the relevant literature.

(3) No research has compared the use of silicon carbide and aluminum oxide as the
FSW’s additive.

The information in Table 2 is utilized to reveal the approach used to determine the
optimal parameters and responses of the FSW. The methodologies utilized in the rele-
vant literature can be split into two distinct categories. The first category involves sta-
tistical approaches, such as RSM, Taguchi, and ANOVA, which have been utilized most
frequently to determine the best parameters [32–41]. The second group that has lately
been utilized to optimize the responsiveness and value of parameters is known as heuris-
tic techniques. These techniques include genetic algorithms (GA), simulated annealing
(SA), artificial neural networks (ANN), and adaptive neuro-fuzzy inference systems (AN-
FIS) [27,33,34,40,41]. The effective use of heuristics has been utilized to determine the
ideal welding response value. In conjunction with heuristic approaches, the pareto front
analysis and technique for order of preference by similarity to ideal solution (TOPSIS)
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were applied to the multi-objective optimization model. The recent use of the differential
evolution algorithm (DE) to solve multi-objective models [31] has been fruitful. The author
updated a portion of the original procedure in order to achieve the modified version of
DE [42,43] and proposed modifying the recombination process of the DE in order to acquire
the neighborhood solution of the current best solution. We discovered that the modified
mutation process of the original DE also plays a significant role in enhancing the current
solution since it can improve the DE’s local search behavior [44]. In order to increase the
solution quality of DE in the mutation process, we will build a new formula as part of this
research study.

This research makes the following contributions based on what we have learned by
reviewing prior related material:

(1) We describe the methods for identifying the optimal FSW responses and parameter
set based on a model with multiple objectives (seven parameters and three responses).

(2) The heat input (HI) is introduced for the first time into a multi-objective model
to reveal the optimal response of friction stir welding in collaboration with UTS
and MH.

(3) This research presents, for the first time, a comparison of the effectiveness of using sev-
eral types of pin tool movement directions when welding AA6061-T6
and AA5083-H112.

(4) The efficacy comparison of several additive chemicals (SiC and AO) for connecting
AA6061-T6 and AA5083-H112 has been provided for the first time.

(5) Initially, the modified version of the differential evolution algorithm (MoDE) was
presented to determine the optimal value of the asymmetric FSW.

The remainder of this article is structured as follows. In Section 2, the related literature
will be revealed, while the research material and methodology will be provided in Section 3.
The experimental framework and results will be provided in Section 4. Sections 5–7 contain,
respectively, the microstructure analysis, discussion, and conclusion.
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Table 1. The literature review of the parameters of friction stir welding processes.

Author Materials
Approaches for
Optimization

Continuous Category Response

SD RtS WS TA
Pin Type RPT TPMD UTS

(MPa)
McH
(HV) HI (◦C)

StC T H SiC AO S Z C

Suppachai et al. (2021) [24] SSM-ADC 12 VaNSAS - X X X X - X - - X - - X - -
Suppachai et al. (2021) [23] SSM-ADC 12 MOVaNSAS - X X X X - X - - X - - X - -
Chennaiah et al. (2021) [13] AA5083 - X X X - - - - - - X - - X X -

W.F. Xu et al. (2021) [14] AA7085-T7452 - X X X X - - - - - X - - X - -
M. Kianezhad et al. (2019) [26] AA5083 - X X X X - X - - X X - - X X -

Khan et al. (2018) [45] AA5083 - X X X X - - - - - X - - X X -
K. Aruna Prabha et al. (2018) [46] AA5083 - X X X - - - - - - X - - X X -

Kumar et al. (2018) [47] AA5083 - X X X - - - - - - X - - X X -

Jia et al. (2022) [15] AA5083,
AA6061 - X X X X X - - - - X - - X X -

Kumar et al. (2021) [4] AA5083,
AA6061 - X X X X - - - - - X - - X X -

Kumar et al. (2022) [7] AA5083,
AA6061 - X X X X - - - - - X - - X X -

Fuse et al. (2021) [25] AA5083,
AA6061 - X X X - X - - - - X - - - X -

Kumar et al. (2020) [21] AA5083,
AA6082 DOE, ANOVA X X X X - - - - - X - - X - -

Ramesh et al. (2020) [2] AA5083,
AA6061 Taguchi, ANOVA X X X - X X - - - X - - X X -

Tayebi et al. (2019) [48] AA5083,
AA6061 - X X X X - - - - - X - - X X -

Bodaghi et al. (2017) [27] AA5052 - X X X - - X - X - X - - X X -
Karthikeyan et al. (2015) [28] Al6351 Taguchi X X X - - - - X - X - - X X -

Rani et al. (2022) [18] AA5083,
AA6061 - X X X X - X - X - X - - X X -

Moradi et al. (2019) [20] AA2024,
AA6061 - X X X X - - - X - X - - X - -

Moradi et al. (2017) [29] AA6061,
AA2024 - X X X X - - - X - X - - X X -

M. Tabasi et al. (2016) [19] AA7075, AZ31 - X X X - - - - X - X - - X - -

This work AA5083-AA6061
D-optimal, DE,

MoDE, Pareto front,
TOPSIS

X X X X X X X X X X X X X X X

Note: Continuous: SD; Shoulder Diameter, RtS; Rotation Speed, WS; Welding Speed, TA; Tilt Angle. Category: StC; Straight Cylindrical, T; Threaded Cylindrical, H; Hexagonal
Cylindrical, RPT; reinforcement particles type, SiC; Silicon Carbide, AO; Aluminum Oxide. TPMD; Tool Pin Movement Direction, S; Straight, Z; Zig Zag, C; Circles. Response: UTS;
Ultimate Tensile Strength, McH; Micro-Hardness, HI; Heat Input.
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Table 2. Finding an optimal method for friction stir welding processes.

Material

Methods Response % Error

Statistical Method Heuristic Exp. Predict Confirm

RSM Taguchi GRA ANOVA Shannon Pareto
Front. TOPSIS ANN GA ANFIS SA MoDE

AA6082-T6 [33] - X X - - - - X - - - 221.8 212.41 - 4.42
AA2219 [34] - X - - - - - X X - - - - 330.98 341.27 3.11

AA6063-T6 [38] X - - X - - - - - - - - - 146.83 147.51 0.46
AA5086-H32 [39] X - - X - - - - - - - - - 193.33 190.33 1.55

AA7075 [40] X - - - - - - - - X X - - 221.9 227 2.30
AA6061-T6 [41] X - - - - - - - - - - X - 294.84 295 0.05

AA6101/Pure Copper [32] - X X - - - X - - - - - - 202.57 206.56 1.97
AA6061-T6/AA7075-T6 [35] X - - - X X X - - - - - - 245.95 252.23 2.55

AA5083/AA6063 [36] - X X - - - - - - - - - - 136.2 168 23.35
AA5052-H32/AA5754-H22 [37] - X X - - - - - - - - - 180.52 - 175 3.15

Note: RSM; Response Surface Methodology, GRA; grey relational analysis, ANN; Artificial neural network, GA; Genetic Algorithm, SA; Simulated Annealing. ANFIS; Adaptive
Neuro-Fuzzy Inference System, MoDE; Modified Differential Evolution. Exp; Experiment.
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2. Related Literature

The use of different material welding processes influences the weld seam’s desirability,
and an exceptional mechanical property given after welding is its high strength. The
many process parameters of two different types of material create several barriers for
the generation of high-performance weld seams. The use of different materials makes it
difficult to set the relative parameters in FSW and will affect the microstructure, making
it nonhomogeneous and potentially creating micro-cracks due to the different thermal
expansion processes of the material [22] and the heat generation process. The important
parameters of dissimilar materials in the FSW process consist of the rotation speed, welding
speed, shoulder diameter, tilt angle, and pin profile, which are affected by heat genera-
tion, plastic deformation, and material flow in welding [49]. The multitude of welding
parameters make the suitable generation of relative parameters difficult. Several studies
mention the qualities of weld seams produced using dissimilar material welding. The
strength of the weld seam can lead to worse mechanical properties than those of the base
material [50]. Previously, the heat treatment process has been used for the microstructural
improvement of weld seams after the friction stir welding process [51,52], but it takes a
long time and comes at a high cost [53–56]. Therefore, particle reinforcement is determined
by the quality improvement of the weld seam [55–58]. Various reinforcement particles are
applied in weld seam reinforcement and help increase the weld line’s strength. The type
of particles used include carbon nanotube, boron carbide, aluminum oxide, and silicon
carbide [45,55,56,58–61]. Aluminum oxide and silicon carbide are high-strength particles
that produce low defects, a low hinderance of the material’s flow, and a good adhesion
interface in the weld seam’s structure. Improving the weld seam’s quality and mechanical
properties such as tensile strength and hardness depends on the type of reinforcement
particles used [62–65]. Thus, aluminum oxide and silicon carbide are often chosen for
reinforcement in order to increase the weld seam’s quality. However, the problem of par-
ticle reinforcement is the uneven dispersion in their structure. Formerly, in [50,66], the
authors mentioned that the choice of the multi-welded tool pin’s movement direction could
influence the distribution of reinforcement particles; however, it may lead to problems such
as high welding process heat and broad microstructure changes, as well as causing reduced
strength in the heat-affected zone. The study of the tool pin’s movement direction suited
toward welding parameters can reduce problems resulting from the agglomeration of
reinforcement particles and overheating in FSW [67–72]. Furthermore, welding parameter
control is important, as setting them can lead to sufficient welding process heat, ultimate
tensile strength, maximum hardness, and high-quality weld seam generation [45,70,72–74].

From the literature review, it was found that there is a lack of studies on the FSW of
aluminum materials relating to tool pin movement directions and welding process heat
control using a parameter method to optimize the completeness and performance of the
weld seam, as shown in Table 1. This table shows the previous studies on FSW parameters
and research effects. In addition, finding the optimal welding parameter can help achieve
two major objectives. Previously, welding parameter control in FSW relied on designing
welding parameters that can attain improvements in the performance of the weld seam.
Examples include Taguchi with GRA and TOPSIS [32]; Taguchi with GRA and ANN [33];
Taguchi with ANN and GA [34]; RSM with Pareto frontier, TOPSIS, and Shannon [35];
Taguchi with GRA [36,37]; RSM with ANOVA [38,39]; and RSM with ANFIS and SA [40].
These methods show optimal condition welding and can increase the mechanical quality of
weld seams, but response predictions produce high levels of error in the range from 2.24 to
15.72% [23]. Moreover, relative welding parameter generation and multi-objective response
analyses can change several welding parameters at a time, reducing the accuracy of the
result. In [41], the response surface method and the modified differential evolution algo-
rithm (RSM-MDE) are used for finding the optimal welding parameter on multi-objective
responses, showing a high performance in optimal solution finding, and producing a
high solution accuracy of 99.95% when compared with other approaches, as shown in
Table 2. The several methods taken together are used for optimizing the welding parameter,
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displaying their influence on increasing solution-finding accuracies. Therefore, solution
finding based on the hybrid method cannot be ignored.

This research focuses on dissimilar aluminum welding with particle reinforcement
in the weld seams of AA6061-T6 and AA5083-H112. The three hybrid methods used
are MoDE, Pareto front, and TOPIS, which can be applied to optimal welding parameter
finding and multi-objective responses analyses. The three responses consist of ultimate
tensile strength (UTS), maximum hardness (MH), and minimum heat input (HI) in the
welding process of FSW. In the study, the parameter types are separated into two groups:
(1) continuous variables and (2) categorical variables. The four continuous variables consist
of shoulder diameter, tilt angle, rotation speed, and welding speed. The three categorical
variables consist of pin type, reinforcement particles type, and tool pin movement direction.
Including the resulting welded seam, the microstructure will be analyzed using an optical
microscope (OM), a scanning electron microscope (SEM), and an energy dispersive X-ray
spectrometer (EDX).

Several studies have been conducted on friction stir welding in recent years (FSW).
The use of a donor material to aid in heating workpieces without wearing down the tool or
introducing more heat than necessary to the system was investigated in [44]. A novel study
was conducted on the connection of overlapped nickel-based alloy 625 and marine-grade GL
E36 steel plates using friction stir lap welding (FSLW). The interface microstructure and its
impact on the joint’s strength are examined [75]. The authors of [76] gave a comprehensive
analysis of the developments in the solid-state welding process of steels by diffusion
bonding (DB) and friction stir welding (FSW). Considerable consideration was devoted
to DB steel, which overcomes the challenges of segregation, cracking, and deformation
stresses that are often produced by liquid-phase welding processes. Friction and wear
properties and mechanisms at various temperatures of the friction stir lap welding joint
process of SiCp/ZL101 and ZL101 were investigated in [77]. The study [78] examined
the influence of friction stir welding settings on the weldability of aluminum alloys with
similar and different metals.

Five bobbin tools with varying shoulder fillet radii were used for the bobbin tool fric-
tion stir welding (BT-FSW) of A1050-O sheets, as described in [79]. To improve the accuracy
of the numerical simulation of the friction stir welding (FSW) process, the tool’s tilt angle
must be considered as a crucial parameter. A previous study [80] offered a microstructural
analysis of the mechanical response of several sequences of heat treatment, FSW, and
CR in an Al-Mg AA5754 alloy that had not been age hardened. The thermomechanical
behavior of nanoscale Al2O3 particles used to reinforce aluminum was investigated in [57].
The material was developed using spark plasma sintering and friction stir welding. By
COMSOL MultiPhysics, the thermal stresses influencing the composite’s behavior during
welding were modelled, and the results were validated by applying mechanical property
assessments on the composites. Due of the higher heat input and more efficient recrystal-
lization, the weld nugget zone becomes harder as the tool speed increases, according to
research [81]. The weld generated with the fastest tool rotating speed provided a weld with
the hardest weld nugget zone.

3. Materials and Methods

AA5083 and AA6061 plates measuring 200 mm in length, 75 mm in width, and 6 mm in
thickness were employed for the friction stir welding research investigation. Tables 3 and 4
detail the chemical composition and mechanical properties ofAA5083 and AA6061. The
tool material used was H13 and involved air-hardening processes. The CNC milling
machine (type HAAS) was employed to FSW join the material. The research process was as
follows: (1) conducting a survey to determine the number of parameters and levels of FSW,
(2) constructing an experimental design using D-optimal to obtain a mathematical model,
(3) performing the experiment as designed, (4) optimizing the responses for the parameters
using the MoDE algorithm, and (5) verifying the results obtained in step 3. The details of
the proposed procedure are as follows.
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Table 3. Chemical compositions of the base alloys.

Materials
Element (wt.%)

Al Ni Ti Ag Zr Sn Pb Co La B Be

AA5083-
H112 94.8 0.0021 0.0182 0.0001 0.0007 0.001 0.009 0.001 0.0005 0.004 0.001

AA6061-T6 96.6 0.0218 0.0374 0.0001 0.0094 0.0558 0.0822 0.0326 0.0115 0.0128 0.0005

Table 4. Mechanical properties of the base alloys.

Materials Ultimate Tensile Strength (UTS) (MPa) Maximum Hardness
(MH) (HV)

A5083-H112 277.70 91
AA6061-T6 264.72 107

3.1. Survey Determining the Number of FSW’s Parameters and Levels

The literature review revealed that the experimental parameter types were divided into
two categories: (1) continuous variables and (2) categorical variables. In this investigation,
four continuous variables consisting of the shoulder diameter (SD), tilt angle (TA), rotation
speed (RtS), and welding speed (WS) were utilized, as shown in Figure 1. Three categorical
variables consisting of the pin type (PT), reinforcement particle type (RPT), and tool pin
movement direction (TPMD) were examined, as shown in Figure 2, and the suitable heat
input investigation found that the optimal heat input for the friction stir welding of AA6061
and AA5083 was within the range of 315–485 ◦C [52,82–84], which is good for welding and
achieving a high weld seam quality. Table 5 contains information on the parameter types.
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Table 5. Continuous and categorical variables of the parameters in the experiment.

Continuous Variable

Parameter
Levels

−1 1

Rotation Speed (rpm),
RtS 150 1500

Welding Speed
(mm/min), WS 15 135

Shoulder Diameter
(mm), SD 18 25

Tilt Angle (degrees), TA 0 3

Categorical Variable

Parameter Levels

Pin Type Straight Cylindrical Hexagonal
Cylindrical

Threaded
Cylindrical

Reinforcement Particles
Type Silicon Carbide Aluminum Oxide -

Tool Pin Movement
Direction Straight Zig Zag Circles

Straight, circle, and zigzag movements are the three types of tool pin movement
directions that can be observed in Figure 2. During the experiment, the effects of these
three types of movement were discovered.

3.2. Designing an Experiment Using the D-Optimal Method

The D-optimal method was used to derive the experimental design from each inter-
esting parameter using a 58-point model, with 48 minimum model points for the results,
5 points for replicates, and 5 points for the estimation of the lack of fit. The parameters
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were set to the upper and lower limits of −1 and 1 in the Design-Expert v. 13 software. The
values of the intermediate code were calculated using Equation (1):

Original =
Scaled[(XMax + Xmin)] + XMax + Xmin

2
(1)

where scaled denotes the value that was coded for variable X, X is the value of the variable
between Xmin and XMax, and Xmin and XMax are the minimum and maximum values for
the specified parameter, respectively. The Design-Expert software, which incorporates the
D-optimal, has been used for generations and for the experimental design and analysis.

3.3. Performing the Experiment According to the Experimental Design Obtained from Section 3.2

We used a CNC milling machine to execute friction stir welding on a total of 58 parts ac-
cording to the designed experiment. The combinations of the parameters for the experiment
are detailed in Figure 3.
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Figure 3. Parameters used in the experiment.

After welding, specimens were cut with a waterjet from the work pieces for testing
mechanical properties (Figure 4a,b). Tensile strength, micro-hardness, and heat input were
measured (Figure 4c). The tensile specimens were prepared according to the specifications
of the American Society for Testing and Materials (ASTM-E8). The testing speed for
tensile strength was 0.5 mm/min. The Vickers micro-hardness method was employed to
evaluate hardness, i.e., in testing the hardness of the cross-section of the welded seams,
which utilized a load capacity of 100 kN, and a heat input imaging camera was used to
determine heat input. Optical microscopy (OM), scanning electron microscopy (SEM), and
an energy dispersive X-ray spectrometer (EDX) were utilized to examine the microstructure
of the sample.
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After the experiment has been conducted, Design-Expert v. 13 will be employed to
develop the mathematical model for a multi-objective model. The mathematical model will
be constructed according to the number of objectives; in this case, we are interested in three
objectives, so the Design-Expert v. 13 software will formulate three objectives. The result of
the experiment is the quadratic model depicted in Equations (2a)–(2c):

y1 = b0 + ∑k
i bixi + ∑k

j biix2
i + ∑i ∑j bijxixj + ε (2a)

y2 = b0 + ∑k
i bixi + ∑k

j biix2
i + ∑i ∑j bijxixj + ε (2b)

y3 = b0 + ∑k
i bixi + ∑k

j biix2
i + ∑i ∑j bijxixj + ε (2c)

where y1, y2, and y3 are the ultimate tensile strength (UTS), maximum hardness (MH),
and minimum heat input (HI), respectively. xi is the variable for the uncoded levels of
parameters, ε is the error, and b0 is the coefficient of interception or constant. bi is the linear
term, bii is the exponential term, and bij is the variable for interaction terms [85].

From Equation (2a), the Design-Expert v. 13 software generates a mathematical
model of the ultimate tensile strength input with an experiment. The categorical variable
parameters include straight cylindrical, silicon carbide, and straight, and the continuous
variables include a rotation speed of 950 rpm, welding speed of 20 mm/min, shoulder
diameter of 18 mm, and tilt angle of 0.92 degrees; the aim was to determine the appropriate
value for ultimate tensile strengths, as show in Equation (3). The calculated solution using
the mathematical model in Equation (3) is 231.76 MPa; the maximum hardness is 121.62 HV,
as shown in Equation (4); the minimum heat is 432.87 ◦C, as show in Equation (5). These
are explained next in Section 4.2.

UTS = −88.30498 + 19.22792× SD− 44.37324× TA + 0.250058× RtS− 0.585186×WS
−0.467021× SD2 + 2.00253× TA2 − 0.000112× RtS2 + 0.003393×WS2 + 2.08588× SD× TA
+0.000624× SD× RtS− 0.001537× SD×WS− 0.006381× TA× RtS− 0.010422× TA×WS
−0.000032× RtS×WS

(3)

MH = −184.48143 + 33.15735× SD− 44.90477× TA + 0.027221× RtS− 0.934965×WS
−0.889454× SD2 + 2.14136× TA2 − 0.000025× RtS2 + 0.002610×WS2 + 1.57366× SD× TA
+0.001149× SD× RtS + 0.009940× SD×WS− 0.000080× TA× RtS + 0.042159× TA×WS
+0.000069× RtS×WS

(4)

HI = 214.08843 + 17.24797× SD− 27.28040× TA + 0.095526× RtS− 0.377298×WS
−0.388590× SD2 + 5.98583× TA2 − 0.000051× RtS2 + 0.002330×WS2 + 0.438009× SD× TA
+0.000820× SD× RtS− 0.00257× 6SD×WS
−0.003204× TA× RtS− 0.011944× TA×WS− 0.000062× RtS×WS

(5)

Here, SD, TA, RtS, and WS represent the shoulder diameter (mm), tilt angle (degrees),
rotation speed (rpm), and welding speed (mm/min), respectively.

Once the model develops, it can only accomplish one goal at a time. This implies that
a model with one objective can provide the optimal result regardless of its other objectives.
However, the development of multi-objective solvable algorithms is necessary. In the next
phase of this study, the modified differential evolution algorithm (MoDE) will be described
and explained.

3.4. Using the MoDE Algorithm for Prediction

The MoDE algorithm includes the following five steps: (1) generating an initial popu-
lation size (NP), (2) generating a mutant vector, (3) generating a trial vector, (4) performing
the selection process, and (5) repeating steps (2)–(4) until the termination condition is
satisfied. The MoDE algorithm can be described in the following manner.
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3.4.1. Creating an Initial Set Number for the Population (NP)

In the beginning, NP vectors will be formed. In this, each vector will consist of a
predetermined quantity of positions. The number of positions is equal to the number of
FSW parameters of interest. Random values will be created for each position in the NP
vectors. The maximum and minimum values of each parameter (value in position) will
serve as limitations for the random values. The first position of the vector represents the
rotation speed, whilst the second, third, and fourth positions, respectively, represent the
welding speed, shoulder diameter, and tilt angle. Examples of the random values of the ten
random vectors (NP = 10) are shown in Table 6.

Table 6. An illustration of decoded values for the ten random vectors.

Parameter NP1 NP 2 NP 3 NP 4 NP 5 NP 6 NP 7 NP 8 NP 9 NP 10

Rotation Speed,
RtS 1095.00 190.50 379.50 325.50 298.50 1189.50 1014.00 1230.00 541.50 1405.50

Welding Speed,
WS 49.80 95.40 53.40 25.80 105.00 112.20 24.60 126.60 45.00 77.40

Shoulder
Diameter, SD 23.32 23.11 18.63 18.70 21.43 24.65 21.01 24.86 23.67 18.49

Tilt Angle, TA 1.02 0.96 2.91 0.54 2.94 2.97 2.22 1.80 2.64 2.10

The values in positions 1, 2, 3, and 4 of vector 1 (NP1) in Table 5 are 1095 rpm,
49.80 mm/min, 23.32 mm, and 1.02 degrees, respectively. By substituting the values in
the places with variables RtS, WS, SD, and TA, the equation derived from the exper-
imental analysis was used to calculate this parameter to discover the UTS, MH, and
HI values.

3.4.2. Creating a Set of Mutant Vectors

The mutation process utilized to generate the mutant vectors was executed using
Equation (6):

Vi,G+1 = Xr1,G + F(Xr2,G − Xr3,G) (6)

where Xr1,G, Xr2,G, and Xr3,G are the vectors that are randomly selected from the NP
vectors. Vi,G+1 is the mutant vector and Xi,G is the target vector. Scaling factor F is a
parameter with a range from 0 to 2 that self-adapts. In our investigation, F was initially
fixed to 0.8 and then randomly modified for each vector by 0.05. The best vector in
the current iteration had its F value set to the current F value, which served as the F
value’s baseline for the vectors in the next iteration. Using Equation (6), the original
DE transformed the target vector into mutant vectors. In our modified DE (MoDE), we
create three additional equations for application in conjunction with Equation (6). These
equations are depicted in Equations (7)–(10). These mutation equations have been adapted
from [86].

Vi,j,G+1 =

{
Xi,j,G + F

(
Xr1,j,G − Xr2,j,G

)
i f Rij ≤ C

Rij Otherwise
(7)

Vi,j,G+1 =

{
Xi,j,G + F

(
Xr1,j,G − Xr2,j,G

)
i f Rij ≤ C

Bgbest
j Otherwise

(8)

Vi,j,G+1 =

{
Xi,j,G + F

(
Xr1,j,G − Xr2,j,G

)
i f Rij ≤ C

RijXi,j,G Otherwise
(9)

Vi,G+1 = Xbest,G + F(Xr1,G − Xr2,G) + F(Xbest2,G − Xr3,G) (10)

where, Xbest,G and Xbest2,G are the top two best vectors. The sets of NP designated Bgbest
j

supplied the optimal solution derived from vector b and the optimal global solution, respec-
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tively. Rij is the random integer for track i at position j, and C is the crossover probability of
the mutation equation. Using the probability function depicted in Equation (10), the vector
will arbitrarily select the mutation Formulas (6)–(10):

Pbt =
FNbt−1 + (1− F)Abt−1 + KIbt−1 + ρ

∣∣∣Abt−1 − Abest
t−1

∣∣∣
∑B

b=1 FNbt−1 + (1− F)Abt−1 + KIbt−1 + ρ
∣∣Abt−1 − Abest

t−1

∣∣ (11)

where Pbt is the probability that the vector selects equation b (Equations (6)–(10)) to perform
the mutation process at iteration t. Nbt−1 is the total number of vectors that used equation b
in earlier iterations. Abest

t−1 is the global best solution discovered prior to iteration t. Abt−1 is
the average objective value of all vectors that used equation b in all previous iterations. Ibt−1
is a reward value that increases by 1 if the best vectors select the use of equation b in iteration
t − 1. F represents the scaling factor (F = 0.5), K represents the controlled parameter (K = 1),
and B represents the total number of mutation equations. ρ is a predefined parameter,
which is defined as 0.5 [86].

3.4.3. Operating the Crossover Process

Equation (9) was used in this process to create trial vector Ui,G+1, where CR is the
self-adaptive parameter and it was initially set to 0.6. The approach used to modify F was
also used to adapt the current CR value, where randi,j is a random number.

In this process, trial vector Ui,G+1 was generated using Equation (12), where CR was
the self-adaptive parameter and its initial value was 0.6. randi,j is a random number. randi,j
was modified using the same method as F generation.

Ui,G+1 =

{
Vi,j,G+1 i f randi,j ≤ CR ∨ j = Irand

Xi,j,G i f randi,j > CR ∨ j = Irand
(12)

3.4.4. Operating the Selection Process

This method generates the target vectors for the next iteration by using Equation (13).
The next iteration’s target vector is either the trial vector or the current target vector,
depending on which produces better objective values, and it incorporates the concept of the
simulated annealing algorithm in which the probability of accepting an inferior solution
depends on the quality of change in the solution:

Xi,G+1

{
Ui,G i f f (U i,G) ≤ f (Xi,G)or randi < e

−( f (Ui,G)− f (Xi,G))

kG

Xi,G Otherwise
(13)

where Xi,G+1 is the next iteration of the target vector, Ui,j,G is the experimental vector
of the current iteration, Xi,j,G is the target vector in the current iteration, and f (x) is the
fitness function.

Figure 5 depicts the methods utilized in this study’s result. It consists of four steps:
(1) surveying the literature to identify the types and ranges of controlled parameters,
(2) designing the experiment by utilizing a D-optimal experimental design, (3) obtaining
the mathematical model to optimize the objective and parameter values using Design-
Expert v. 13, and (4) employing MoDE to optimize the mathematical model acquired in
step 3.
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4. Experimental Framework and Results

To achieve our research objectives, we divided the experiment into the following
four steps: (1) Carrying out the experiment using a D-optimal design. The outcome of
this step is the optimal outcome of the experiment. (2) Using the experimental result, the
design expert will develop the mathematical model and forecast the optimal value. (3) The
MoDE will determine the optimal value using the mathematical model obtained in Step 2.
(objective and parameter values). Finally, the optimal value produced in step three will
be verified by establishing the welding circumstances acquired in step three in order to
complete (Figure 6) the real experiment (30 times), and the objective value will be obtained
and compared to the theoretical optimal value. Table 7 depicts the experimental design
and the results received at each phase.
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Table 7. Result of the experiment.

Run SD (mm) TA
(Degrees) RtS (rpm) WS

(mm/min)
Pin

Type RPT TPMD UTS (MPa) MH (HV) HI (◦C)

1 25 3 1500 15 TC SiC Zig zag 238.87 99 449.6
2 18 3 150 135 StC AO circles 102.5 43.7 390.3
3 25 0 1500 135 TC AO Straight 238.82 95.2 445.8
4 25 3 1500 135 StC AO circles 201.65 103.5 416.5
5 18 3 1500 15 HC SiC Straight 246.32 101.8 443.5
6 25 3 1500 15 HC AO Zig zag 231.6 92.1 435.1
7 18 1.59 150 15 HC AO Zig zag 132.4 61.1 402
8 18 0 1500 15 HC AO Straight 231.62 101.8 436.5
9 22.34 3 150 135 HC AO Zig zag 121 54.6 398.6

10 18 3 150 15 StC SiC Straight 121.2 87 399.4
11 18 3 1425.75 135 TC AO Zig zag 219.7 97 422.9
12 18 0 1500 135 StC SiC Straight 220.78 98.7 423.1
13 18 0 150 135 TC AO Straight 121.6 44.6 399.7
14 23.95 0 1500 15 HC SiC circles 239.69 99.8 455.9
15 20.8 0 1500 135 StC AO Zig zag 236.89 102.5 441.1
16 19.575 3 1500 103.443 StC SiC Zig zag 127 53.8 393.1
17 25 3 150 15 StC SiC circles 167.94 71.3 412.8
18 20.94 1.005 1425.75 74.3133 HC SiC Straight 222.76 102.5 426.4
19 25 3 150 135 TC SiC Straight 217 92 420.2
20 18 0.45 150 135 StC SiC Zig zag 127.8 55.7 398.3
21 22.34 0 150 15 StC AO circles 139 76.1 408
22 18 0 1500 15 TC SiC Zig zag 236.32 102.4 441
23 25 3 717 135 HC SiC circles 241.64 100.6 462.7
24 18 0 150 15 HC SiC circles 126 86.7 387.2
25 18 3 150 15 TC SiC Zig zag 138 58 403.4
26 25 3 150 15 StC AO Zig zag 116 45 397.1
27 25 0 150 135 StC SiC Straight 120.52 56.4 398.2
28 18 0 1061.25 15 TC AO circles 238.9 103.5 449.6
29 21.5 0 150 135 TC SiC circles 127 53.8 396.3
30 18 3 1500 135 TC SiC circles 231.7 101.8 437.1
31 25 1.365 1500 15 StC AO Straight 227.9 96.8 429.4
32 18 2.4 1500 135 HC AO circles 231.65 101.5 437
33 25 0 150 15 TC SiC circles 112.13 52.9 390.1
34 25 1.245 1500 135 HC SiC Zig zag 225.8 97 426.6
35 25 0 150 135 HC AO circles 111 45.7 398.8
36 18 3 1500 45 TC AO Straight 229.28 90.8 432.2
37 25 0 1500 15 StC SiC Zig zag 241 101.4 460.6
38 21.85 0.45 757.5 15 TC SiC Straight 232.07 102 438.3
39 18 0 892.5 135 HC SiC Zig zag 237.54 102.5 444.4
40 23.04 1.875 892.5 135 HC AO Straight 231.7 91.8 437.4
41 24.93 2.19 837.825 76.2 StC SiC Zig zag 194.6 57.8 416.4
42 20.555 0.916856 931.202 46.8614 StC AO Zig zag 236.89 101.5 441.9
43 25 1.545 150 15 HC SiC Zig zag 135.8 81 403.2
44 18 0 150 135 TC AO Straight 120 49 397.3
45 21.5 0.57 1432.5 135 TC SiC circles 210.94 103.66 419.8
46 18 3 1500 15 StC AO circles 232.67 95.8 438.3
47 18 2.4 1500 135 HC AO circles 227 90.5 427.3
48 25 3 150 81 TC AO circles 138 61 407.7
49 25 3 1500 81 HC SiC Straight 236.89 100.51 443.7
50 24.3 0 150 15 TC AO Zig zag 112 46.7 394.1
51 18 0 1500 75.6 StC SiC circles 226.56 91.8 427
52 21.5446 3 676.5 63.6 StC AO Straight 233.43 104.4 439
53 25 0 150 135 StC SiC Straight 102 46.8 399.1
54 25 1.545 150 15 HC SiC Zig zag 113 53.7 394.8
55 18 2.1 150 132 HC SiC Straight 110.46 63.2 393.3
56 18 3 1500 15 HC SiC Straight 144.5 63 412.1
57 25 3 150 15 HC AO Straight 140 46.9 409
58 25 0 858.75 100.8 TC SiC Zig zag 194 57.8 415.9

4.1. D-Optimal Experimental Design

Using the Design-Expert software, the experiment was created. Shoulder diameter
(SD: mm), tilt angle (TA: degrees), rotation speed (RtS: rpm), welding speed (WS: mm/min),
pin type (PT), reinforcement particles type (RPT), and tool pin movement direction (TPMD)
were the seven regulated and controlled parameters. We employed mechanical response
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qualities such as ultimate tensile strength (UTS), maximum hardness (MH), and minimum
heat input (HI) of the welding to determine the optimal welding parameters.

Three types of tool pins (PT) were used: straight cylindrical (StC), threaded cylindrical
(TC), and hexagonal cylindrical (HC). Two reinforcement particles were used: silicon
carbide (SiC) and aluminum oxide (AO). There were three different types of tool pin
movement directions: straight (S), zigzag (Z), and circular (C). The experiment results are
reported in Table 7. Figure 7 depicts the friction stir welding process of the third experiment
in Table 7.
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Experiment number 5 has the best objective individual value for the ultimate tensile
strength (UTS) and maximum hardness based on the experimental results listed in Table 7.
Experiment number 5 exhibited SD, TA, RtS, and WS values of 18 mm, 3 degrees, 1500 rpm,
and 15 mm/min, respectively, and uses HC as the pin type, SiC as the reinforcement parti-
cles substance, and straight tool pin movement directions. Experiment number 24 using
SD, TA, RtS, and WS values of 18 mm, 0 degrees, 150 rpm, and 15 mm/min, respectively,
with HC as the pin type, SiC as the reinforcement particles, and circle tool pin movement
directions produced the least amount of heat input effects in the welding seam. In this
research study, we applied Pareto front and TOPSIS to analyze the multi-objective model.
The results are reported in the next part.

4.2. Using Design-Expert Software to Form the Multi-Objective Mathematical Model

The multi-objective model was used in this study to optimize three objectives simul-
taneously; optimizing one objective function has an influence on the other objectives. As
can be seen from the data presented in Table 7, in experiment number 5, the UTS was at
the maximum but also increased the heat input that occurred during the welding process.
The purpose of this research was to reduce the temperature effect so that the change in
microstructure in the welding area would be kept to a minimum. In experiment 24, we
can see that the heat was minimized. The heat in experiment 24 represented a decrease
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of 12.69% from that in experiment 5; however, the UTS was reduced by 48.85%, which is
relatively high. Consequently, we cannot maximize a single objective while retaining the
intactness of other objectives. In the multi-objective optimization model that we built for
this study, MoDE was carried out by utilizing the mathematical model acquired using the
Design-Expert v. 13 software. The mathematical model was formulated as shown in the
following section.

4.2.1. The Mathematical Model for Ultimate Tensile Strength (UTSModel)

Software Design-Expert v. 13 was used to generate a mathematical model, demonstrat-
ing the association between the variable values based on the data in Table 7. As the p-values
of the quadratic model were less than 0.05 and the model was statistically significant with a
95% confidence interval, the ANOVA findings obtained for UTS indicated that the model’s
forms were acceptable for utilization as mathematical models. The mathematical model
had a coefficient of determination (R2) of 95.04% due to the influence of the variables, and
the revised coefficient (adjusted R2) was greater than 71.72%, confirming that the regression
model had a correct format for the above UTS response, as shown in Table 8. The models
used for the UTS characteristics were based on Equations (14)–(31).

StC_SiC_S = −88.30498 + 19.22792SD− 44.37324TA + 0.250058RtS− 0.585186WS
+2.08588SD× TA + 0.000624SD× RtS− 0.001537SD×WS− 0.006381TA× RtS
−0.010422TA×WS− 0.000032RtS×WS− 0.467021SD2 + 2.00253TA2

−0.000112RtS2 + 0.003393WS2

(14)

StC_SiC_Z = −6.11488 + 16.52802SD− 61.10962TA + 0.241531RtS− 0.761831WS
+2.08588SD× TA + 0.000624SD× RtS− 0.001537SD×WS− 0.006381TA× RtS
−0.010422TA×WS− 0.000032RtS×WS− 0.467021SD2 + 2.00253TA2

−0.000112RtS2 + 0.003393WS

(15)

StC_SiC_C = −14.59844 + 16.74932SD− 47.53187TA + 0.245462RtS− 0.742827WS
+2.08588SD× TA + 0.000624SD× RtS− 0.001537SD×WS− 0.006381TA× RtS
−0.010422TA×WS− 0.000032RtS×WS− 0.467021SD2 + 2.00253TA2

−0.000112RtS2 + 0.003393WS2

(16)

StC_AO_S = −50.59953 + 17.00317SD− 45.46861TA + 0.262807RtS− 0.553276WS
+2.08588SD× TA + 0.000624SD× RtS− 0.001537SD×WS− 0.006381TA× RtS
−0.010422TA×WS− 0.000032RtS×WS− 0.467021SD2 + 2.00253TA2

−0.000112RtS2 + 0.003393WS2

(17)

StC_AO_Z = 43.15132 + 14.30326SD− 62.20499TA + 0.254280RtS− 0.729921WS
+2.08588SD× TA + 0.000624SD× RtS− 0.001537SD×WS− 0.006381TA× RtS
−0.010422TA×WS− 0.000032RtS×WS− 0.467021SD2 + 2.00253TA2

−0.000112RtS2 + 0.003393WS2

(18)

StC_AO_C = 21.80674 + 14.52456SD− 48.62724TA + 0.258211RtS− 0.710917WS
+2.08588SD× TA + 0.000624SD× RtS− 0.001537SD×WS− 0.006381TA× RtS
−0.010422TA×WS− 0.000032RtS×WS− 0.467021SD2 + 2.00253TA2

−0.000112RtS2 + 0.003393WS2

(19)

HC_SiC_S = −167.32310 + 20.92138SD− 39.29650TA + 0.263002RtS− 0.341700WS
+2.08588SD× TA + 0.000624SD× RtS− 0.001537SD×WS− 0.006381TA× RtS
−0.010422TA×WS− 0.000032RtS×WS− 0.467021SD2 + 2.00253TA2

−0.000112RtS2 + 0.003393WS2

(20)
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HC_SiC_Z = −64.48001 + 18.22148SD− 56.03288TA + 0.254474RtS− 0.518345WS
+2.08588SD× TA + 0.000624SD× RtS− 0.001537SD×WS− 0.006381TA× RtS
−0.010422TA×WS− 0.000032RtS×WS− 0.467021SD2 + 2.00253TA2

−0.000112RtS2 + 0.003393WS2

(21)

HC_SiC_C = −81.12537 + 18.44278SD− 42.45513TA + 0.258406RtS− 0.499341WS
+2.08588SD× TA + 0.000624SD× RtS− 0.001537SD×WS− 0.006381TA× RtS
−0.010422TA×WS− 0.000032RtS×WS− 0.467021SD2 + 2.00253TA2

−0.000112RtS2 + 0.003393WS2

(22)

HC_AO_S = −126.74310 + 18.69663SD− 40.39187TA + 0.275751RtS− 0.309790WS
+2.08588SD× TA + 0.000624SD× RtS− 0.001537SD×WS− 0.006381TA× RtS
−0.010422TA×WS− 0.000032RtS×WS− 0.467021SD2 + 2.00253TA2

−0.000112RtS2 + 0.003393WS2

(23)

HC_AO_Z = −12.33928 + 15.99672SD− 57.12825TA + 0.267223RtS− 0.486435WS
+2.08588SD× TA + 0.000624SD× RtS− 0.001537SD×WS− 0.006381TA× RtS
−0.010422TA×WS− 0.000032RtS×WS− 0.467021SD2 + 2.00253TA2

−0.000112RtS2 + 0.003393WS2

(24)

HC_AO_C = −41.84565 + 16.21802SD− 43.55050TA + 0.271155RtS− 0.467431WS
+2.08588SD× TA + 0.000624SD× RtS− 0.001537SD×WS− 0.006381TA× RtS
−0.010422TA×WS− 0.000032RtS×WS− 0.467021SD2 + 2.00253TA2

−0.000112RtS2 + 0.003393WS2

(25)

TC_SiC_S = −120.63139 + 19.85389SD− 26.74226TA + 0.252933RtS− 0.359441WS
+2.08588SD× TA + 0.000624SD× RtS− 0.001537SD×WS− 0.006381TA× RtS
−0.010422TA×WS− 0.000032RtS×WS− 0.467021SD2 + 2.00253TA2

−0.000112RtS2 + 0.003393WS2

(26)

TC_SiC_Z = −44.58598 + 17.15399SD− 43.47864TA + 0.244405RtS− 0.536086WS
+2.08588SD× TA + 0.000624SD× RtS− 0.001537SD×WS− 0.006381TA× RtS
−0.010422TA×WS− 0.000032RtS×WS− 0.467021SD2 + 2.00253TA2

−0.000112RtS2 + 0.003393WS2

(27)

TC_SiC_C = −62.50272 + 17.37529SD− 29.90090TA + 0.248336RtS− 0.517082WS
+2.08588SD× TA + 0.000624SD× RtS− 0.001537SD×WS− 0.006381TA× RtS
−0.010422TA×WS− 0.000032RtS×WS− 0.467021SD2 + 2.00253TA2

−0.000112RtS2 + 0.003393WS2

(28)

TC_AO_S = −95.24823 + 17.62914SD− 27.83764TA + 0.265682RtS− 0.327532WS
+2.08588SD× TA + 0.000624SD× RtS− 0.001537SD×WS− 0.006381TA× RtS
−0.010422TA×WS− 0.000032RtS×WS− 0.467021SD2 + 2.00253TA2

−0.000112RtS2 + 0.003393WS

(29)

TC_AO_Z = −7.64208 + 14.92923SD− 44.57401TA + 0.257154RtS− 0.504177WS
+2.08588SD× TA + 0.000624SD× RtS− 0.001537SD×WS− 0.006381TA× RtS
−0.010422TA×WS− 0.000032RtS×WS− 0.467021SD2 + 2.00253TA2

−0.000112RtS2 + 0.003393WS2

(30)

TC_AO_C = −38.41983 + 15.15053SD− 30.99627TA + 0.261085RtS− 0.485173WS
+2.08588SD× TA + 0.000624SD× RtS− 0.001537SD×WS− 0.006381TA× RtS
−0.010422TA×WS− 0.000032RtS×WS− 0.467021SD2 + 2.00253TA2

−0.000112RtS2 + 0.003393WS2

(31)
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Table 8. The ANOVA results for the UTS response obtained using the Design-Expert v. 13 software.

Source of Variation Sum of Squares DF Mean Squares F-Value p-Value

Model 154,900 47 3295.64 4.08 0.0105
Linear 45,075.78 43 1048.27 0.9314 0.6116

Residual Error 8085.27 10 808.53
Lack-of-Fit 2458.11 5 491.62 0.4368 0.8077
Pure Error 5627.16 5 1125.43

Total 163,000 57

R-sq = 95.04%, R-sq (adj) = 71.72%

SD, TA, RtS, and WS represent the shoulder diameter (mm), tilt angle (degrees),
rotation speed (rpm), and welding speed (mm/min), respectively.

Equations (14)–(31) were formulated from the data shown in Table 7 using the Design-
Expert v. 13 software for determining the response of UTS. The categories include three
pin-type variables, two reinforcement particle type variables, and three tool pin movement
types. The processing software can generate 18 equations, and each equation is divided
into details as shown in Table 9.

Table 9. Details of the models generated by Design-Expert v. 13 software.

Model Name Detail Model Name Detail

StC_SiC_S
Pin Type: Straight Cylindrical

HC_AO_S
Pin Type: Hexagonal

Particles Type: Silicon Carbide Particles Type: Aluminum Oxide
Tool Pin Movement: Straight Tool Pin Movement: Straight

StC_SiC_Z
Pin Type: Straight Cylindrical

HC_AO_Z
Pin Type: Hexagonal

Particles Type: Silicon Carbide Particles Type: Aluminum Oxide
Tool Pin Movement: Zig Zag Tool Pin Movement: Zig Zag

StC_SiC_C
Pin Type: Straight Cylindrical

HC_AO_C
Pin Type: Hexagonal

Particles Type: Silicon Carbide Particles Type: Aluminum Oxide
Tool Pin Movement: Circles Tool Pin Movement: Circles

StC_AO_S
Pin Type: Straight Cylindrical

TC_SiC_S
Pin Type: Threaded

Particles Type: Aluminum Oxide Particles Type: Silicon Carbide
Tool Pin Movement: Straight Tool Pin Movement: Straight

StC_AO_Z
Pin Type: Straight Cylindrical

TC_SiC_Z
Pin Type: Threaded

Particles Type: Aluminum Oxide Particles Type: Silicon Carbide
Tool Pin Movement: Zig Zag Tool Pin Movement: Zig Zag

StC_AO_C
Pin Type: Straight Cylindrical

TC_SiC_C
Pin Type: Threaded

Particles Type: Aluminum Oxide Particles Type: Silicon Carbide
Tool Pin Movement: Circles Tool Pin Movement: Circles

HC_SiC_S
Pin Type: Hexagonal

TC_AO_S
Pin Type: Threaded

Particles Type: Silicon Carbide Particles Type: Aluminum Oxide
Tool Pin Movement: Straight Tool Pin Movement: Straight

HC_SiC_Z
Pin Type: Hexagonal

TC_AO_Z
Pin Type: Threaded

Particles Type: Silicon Carbide Particles Type: Aluminum Oxide
Tool Pin Movement: Zig Zag Tool Pin Movement: Zig Zag

HC_SiC_C
Pin Type: Hexagonal

TC_AO_C
Pin Type: Threaded

Particles Type: Silicon Carbide Particles Type: Aluminum Oxide
Tool Pin Movement: Circles Tool Pin Movement: Circles

4.2.2. The Mathematical Model for Maximum Hardness (MHModel)

The ANOVA findings obtained for MH indicated that the model’s forms were accept-
able for utilization as mathematical models, as the p-values of the quadratic model were
less than 0.05 and the model was statistically significant with a 95% confidence range. The
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mathematical model had a coefficient of determination (R2) equal to 94.30% due to the
influence of variables, and the revised coefficient (adjusted R2) was greater than 67.53%,
confirming that the regression model had the correct format for the above MH response, as
illustrated in Table 10. Equations (32)–(49) were used as the models for the MH.

StC_SiC_S = −184.48143 + 33.15735SD− 44.90477TA + 0.027221RtS− 0.934965WS
+1.57366SD× TA + 0.001149SD× RtS + 0.009940SD×WS− 0.000080TA× RtS
+0.042159TA×WS + 0.000069RtS×WS− 0.889454SD2 + 2.14136TA2

−0.000025RtS2 + 0.002610WS2

(32)

StC_SiC_Z = −176.55800 + 32.40781SD− 51.85869TA + 0.029131RtS− 1.03611WS
+1.57366SD× TA + 0.001149SD× RtS + 0.009940SD×WS− 0.000080TA× RtS
+0.042159TA×WS + 0.000069RtS×WS− 0.889454SD2 + 2.14136TA2

−0.000025RtS2 + 0.002610WS2

(33)

StC_SiC_C = −205.50651 + 33.20038SD− 45.91115TA + 0.031632RtS− 0.927271WS
+1.57366SD× TA + 0.001149SD× RtS + 0.009940SD×WS− 0.000080TA× RtS
+0.042159TA×WS + 0.000069RtS×WS− 0.889454SD2 + 2.14136TA2

−0.000025RtS2 + 0.002610WS2

(34)

StC_AO_S = −193.01865 + 32.44733SD− 44.55763TA + 0.040812RtS− 0.844855WS
+1.57366SD× TA + 0.001149SD× RtS + 0.009940SD×WS− 0.000080TA× RtS
+0.042159TA×WS + 0.000069RtS×WS− 0.889454SD2 + 2.14136TA2

−0.000025RtS2 + 0.002610WS2

(35)

StC_AO_Z = −174.43668 + 31.69779SD− 51.51155TA + 0.042722RtS− 0.945997WS
+1.57366SD× TA + 0.001149SD× RtS + 0.009940SD×WS− 0.000080TA× RtS
+0.042159TA×WS + 0.000069RtS×WS− 0.889454SD2 + 2.14136TA2

−0.000025RtS2 + 0.002610WS2

(36)

StC_AO_C = −205.21203 + 32.49036SD− 45.56402TA + 0.045223RtS− 0.837162WS
+1.57366SD× TA + 0.001149SD× RtS + 0.009940SD×WS− 0.000080TA× RtS
+0.042159TA×WS + 0.000069RtS×WS− 0.889454SD2 + 2.14136TA2

−0.000025RtS2 + 0.002610WS2

(37)

HC_SiC_S = −241.36155 + 34.71881SD− 44.79972TA + 0.031430RtS− 0.737514WS
+1.57366SD× TA + 0.001149SD× RtS + 0.009940SD×WS− 0.000080TA× RtS
+0.042159TA×WS + 0.000069RtS×WS− 0.889454SD2 + 2.14136TA2

−0.000025RtS2 + 0.002610WS2

(38)

HC_SiC_Z = −212.80108 + 33.96927SD− 51.75364TA + 0.033340RtS− 0.838656WS
+1.57366SD× TA + 0.001149SD× RtS + 0.009940SD×WS− 0.000080TA× RtS
+0.042159TA×WS + 0.000069RtS×WS− 0.889454SD2 + 2.14136TA2

−0.000025RtS2 + 0.002610WS2

(39)

HC_SiC_C = −251.52351 + 34.76184SD− 45.80610TA + 0.035841RtS− 0.729820WS
+1.57366SD× TA + 0.001149SD× RtS + 0.009940SD×WS− 0.000080TA× RtS
+0.042159TA×WS + 0.000069RtS×WS− 0.889454SD2 + 2.14136TA2

−0.000025RtS2 + 0.002610WS2

(40)

HC_AO_S = −259.44110 + 34.00879SD− 44.45258TA + 0.045021RtS− 0.647405WS
+1.57366SD× TA + 0.001149SD× RtS + 0.009940SD×WS− 0.000080TA× RtS
+0.042159TA×WS + 0.000069RtS×WS− 0.889454SD2 + 2.14136TA2

−0.000025RtS2 + 0.002610WS2

(41)
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HC_AO_Z = −220.22209 + 33.25925SD− 51.40650TA + 0.046931RtS− 0.748546WS
+1.57366SD× TA + 0.001149SD× RtS + 0.009940SD×WS− 0.000080TA× RtS
+0.042159TA×WS + 0.000069RtS×WS− 0.889454SD2 + 2.14136TA2

−0.000025RtS2 + 0.002610WS2

(42)

HC_AO_C = −260.77136 + 34.05182SD− 45.45897TA + 0.049432RtS− 0.639711WS
+1.57366SD× TA + 0.001149SD× RtS + 0.009940SD×WS− 0.000080TA× RtS
+0.042159TA×WS + 0.000069RtS×WS− 0.889454SD2 + 2.14136TA2

−0.000025RtS2 + 0.002610WS2

(43)

TC_SiC_S = −264.15561 + 34.98068SD− 35.81218TA + 0.036800RtS− 0.759487WS
+1.57366SD× TA + 0.001149SD× RtS + 0.009940SD×WS− 0.000080TA× RtS
+0.042159TA×WS + 0.000069RtS×WS− 0.889454SD2 + 2.14136TA2

−0.000025RtS2 + 0.002610WS2

(44)

TC_SiC_Z = −248.28466 + 34.23114SD− 42.76610TA + 0.038710RtS− 0.860629WS
+1.57366SD× TA + 0.001149SD× RtS + 0.009940SD×WS− 0.000080TA× RtS
+0.042159TA×WS + 0.000069RtS×WS− 0.889454SD2 + 2.14136TA2

−0.000025RtS2 + 0.002610WS2

(45)

TC_SiC_C = −271.68750 + 35.02371SD− 36.81857TA + 0.041211RtS− 0.751794WS
+1.57366SD× TA + 0.001149SD× RtS + 0.009940SD×WS− 0.000080TA× RtS
+0.042159TA×WS + 0.000069RtS×WS− 0.889454SD2 + 2.14136TA2

−0.000025RtS2 + 0.002610WS2

(46)

TC_AO_S = −274.41661 + 34.27066SD− 35.46505TA + 0.050391RtS− 0.669378WS
+1.57366SD× TA + 0.001149SD× RtS + 0.009940SD×WS− 0.000080TA× RtS
+0.042159TA×WS + 0.000069RtS×WS− 0.889454SD2 + 2.14136TA2

−0.000025RtS2 + 0.002610WS2

(47)

TC_AO_Z = −247.88712 + 33.52113SD− 42.41897TA + 0.052301RtS− 0.770519WS
+1.57366SD× TA + 0.001149SD× RtS + 0.009940SD×WS− 0.000080TA× RtS
+0.042159TA×WS + 0.000069RtS×WS− 0.889454SD2 + 2.14136TA2

−0.000025RtS2 + 0.002610WS2

(48)

TC_AO_C = −273.11680 + 34.31369SD− 36.47143TA + 0.054802RtS− 0.661684WS
+1.57366SD× TA + 0.001149SD× RtS + 0.009940SD×WS− 0.000080TA× RtS
+0.042159TA×WS + 0.000069RtS×WS− 0.889454SD2 + 2.14136TA2

−0.000025RtS2 + 0.002610WS2

(49)

Table 10. The ANOVA results for the MH response obtained using the Design-Expert v. 13 software.

Source of Variation Sum of Squares DF Mean Squares F-Value p-Value

Model 26,858.81 47 571.46 3.52 0.0182
Linear 10,836.28 43 252.01 1.01 0.5622

Residual Error 1622.57 10 162.26
Lack-of-Fit 380.95 5 76.19 0.3068 0.8897
Pure Error 1241.62 5 248.32

Total 28,481.38 57

R-sq = 94.30%, R-sq (adj) = 67.53%

SD, TA, RtS, and WS represent the shoulder diameter (mm), tilt angle (degrees),
rotation speed (rpm), and welding speed (mm/min), respectively. Equations (32)–(49) are
used to find the maximum hardness. In total, there are 18 equations.
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4.2.3. The Mathematical Model for the Minimum Heat Input of the Welding
Process (HIModel)

As the p-values of the quadratic model were less than 0.05 and the model was statisti-
cally significant with a 95% confidence interval, the ANOVA findings for the HI indicated
that the model’s forms were acceptable for utilization as mathematical models. The math-
ematical model had a coefficient of determination (R2) of 95.45% from the influence of
variables, and the revised coefficient (adjusted R2) was greater than 74.04%, confirming
that the regression model obtained the correct format for the HI, as displayed in Table 11.
Equations (50)–(67) below, which describe the theories for the HI.

StC_SiC_S = 214.08843 + 17.24797SD− 27.28040TA + 0.095526RtS− 0.377298WS
+0.438009SD× TA + 0.000820SD× RtS− 0.002576SD×WS− 0.003204TA× RtS
−0.011944TA×WS− 0.000062RtS×WS− 0.388590SD2 + 5.98583TA2

−0.000051RtS2 + 0.002330WS2

(50)

StC_SiC_Z = 281.04277 + 14.90843SD− 32.15623TA + 0.094851RtS− 0.504721WS
+0.438009SD× TA + 0.000820SD× RtS− 0.002576SD×WS− 0.003204TA× RtS
−0.011944TA×WS− 0.000062RtS×WS− 0.388590SD2 + 5.98583TA2

−0.000051RtS2 + 0.002330WS2

(51)

StC_SiC_C = 221.67214 + 16.56296SD− 25.19909TA + 0.100808RtS− 0.393780WS
+0.438009SD× TA + 0.000820SD× RtS− 0.002576SD×WS− 0.003204TA× RtS
−0.011944TA×WS− 0.000062RtS×WS− 0.388590SD2 + 5.98583TA2

−0.000051RtS2 + 0.002330WS2

(52)

StC_AO_S = 257.03248 + 15.40253SD− 29.18501TA + 0.097371RtS− 0.343782WS
+0.438009SD× TA + 0.000820SD× RtS− 0.002576SD×WS− 0.003204TA× RtS
−0.011944TA×WS− 0.000062RtS×WS− 0.388590SD2 + 5.98583TA2

−0.000051RtS2 + 0.002330WS2

(53)

StC_AO_Z = 322.27949 + 13.06299SD− 34.06083TA + 0.096696RtS− 0.471205WS
+0.438009SD× TA + 0.000820SD× RtS− 0.002576SD×WS− 0.003204TA× RtS
−0.011944TA×WS− 0.000062RtS×WS− 0.388590SD2 + 5.98583TA2

−0.000051RtS2 + 0.002330WS2

(54)

StC_AO_C = 262.19353 + 14.71752SD− 27.10369TA + 0.102653RtS− 0.360264WS
+0.438009SD× TA + 0.000820SD× RtS− 0.002576SD×WS− 0.003204TA× RtS
−0.011944TA×WS− 0.000062RtS×WS− 0.388590SD2 + 5.98583TA2

−0.000051RtS2 + 0.002330WS2

(55)

HC_SiC_S = 169.66150 + 18.46046SD− 21.52969TA + 0.100731RtS− 0.213022WS
+0.438009SD× TA + 0.000820SD× RtS− 0.002576SD×WS− 0.003204TA× RtS
−0.011944TA×WS− 0.000062RtS×WS− 0.388590SD2 + 5.98583TA2

−0.000051RtS2 + 0.002330WS2

(56)

HC_SiC_Z = 238.84288 + 16.12092SD− 26.40551TA + 0.100056RtS− 0.340446WS
+0.438009SD× TA + 0.000820SD× RtS− 0.002576SD×WS− 0.003204TA× RtS
−0.011944TA×WS− 0.000062RtS×WS− 0.388590SD2 + 5.98583TA2

−0.000051RtS2 + 0.002330WS2

(57)

HC_SiC_C = 183.34046 + 17.77545SD− 19.44837TA + 0.106013RtS− 0.229505WS
+0.438009SD× TA + 0.000820SD× RtS− 0.002576SD×WS− 0.003204TA× RtS
−0.011944TA×WS− 0.000062RtS×WS− 0.388590SD2 + 5.98583TA2

−0.000051RtS2 + 0.002330WS2

(58)
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HC_AO_S = 206.56581 + 16.61503SD− 23.43429TA + 0.102576RtS− 0.179507WS
+0.438009SD× TA + 0.000820SD× RtS− 0.002576SD×WS− 0.003204TA× RtS
−0.011944TA×WS− 0.000062RtS×WS− 0.388590SD2 + 5.98583TA2

−0.000051RtS2 + 0.002330WS2

(59)

HC_AO_Z = 274.03986 + 14.27549SD− 28.31011TA + 0.101900RtS− 0.306930WS
+0.438009SD× TA + 0.000820SD× RtS− 0.002576SD×WS− 0.003204TA× RtS
−0.011944TA×WS− 0.000062RtS×WS− 0.388590SD2 + 5.98583TA2

−0.000051RtS2 + 0.002330WS2

(60)

HC_AO_C = 217.82210 + 15.93002SD− 21.35297TA + 0.107858RtS− 0.195989WS
+0.438009SD× TA + 0.000820SD× RtS− 0.002576SD×WS− 0.003204TA× RtS
−0.011944TA×WS− 0.000062RtS×WS− 0.388590SD2 + 5.98583TA2

−0.000051RtS2 + 0.002330WS2

(61)

TC_SiC_S = 165.97164 + 18.40496SD− 17.79632TA + 0.102604RtS− 0.289957WS
+0.438009SD× TA + 0.000820SD× RtS− 0.002576SD×WS− 0.003204TA× RtS
−0.011944TA×WS− 0.000062RtS×WS− 0.388590SD2 + 5.98583TA2

−0.000051RtS2 + 0.002330WS2

(62)

TC_SiC_Z = 224.19470 + 16.06543SD− 22.67215TA + 0.101929RtS− 0.417381WS
+0.438009SD× TA + 0.000820SD× RtS− 0.002576SD×WS− 0.003204TA× RtS
−0.011944TA×WS− 0.000062RtS×WS− 0.388590SD2 + 5.98583TA2

−0.000051RtS2 + 0.002330WS2

(63)

TC_SiC_C = 177.44251 + 17.71995SD− 15.71500TA + 0.107886RtS− 0.306440WS
+0.438009SD× TA + 0.000820SD× RtS− 0.002576SD×WS− 0.003204TA× RtS
−0.011944TA×WS− 0.000062RtS×WS− 0.388590SD2 + 5.98583TA2

−0.000051RtS2 + 0.002330WS2

(64)

TC_AO_S = 210.65464 + 16.55953SD− 19.70092TA + 0.104449RtS− 0.256442WS
+0.438009SD× TA + 0.000820SD× RtS− 0.002576SD×WS− 0.003204TA× RtS
−0.011944TA×WS− 0.000062RtS×WS− 0.388590SD2 + 5.98583TA2

−0.000051RtS2 + 0.002330WS2

(65)

TC_AO_Z = 267.17037 + 14.21999SD− 24.57675TA + 0.103774RtS− 0.383865WS
+0.438009SD× TA + 0.000820SD× RtS− 0.002576SD×WS− 0.003204TA× RtS
−0.011944TA×WS− 0.000062RtS×WS− 0.388590SD2 + 5.98583TA2

−0.000051RtS2 + 0.002330WS2

(66)

TC_AO_C = 219.70285 + 15.87452SD− 17.61961TA + 0.109731RtS− 0.272924WS
+0.438009SD× TA + 0.000820SD× RtS− 0.002576SD×WS− 0.003204TA× RtS
−0.011944TA×WS− 0.000062RtS×WS− 0.388590SD2 + 5.98583TA2

−0.000051RtS2 + 0.002330WS2

(67)

Table 11. The ANOVA results for the HI response using the Design-Expert v. 13 software.

Source of Variation Sum of Squares DF Mean Squares F-Value p-Value

Model 23,753.47 47 505.39 4.46 0.0074
Linear 9906.46 43 230.38 1.99 0.2272

Residual Error 1133.58 10 113.36
Lack-of-Fit 554.99 5 111.00 0.9592 0.5177
Pure Error 578.59 5 115.72

Total 24,887.05 57

R-sq = 95.45%, R-sq (adj) = 74.04%
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SD, TA, RtS, and WS represent the shoulder diameter (mm), tilt angle (degrees),
rotation speed (rpm), and welding speed (mm/min), respectively. Equations (50)–(67) are
calculated to find the minimum heat input. In total, there are 18 equations.

Based on Equations (14)–(67), the optimal friction stir welding parameters comprised
a rotational speed of 825 rpm, a welding speed of 75 mm/min, a shoulder diameter of
21.50 mm, and a tilt angle of 1.50 degrees, including a straight cylindrical pin, a particular
reinforcement for silicon carbide, and the straight tool pin’s movement direction. As
illustrated in Figure 8, the UTS was 216.994 MPa, the MH was 100.545 HV, and the HI was
422.118 ◦C.
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The mathematical model described in Sections 4.2.1–4.2.3 was merged to generate a
multi-objective model. The multi-objective model is a model that combines all three of
the model’s objectives (Equations (14)–(67)). This research proposes the following multi-
objective model.

Objective Function

MaximizeZ = UTSModel

MaximizeZ = MHModel and
MinimizeZ = HIModel

(68)

The objective function shown in Equation (68) will perform under the limitations
ranging from constraint (69) to (73).

18 rpm ≤ SD ≤ 25 mm (69)

150 rpm ≤ RS ≤ 1500 rpm, (70)

15
mm
min

≤ TS ≤ 135
mm
min

, (71)
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0 degrees ≤ TA ≤ 3 degrees (72)

315 °C ≤ HI ≤ 485 °C (73)

4.3. Modifying the Differential Evolution Method (MoDE) to Optimize the Multi-Objective Model

MoDE will be programmed on an ASUS laptop with a 2.70 GHz Intel Core i7-7500U
processor and 8 GB of RAM. Equations (68) to (73) will be solved using the MoDE algorithm.
In this section, the algorithm proposed in Section 3.4 will be used to solve the problem.
The analysis of the result will use Pareto front and TOPSIS as tools. From Figure 9, we can
observe a Pareto front graph of the MoDE method, showing the points of the three pairs of
objectives which demonstrate stress distributions: (1) tensile and hardness, (2) tensile and
heat input, and (3) hardness and heat input.

Metals 2023, 13, x FOR PEER REVIEW 25 of 39 
 

 

 
Figure 9. Pareto front of (a) tensile and hardness, (b) tensile and heat input, and (c) hardness and 
heat input using the MoDE method. 

The solution ranges have very wide distributions, and Figure 10 shows that the 
MoDE method is used to find answer distributions that are very close to each other, which 
means that the mechanism of the MoDE discovers more Pareto solutions than the DE and 
D-optimal. It then uses the technique to obtain the order of preference by analyzing its 
similarity to the ideal solution method (TOPSIS) in order to make normal decisions before 
the matrix, and it converts the dimensions of the attributes to non-attribute dimensions, 
which are used in Equations (74)–(80). 

 
Figure 10. Pareto front for the multi-objective with the MoDE method. 

𝑟௩ =
𝑥௩

ඥ∑ (𝑋௩)ଶ
ୀଵ

 (74)

𝑈௩ = 𝑤௩𝑟௩  (75)

𝑈௩
∗ = {max


𝑈௩   𝑖𝑓  𝑣 ∈ 𝑉  ;  min


𝑈௩   𝑖𝑓  𝑣 ∈ 𝑉∗} (76)

𝑈௩
′ = {min


𝑈௩   𝑖𝑓  𝑣 ∈ 𝑉  ;  max


𝑈௩   𝑖𝑓  𝑣 ∈ 𝑉 ′} (77)

𝑆
∗ = ඥ∑ (𝑈௩

∗ − 𝑈௩)ଶ
௩ୀଵ   (78)

𝑆
′ = ඥ∑ (𝑈௩

′ − 𝑈௩)ଶ
௩ୀଵ   (79)

𝐶
∗ =

𝑆
′

𝑆
∗ + 𝑆

′ (80)

𝑥௩  is the value of the objective function of point l and objective v; L is the number of points 
in PF; V* is a set of positive objective functions; V’ is a set of negative objective functions. 

Figure 9. Pareto front of (a) tensile and hardness, (b) tensile and heat input, and (c) hardness and
heat input using the MoDE method.

The solution ranges have very wide distributions, and Figure 10 shows that the MoDE
method is used to find answer distributions that are very close to each other, which means
that the mechanism of the MoDE discovers more Pareto solutions than the DE and D-
optimal. It then uses the technique to obtain the order of preference by analyzing its
similarity to the ideal solution method (TOPSIS) in order to make normal decisions before
the matrix, and it converts the dimensions of the attributes to non-attribute dimensions,
which are used in Equations (74)–(80).

rlv =
xlv√

∑L
l=1 (X lv)

2
(74)

Ulv = wvrlv (75)

U∗v = {max
L

Ulv i f v ∈ V; min
L

Ulv i f v ∈ V∗} (76)

U′v = {min
L

Ulv i f v ∈ V; max
L

Ulv i f v ∈ V′} (77)

S∗l =
√

∑V
v=1 (U

∗
v −Ulv

)2 (78)

S′l =

√
∑V

v=1 (U
′
v −Ulv

)2
(79)

C∗l =
S′l

S∗l + S′l
(80)

xlv is the value of the objective function of point l and objective v; L is the number of
points in PF; V* is a set of positive objective functions; V′ is a set of negative objective
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functions. wv is the predefined parameter, which is the weight of each objective function.
U* (U∗ =

{
U∗1 , U∗2 , . . . , U∗n

}
) and U′ (U′ =

{
U′1, U′2, . . . , U′n

}
) are positive and negative

ideal solutions, respectively. S∗l and S′l are the separation measures for each alternative
from both positive and negative ideal solutions, which will be used to calculate the relative
closeness to the ideal solution (C∗l ). The set of parameters that have a C∗l value closest to
1 will be selected as the most promising solution. The Pareto front was compiled using
many methods, such as the MoDE, the original DE, and particle swarm optimization (PSO),
which were adapted from [87]. The average ratio of the Pareto optimal solution (ARP) was
utilized to compare the performance of all Pareto-front-locating methods. Let N1, N2, . . . ,
Nk represent the number of repetitions employed in experiment k. Here, n1, n2, . . . , nk
represent the number of Pareto optimal solutions discovered in the kth experiment, while
K represents the total number of experiments. Consequently, the ARP is determined using
Equation (81). Table 12 demonstrates the ARP’s results.

ARP =

n1
N1

+ n1
N2

+ . . . + nk
Nk

K
(81)
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Table 12. ARP evaluation of PSO, DE, and MoDE.

Iteration
PSO DE MoDE

Number of
Pareto Points ARP Number of

Pareto Points ARP Number of
Pareto Points ARP

150 140 0.933 170 1.133 201 1.340
300 312 1.040 353 1.177 392 1.307
450 419 0.931 481 1.069 515 1.144
600 554 0.923 648 1.080 710 1.183
750 723 0.964 791 1.055 818 1.091
900 942 1.047 971 1.079 1032 1.147

Average 1203 0.973 1203 1.099 1362 1.202

According to Table 12, the suggested method (MoDE) can find optimal solutions that
are 23.522% and 9.394% more optimal than PSO and the original DE, respectively. In
exposing the number of Pareto points, the MoDE thereby delivered better results than
all other techniques. In the next experiment, the Pareto points from different methods
were evaluated using TOPSIS. We had to keep in mind that all points in the Pareto
front were a non-dominant solution, which means that there was no point in the so-
lution that was better than another solution in every objective. TOPSIS is the method
that was used for analysis, and we compared the performance of the different meth-
ods using a specified weight of objectives. In this experiment, four different weights of
objective were tested. The weight combinations of UTS, MH, and HI used in this exper-
iment were ([40:30:30], [80:10:10], [10:80:10], [10:10:80]). The result of TOPSIS is shown
in Tables 13–16.

Table 13. The optimal value results were obtained using various methods, and we analyzed the
model using TOPSIS with weights of 0.4:0.3:0.3 for UTS, MH, and HI.

Method
Continuous Variable Categorical Variables Objectives

RtS WS SD TA PT RPT TMPD UTS MH HI

Experiment 931.20 20.56 18.00 0.92 StC AlO Z 236.9 101.50 441.90
PSO 997.03 78.89 20.17 1.98 StC SiC S 244.81 102.44 430.21

Original DE 969.81 77.44 21.71 2.19 StC SiC S 251.01 103.37 434.51
MoDE 1104.68 49.26 20.63 1.56 StC SiC S 263.74 106.98 425.2

Table 14. The optimal value results were obtained using various methods, and we analyzed the
model using TOPSIS with weights of 0.8:0.1:0.1 for UTS, MH, and HI.

Method
Continuous Variable Categorical Variables Objectives

RtS WS SD TA PT RPT TMPD UTS MH HI

Experiment 1500.00 15.00 18.00 3.00 HC SiC S 246.30 101.80 443.50
PSO 961.61 77.73 20.15 1.72 StC SiC S 250.83 101.24 423.58

Original DE 993.67 76.63 20.55 1.22 StC SiC S 255.94 103.09 421.36
MoDE 1162.81 52.73 21.17 2.37 StC SiC S 264.68 105.56 415.26
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Table 15. The optimal value results were obtained using various methods, and we analyzed the
model using TOPSIS with weights of 0.1:0.8:0.1 for UTS, MH, and HI.

Method
Continuous Variable Categorical Variables Objectives

RtS WS SD TA PT RPT TMPD UTS MH HI

Experiment 676.50 63.60 21.54 3.00 StC AO S 233.43 104.40 439.00
PSO 1111.41 91.90 20.11 3.00 StC SiC S 243.48 104.94 425.96

Original DE 993.67 79.89 21.48 2.29 StC SiC S 250.93 105.45 420.11
MoDE 1104.68 49.26 20.63 1.56 StC SiC S 263.74 106.98 413.20

Table 16. The optimal value results were obtained using various methods, and we analyzed the
model using TOPSIS with weights of 0.1:0.1:0.8 for UTS, MH, and HI.

Method
Continuous Variable Categorical Variables Objectives

RtS WS SD TA PT RPT TMPD UTS MH HI

Experiment 150.00 15.00 18.00 0.00 HC SiC C 126.00 86.70 387.20
PSO 1350.08 82.44 19.60 3.00 StC SiC S 244.16 92.41 386.03

Original DE 1001.23 83.89 21.38 1.95 StC SiC S 250.74 99.58 375.55
MoDE 1500.00 77.78 19.95 2.13 StC SiC S 250.35 99.57 369.10

From Tables 13–16, it is clear that the MoDE outperformed all other methods in finding
the best solution when using TOPSIS. All four different weight values obtained for each
objective led to the solution quality of MoDE being better than that of any other method.
Therefore, we selected the weight values of 0.8:0.1:0.1 in Table 14 because these provided the
ultimate tensile strength. The MoDE method produced better results in terms of the UTS,
PSO, and original DE by 6.94%, 5.23%, and 3.30%, respectively, in the optimal experiment,
while providing a better MH, PSO, and DE by 3.56%, 4.09%, and 2.34%, respectively, in the
optimal experiment. Additionally, the minimum heat input, PSO, and DE improved by
6.80%, 2.00%, and 1.47%, respectively, in the optimal experiment.

4.4. Verifying the Result Obtained from Section 3.3 by Performing the Experiment

We will now use the parameter values obtained from the 0.8:0.1:0.1 weight combination
to verify the theory’s objective value and the experiment’s objective value. We performed
the real experiment using the parameter values shown in Table 17 with 30 specimens and
measured their UTS, MH, and HI to verify the result obtained from the MoDE theory. The
results of the experiment are shown in Table 18. The example of the tested specimens after
the tensile test is provided in Figure 11.

Table 17. A summary of the models of various optimizers.

Model PSO DE MoDE

Ultimate tensile strength (MPa) 244.83 250.94 263.93
Maximum Hardness (HV) 97.91 100.45 103.73
Minimum Heat Input (◦C) 386.03 395.55 405.42

Table 18. Comparison of the theory and experimental result.

Method
Experimental

UTS MH HI

Theory Experiment % Diff Theory Experiment % Diff Theory Experiment % Diff

PSO 250.83 244.83 2.45% 101.24 97.91 3.40% 423.58 386.03 9.73%
DE 255.94 250.94 1.99% 103.09 100.45 2.63% 421.36 395.55 6.53%

MoDE 264.68 263.93 0.28% 105.56 103.73 1.76% 415.26 405.42 2.43%
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In the equation below, %diff is the percent difference between the theory’s objective
values and the experiment’ objective values. Equation (82) was used to calculate the % diff,
as shown in Table 18.

%di f f =

∣∣∣Mechanicalpropertiesexp −MechanicalpropertiesTheory
∣∣∣

Mechanicalpropertiesexp × 100% (82)

From the solution obtained in Table 18, we can see that MoDE provides the best
solution both in theory and experimental value. Moreover, it also provides the closest
result for the theory and experimental value. Mechanicalpropertiesexp obtained by the
experiment and MechanicalpropertiesThory obtained by the theory include the ultimate
tensile strength (UTS), maximum hardness (MH), and minimum heat input (HI), which
were used to calculate the %diff shown in Table 18.

5. Microstructure Analysis

The experimental conditions used for the dissimilar welding process of AA5083 and
AA6061 with particle reinforcement displayed different microstructures that affected the
mechanical properties of the weld seam. The weld seam’s structure was determined by
using microstructure photography. The microstructure of the weld seam between the
optimal experimental and the confirmed experimental condition of the DE and MoDE
was compared.
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The characteristics observed in the weld seam’s structural investigation using the
optical microscope were as follows: The optimal experimental conditions were RtS at
1500 rpm, WS at 15 mm/min, SD at 18.00 mm, TA at 3 degrees, a hexagon cylindrical pin
type, SiC particle reinforcement, and straight tool pin movement direction, with a tensile
strength of 246.32 MPa, hardness of 101.8 HV, and heat input of 443.5 ◦C in the welding
process, respectively. The marcrostructure of the weld seam showed no defects or cracking
in the SZ and TMAZ, as shown in Figure 12a. The area of SZ exhibited nonhomogenous of
material and more material deformation in SZ and TMAZ. The weld seam microstructure
of SZ displays the presence of small reinforcement particles but at a low number, as shown
in Figure 13b–d. Due to the influence of the tool stirring on the sides of the RS and AS,
there was a slight increase in the SiC reinforcement particles and the appearance of large
and small reinforcement particles in the area of the TMAZ. When compared with the
optimal welding condition of DE, it was found that the optimal welding condition of the
original DE was an RtS of 993.67 rpm, WS of 76.63 mm/min, SD of 20.55 mm, and TA of
1.22 degrees, with a straight cylindrical pin, silicon carbide (SiC) reinforcement particles,
and a straight tool pin movement direction that shows an optimal solution consisting of a
UTS of 255.94 MPa, a hardness of 103.09 HV, and a heat input of 421.36 ◦C. The weld seam’s
marcrostructure was free of flaws, cracks and more material mixing than optimal initial
experiment condition show as Figure 12b. The microstructure in stir zone (SZ) displayed
the presence of homogeneous materials, an increased number of reinforcement particles,
and regular dispersion, as shown in Figure 14c. This led to increases in the UTS and MH.
Notwithstanding, as shown in Figure 14b,d, the thermomechanical affect zone (TMAZ)
exhibited the agglomeration of SiC particles in the retreating side (RS) but a low distribution
of reinforcement particles and was non-homogeneous in the advancing side (AS) due to the
decrease in rotation speeds and the tool tilt angle’s effect on the tool’s stirring effectiveness
and material flow.
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In the MoDE method, the optimal welding conditions were as follows: RtS: 1162.81 rpm;
WS: 52.73 mm/min; SD: 21.17 mm; TA: 2.37 degrees; straight cylindrical pin; SiC reinforce-
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ment particles; straight tool pin movement direction. This produced an optimal solution of
a UTS of 264.68 MPa, hardness of 105.56 HV, and heat input of 415.26 ◦C. When comparing
the solution with the optimal solution obtained for the original DE and the optimal welding
condition of the initial experiment, the optimal solution for the MoDE displayed good
weld joint that is the best performance and affected the weld seam’s quality. By verifying
the weld seam’s marcrostructure in SZ and TMAZ as show in Figure 12c, it was revealed
that there were no defects or cracking, and good mixing of material in SZ. Moreover, the
microstructure of material was homogeneous (Figure 15). The distribution of SiC reinforce-
ment particles exhibited regularity and an increased number of SiC particles, which filled
the area of SZ and TMAZ, as shown in Figure 15b–d, due to the presence of higher plastic
deformations than in the optimal conditions of original DE and the optimal experiment.
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The microstructure analysis conducted using SEM found that the optimal welding
condition of the initial experiment showed no microdefects and microcracks in the weld
seam. The microstructure appeared to be in the phases of α-Al and β-Al, with Fe particles
and small SiC particles in the SZ and TMAZ-AS areas, as shown in Figure 16c,d. The wear
of the stir tool in the welding process affected the Fe particles appearing in the structure.
The TMAZ in the RS side area exhibited α-Al and β-Al phases, as shown in Figure 16b.
Meanwhile, in the optimal condition, the original DE showed no microdefects but had
high reinforcement particle agglomerations in the TMAZ area on two sides, as shown in
Figure 17b,d. The SZ area displayed little dispersions of reinforcement particles but a higher
distribution of reinforcement particles than in the optimal welding condition of the initial
experiment. The microstructure exhibited a material base of α-Al and β-Al, a high number
of Fe particles, and SiC particles in the SZ and TMAZ areas. The optimal condition of MoDE
showed fewer Fe particles than in the optimal condition for DE and a good distribution
of SiC particles in the SZ and TMAZ areas, which could be a mechanism for increasing
the strength of the weld seam, as shown in Figure 18b–d. Moreover, the combination of
materials in the SZ area was highly homogeneous. Therefore, the optimal condition of
MoDE produced better mechanical properties than in the other optimal welding condition.
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6. Discussion

In this study, we showed that the optimal parameters for the friction stir welding of
dissimilar materials can be achieved via a four-step procedure. We utilized a D-optimal
design to plan the experiment in order to determine the optimal outcome. This experi-
ment incorporated seven input parameters and had three objectives. The multi-objective
optimization model was developed with the aid of the Design-Expert software. From the
experiment of Design-Expert design, experiment number 5 showed the following optimal
experiment conditions: SD, TA, RtS, and WS values of 18 mm, 3 degrees, 1500 rpm, and
15 mm/min, respectively, and HC pin geometry, SiC as the reinforcement particles sub-
stance, and straight tool pin movement directions. This welding condition provides a high
heat input that is sufficient for plastic deformations and facilitates the flow of materials
and reinforcement particles from the retreating side to advancing side. In addition, a
high tilt angle implicates increased turbulence flow, reinforcement particle distribution
and good mixed material; HC pin geometries and straight tool pin movement provide
a surface area and angularity that can impel the flow of materials effectively, as shown
in. [88,89]. However, the high heat input in welding processes increases the grain’s recrys-
tallization and grain growth [90], which can reduce the strengthening mechanism related
with strain-hardening processes and the strength of the grain boundary in TMAZ and
base material areas. Thus, the experimental result of the Design-Expert framework is not
an optimal result and should be improved in order to increase the tensile strength and
hardness. Design-Expert may be used to optimize the goal by addressing one objective at a
time; it cannot optimize one objective while simultaneously taking another objective into
account. The proposed methods can be utilized to solve a multi-objective model. A modi-
fied differential evolution algorithm is the methodology proposed here. These strategies
are discussed for the first time in [23,24]. The computational results presented in [23,24]
demonstrate that the suggested model outperformed the D-optimal design, genetic algo-
rithm (GA), and differential evolution algorithm (DE) in terms of its results. The outcome
of our model matches that of [23,24], indicating that the suggested model outperformed
the existing techniques. Semi-solid material (SSM) ADC12 aluminum, which was subjected
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to symmetric FSW, was employed in [23]. In our investigation, materials AA6061-T6 and
AA5083-H112 (asymmetric FSW) were utilized. This is the first model based on [23,24]
used for discovering the optimal solution for the asymmetric friction stir welding processes
of aluminum.

When optimizing a single objective value, it is possible to find a better solution than
when optimizing all objectives simultaneously. In this study, we optimized each objective
separately and discovered that the best UTS attained by optimizing a single objective
was 264.68 MPa, which was 5.23% and 3.30% higher than when optimizing MH and
HI, respectively. When optimizing UTS as opposed to MH, the maximum hardness of
the weld seam was 1.33% lower. This effect transpires similarly when maximizing other
single objectives. This implies that optimizing one target often diminishes the quality of
other objectives when carried out correctly. The findings of reference [91] confirm this
conclusion. The use of multiple objectives entails the compromises being made between
many objectives. Using a single objective to improve each model yields a value that is
inferior to the optimal objective value. However, there is no objective with a lower value
than the optimal value of the single objective model, which differs by more than 4%. In
contrast to single-objective optimization, the difference between objectives can be as high
as 25%. Reference [23] provides support for this conclusion. Therefore, if one is interested
in obtaining several responses, the multi-objective model and the method we provided
would align with this aspect.

In this study, we created an algorithm for determining the optimal value of a multi-
objective model. We utilized the same continuous input parameters as those used in Jia et al.
(2022) [15], Kumar et al. (2021) [4], and Kumar et al. (2021) [7]. In these three studies, the
other two parameters of importance were the tool’s manner of moving (straight line) and
the employment of a straight pin type; these two parameters influenced and improved
mechanical properties, defects, and joint ability according to [1,89,92]. The tensile strength
and micro-hardness were utilized as the target responses. The yield strength (YS), ultimate
tensile strength (UTS), and the elongation of the FSW were affected by controlled parame-
ters, such as the rotational speed (RtS), welding speed (WS), and plunge depth, according
to the findings of the existing body of research. The experiment was designed using the
Taguchi method, which demonstrated the effect of the controlled factors on the expected
response. Utilizing experiments, the optimal parameter was determined. In our research,
we found a superior solution to the one discovered by the experiment by employing MoDE,
which was an extension of the work of these researchers. Using a response weight of
80:10:10, we determined that the Lingo solution was 23.55% superior to the experimental
result, which was in agreement with the findings of [24]. The MoDE method produced
optimal welding conditions: RtS: 1162.81 rpm; WS: 52.73 mm/min; SD: 21.17 mm; TA:
2.37 degrees; straight cylindrical pin geometry; SiC reinforcement particles; straight tool
pin movement direction. This method obtained the targeted response values—UTS of
264.68 MPa, hardness of 105.56 HV, and heat input of 415.26 ◦C—which comprise the
optimal solution. The weld seam’s structure displays no defects or cracking, homogeneous
materials, and regular reinforcement particles dispersion. This optimal welding condition
could be suitable for controlling the heat input that will be appropriate for plastic defor-
mations and promoting continuous material flow, as shown in [93]. Moreover, increased
tool tilt angles produce high turbulence in materials in addition to welding movement, ac-
cording to [94]. Therefore, the stirring motion of the tool can increase the flow of materials,
material mixing processes, and the number of SiC reinforcement particles from the RS side
to the AS side. Moreover, this heat input value displayed minor phenomena, such as gain
recrystallization and grain growth, which comprise the strengthening mechanisms related
to strain hardening and grain boundary strengthening processes in the SZ TMAZ and BM
areas, as shown in [95,96]. The weld seam’s structure exhibited three good strengthening
mechanisms—particles reinforcement strengthening, strain hardening and grain boundary
strengthening—which produce superior tensile strength and hardness when compared
with different welding conditions.



Metals 2023, 13, 252 36 of 41

Rani et al. (2022) [18], Moradi et al. (2019) [20], Moradi et al. (2017) [29], and Tabasi et al.
(2016) [19] proposed that the use of SiC as the reinforcement particle influences the UTS
of the welded output. These studies conclude that the addition of the reinforcement
particles to the weld seam alters the mechanical properties of the welding seam, thus
confirming the findings of earlier studies. In addition, in this study, we examined three
mechanical welding property responses to determine which objectives out of UTS, MH,
and HI have the greatest influence on the reinforcement particle of SiC and aluminum
oxide. We discovered that hardness (MH) is the most important parameter because adding
SiC to the system increases the hardness by 2.41% compared to adding aluminum oxide to
the welding process, although the differences between UTS and HI when using different
reinforcement particles are 11.49% and 6.24%, respectively. This conclusion corresponds
with that of previous studies [66,97], which confirm that the addition of different types of
reinforcement particles might impact the mechanical properties and other aspects of the
weld seam differently.

7. Conclusions

In this investigation, we found the optimal FSW parameters based on three parameters:
ultimate tensile strength (UTS), maximum hardness (MH), and minimum heat input (HI).
Optimal parameter and objective values can be determined by using a four-step method.
These steps involve the following: (1) performing experiments with seven controlled
parameters to optimize three objectives using a D-optimal design; (2) constructing a multi-
objective mathematical model using the Design-Expert software; (3) developing a modified
differential evolution algorithm to solve the multi-objective model; and (4) applying the
result obtained from (3) to the experiment to verify the value of the parameters and
objectives. Friction stir welding was employed to join dissimilar aluminum alloys, AA6061
and AA5083, by utilizing the proposed approach. The following bullet points summarize
the key findings of this study:

(1) This study reveals, for the first time, the best welding conditions for AA6061 and AA5083.
Seven parameters simultaneously subjected to three objectives have been explored.

(2) The modified differential evolution algorithm is the method that has been devised to
locate the optimal parameters of the FSW (MoDE). Using Pareto front and TOPSIS,
the optimal parameter among several types of comparative approaches has been
analyzed. The methods that were compared for MoDE include the initial DE and PSO.

(3) Using MoDE, Pareto front analysis, and TOPIS, the following is the best set of pa-
rameters: (1) rotational speed of 1162.81 rpm, (2) welding speed of 52.73 mm/min,
(3) shoulder diameter of 21.17 mm, (4) tilt angle of 2.37 degrees, (5) pin-type straight
cylindrical, (6) silicon carbide reinforcement particles, and (7) straight tool pin move-
ment direction. The optimal responses (objective) of the asymmetric FSW are as
follows. The material has (1) an ultimate tensile strength of 264.68 MPa, (2) a maxi-
mum hardness of 105.56 HV, and (3) a maximum heat input of 415.26 ◦C.

(4) MODE has been implemented and compared to three methods: (1) a genuine experi-
ment utilizing D-optimal design, (2) particle swarm optimization (PSO), and (3) the
original DE. The computational results demonstrated that MoDE provides a superior
solution to the experiment, PSO, and the original DE by 7.45%, 4.45%, and 3.5%,
respectively. The proposed methods provide superior UTS, MH, and HI than other
methods by an average of 8.04%, 4.44%, and 2.44%, respectively.

(5) The reliability of the optimal parameters from the theory acquired from different
methods has been checked by completing 30 actual experiments for each method. The
computational result of the result verification model revealed that PSO, original DE,
and MODE produce experimental and theoretical value differences of 5.19%, 3.71%,
and 1.49%, respectively. This indicates that MoDE has the highest level of reliability
compared to the other approaches.

Future research subjects that can be expanded upon by using the fundamental concept
of our study can be classified into three categories. The controlled parameter perspective
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is the first intriguing area. The literature review revealed that other characteristics—such
as tool pin movement directions, penetration, and methods for adding reinforcement
particles—have been explored in FSW research; consequently, these parameters can be
incorporated into the suggested model. In addition to UTS, MH, and HI, researchers
are interested in additional objectives or responses, such as the bending and elongation
phenomena of the weld seam. This can also be incorporated into the model in order to
simultaneously confirm the optimal value for all objectives. Finally, a more efficient method
can be designed to replace MoDE in order to enhance the quality of the result. Currently, the
available new methods include artificial and multiple intelligence, variable neighborhood
strategy adaptive search, and hybrid variants of various methods.
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