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Abstract: FeCrAl is regarded as one of the most promising cladding materials for accident-tolerant
fuel at nuclear fission reactors due to its comprehensive properties of inherent corrosion resistance,
excellent irradiation resistance, high-temperature oxidation resistance, and stress corrosion cracking
resistance. In this work, the irradiation response of FeCrAl irradiated by 2.4 MeV He2+ ions with a
fluence of 1.1 × 1016 cm−2 at room temperature was studied using X-ray diffraction, transmission
electron microscopy, and nanoindentation. The characterization results of structural and mechanical
properties showed that only black-dot defects exist in irradiated FeCrAl samples, and that the
hardness of the irradiated samples was 11.5% higher than that of the unirradiated samples. Similar to
other types of radiation defects, black-dot defects acted as fixed defect obstacles and hindered the
movement of slip dislocations moving under the applied load, resulting in a significant increase in
the hardness of FeCrAl. Importantly, this work points out that irradiation-induced black-dot defects
can significantly affect the mechanical properties of materials, and that their contribution to radiation
hardening cannot be ignored.

Keywords: FeCrAl; ion irradiation; black-dot defects; irradiation hardening

1. Introduction

The continuous development of nuclear energy is inseparable from many basic re-
search fields, such as nuclear waste treatment and advanced nuclear energy material
research [1–3], and promotes the development of energy, materials, and other fields. Since
the 2011 Fukushima nuclear accident in Japan, the industry attaches great importance to
the development of a new generation of accident-tolerant fuel (ATF) cladding materials
that improve the ability of cladding to resist high-temperature accidents [4–6]. As one of
the most promising cladding materials for ATF technology for light water reactors, FeCrAl
alloys have impressive mechanical properties and high temperature corrosion resistance
compared with traditional zirconium alloys due to the formation of a protective film of alu-
minum oxide, thereby fundamentally eliminating the con-zirconium water reaction [7–10].
However, it has been found that irradiation hardening could occur under a high-energy
flux circumstance [11,12], which limits the service life for the nuclear reactor in commission.

Unlike γ-ray irradiation [13,14], high-energy ion irradiation results in the material’s
lattice atoms being knocked out of their initial positions by incident particles and then inter-
acting with the surrounding matrix to generate a collision cascade. During the quenching
period of the collision cascade, a number of point defects, including interstitials and vacan-
cies, recombine; the accumulation of the remaining point defects leads to the formation of
defect clusters, such as dislocation loops and voids [15], and even causes phase transition
in irradiated material [16]. These defects (dislocation loops in particular) could lead to
irradiation hardening and the embrittlement of structural materials, which are obstacles for
gliding dislocation [17,18]. In bcc iron and iron-based alloys, the natural Burger vectors
of dislocation loops have either <100> or 1/2<111>. To date, the fast one-dimensional
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diffusion of 1/2<111> dislocation loops allows itself to be absorbed by other sinks, such
as other dislocation loops, precipitates, and grain boundaries, whereas <100> loops with
a sessile nature are almost immobile and accumulate in the microstructure once formed,
making them a stationary sink for mobile point defects [19–23]. According to the experi-
ment conducted by Yao et. al., dislocation loops with the characteristics of 1/2<111> and
<100> exist in pure iron at room temperature [19]. Under high-dose radiation conditions,
dislocation loops with the characteristic of 1/2<111> are dominant in irradiation produc-
tion [21]. The addition of chromium content improves the strength of obstacles hindering
the gliding of dislocation due to the increment of unpinning stress, which was studied by
Yao et.al [20]. Computationally, Cr segregation during the dislocation enhances its ability
to impede the motion of the dislocation line, thereby further inducing the degradation of
structural material [24]. The enrichment of Cr inhibits the motion of glissile dislocation
loops and the subsequent coalescence between dislocation loops, resulting in increased
dislocation density.

Thus far, many experimental results show that FeCrAl alloys and FeCr alloys exhibit
similar structural and mechanical responses under irradiation. Currently, investigations
regarding the radiation hardening of FeCrAl are generally conducted experimentally and
computationally. A variety of in situ TEM experiments under Kr++ ion irradiation at 320 ◦C
for a series of FeCrAl alloys with Cr content of 10~18 wt% and Al content of 3~5 wt%
conducted by Haley et al. showed that a larger proportion of dislocation loops with the
characteristic of 1/2<111> exist in irradiated materials [25]. It was proposed that the content
of 1/2<111> dislocation loops increased with increasing Al content. Additionally, the simu-
lation work conducted by Yu et al. showed that Al could be segregated to dislocation loops
with 1/2<111> and <100> characteristics, and further improve the obstacle strength with
relatively lower content [26]. It was thus found that the evolution behavior of dislocation
loops and Cr-rich phases could be regulated by changing the Cr and Al contents. However,
there has been relatively few studies regarding helium irradiation of FeCrAl alloys, and
these have mainly focused on the evolution behavior of helium bubbles. He ion irradiation
usually induces the formation of black-dot defects, dislocation loops, and He bubbles in
FeCrAl [15,27], which accelerates the degradation of FeCrAl properties. Prokhodtseva’s
and Schäuble et al.’s studies showed that implanted He atoms inhibit the generation of
<100> dislocation loops by blocking the movement of 1/2<111> dislocation loops [28].
Previous studies have shown that a material’s elemental composition, irradiation-induced
defect clusters, material phase transitions, and dislocation loops can significantly affect
material hardness [29–31]. However, the formation of black-dot defects induced by irradia-
tion is often accompanied by the appearance of dislocation loops and sedimentary facies.
Given the small size of black-dot defects, their effect on radiation hardening has often
been ignored; it is difficult to identify whether black-dot defects significantly contribute
to radiation hardening. Therefore, it is important to independently study the influence of
black-dot defects induced by irradiation on the hardness of FeCrAl, which is conducive to
the evaluation of FeCrAl irradiation hardening.

In this work, a Fe-10Cr-4Al sample was irradiated by 2.4 MeV He2+ ions with a fluence
of 1.1 × 1016 cm−2 at room temperature in order to investigate the effect of black-dot defects
induced by ions irradiation on the hardness of FeCrAl. Based on X-ray diffraction (XRD),
transmission electron microscope (TEM) microstructure characterization, and nanoindenta-
tion analysis, the microstructure and corresponding hardness evolution of FeCrAl were
investigated after ion irradiation.

2. Materials and Methods

The material used in this study was FeCrAl alloy (Fe-10Cr-4Al) with body-centered-
cubic (bcc) structure; the weight percent (wt%) of Fe, Cr, and Al elements were 86 wt%,
10 wt%, and 4 wt%, respectively. The pure Fe (99.50 wt%), pure Cr (99.00 wt%), and pure
Al (99.60 wt%) were first melted in a 25 kg vacuum induction furnace into an ingot [32]
using a magnesia crucible; the vacuum degree was less than 100 Pa. The ingot was then
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homogenized at 1150 ◦C for 3 h, hot rolled at 800 ◦C, and annealed at 1000 ◦C for 1 h.
Subsequently, the ingot was cut into several 13 × 13 × 5 mm pieces, which were elec-
trolytically polished. Samples were irradiated by 2.4 MeV He2+ ions with a fluence of
1.1 × 1016 cm−2 at room temperature utilizing the Low Energy intense-highly-charged
ion Accelerator Facility (LEAF) at the Institute of Modern Physics, Chinese Academy of
Sciences. To avoid undesired heating of the FeCrAl samples, a relatively low beam flux
(5.456 × 1011 cm−2 s−1) was constantly maintained during the entire irradiation pro-
cess; thus, the self-annealing phenomenon during irradiation that can heal induced lattice
damage could be considered negligible. As shown in Figure 1, the depth profiles of displace-
ments per atom (dpa) and He concentration were determined through the Stopping and
Range of Ions in Matter (SRIM) 2013 quick simulation code [33,34] with 40 eV displacement
threshold energy for elements Fe, Cr, and Al. The maximum damage and irradiation were
located around depths of 4.02 µm and 4.08 µm from the irradiated surface, corresponding
to dpa and He concentration of 0.6 and 0.5%, respectively. In addition, both decreased to
zero at a depth of 4.38 µm nm after reaching the corresponding peak.
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Figure 1. Distributions of dpa and He concentration as a function of penetration depth for 2.4 MeV
He2+ ions in FeCrAl based on SRIM 2013 simulation.

The XRD experiments were performed on the polished surface (irradiated surface) of
the samples using a Bruker D8 Advance diffractometer equipped with a copper anticathode;
the diffraction patterns were recorded between 40◦ and 85◦ in 2θ scale with a step size of
0.02◦. The penetration depth was approximately 6 µm and covered the entire irradiation
region [35]. A cross-sectional TEM sample was prepared using an ion milling process
performed using a focused ion beam mill, in addition to a lift-out process performed using
an FEI Helios NanoLab 600 Dual Beam system. TEM images were obtained using an FEI
Tecnai G2 F20 transmission electron microscope. Quantitative analysis for the number
density of black-dot defects was conducted using images acquired at the different selected
regions with the thickness of the corresponding area obtained by convergent beam electron
diffraction (CBED) patterns [36]. Notably, the TEM experiment time for each sample
was quite short, and electron beam irradiation did not generate noticeable annealing
and recrystallization of lattice damage. To determine hardness, nanoindentation tests
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utilizing an Agilent Nano Indenter G200 (Agilent Technologies, Inc., Santa Clara, CA, USA)
were performed on the polished surface (irradiated surface) of FeCrAl. The continuous
stiffness measurement (CSM) was performed using a Berkovich diamond indenter tip
with a diameter of 20 µm. Using a continuous measure of contact stiffness during loading,
hardness as a continuous function of depth from a single indentation test was obtained.
The maximum depth of all indentation tests was set to 3 µm, and 10 indentation tests were
made in each sample to obtain an average value.

3. Results and Discussion
3.1. Irradiation-Induced Structural Evolution

The XRD patterns obtained from virgin and irradiated FeCrAl samples are shown in
Figure 2. As evidence, FeCrAl samples exhibited three characteristic peaks at 2θ = 44.5◦,
64.5◦, and 81.7◦, as shown in Figure 2a, corresponding to reflections from the (110), (200),
and (211) planes (PDF#54-1410), respectively. Compared with the virgin FeCrAl sample, no
new peaks appeared in the XRD pattern of the irradiated FeCrAl sample, indicating that no
observable phase transition occurred. In order to accurately determine the peak evolution
induced by ion irradiation, the (211) planes of the virgin and He irradiated samples were
finely scanned. As shown in Figure 2b, compared with the peak position and full width
at half maximum of the virgin, the finely scanned results confirmed that the XRD peak
position of the irradiated sample has no shift and no observable change in the broadening,
further indicating that the crystal structure was stable, and the irradiated regions of the
samples remained in the original phase under 2.4 MeV He2+ irradiation with a fluence
of 1.1 × 1016 cm−2 at room temperature. Therefore, changes in the microstructure and
nanohardness were primarily caused by the formation and evolution of defects induced by
ion irradiation rather than by phase transitions or precipitation.

TEM observations were performed on sample cross-sections to visually characterize
and confirm the structural damage evolution induced by 2.4 MeV He2+ ion irradiation. A
low magnification cross-sectional dark-field TEM image shows that He2+ ion irradiation
led to a region of damage with a thickness of ~600 nm below 3600 nm on the sample
surface, as shown in Figure 3a. No nanoprecipitates were observed, which was consistent
with the XRD characterization results. The SRIM-simulated dpa profile is also displayed
in Figure 3a for comparison with the TEM result, and indicates that the damaged region
corresponds to a dpa value range of 0.14–0.65. Furthermore, compared with the region near
the surface (Figure 3b) without observable defects, the TEM image of the damaged region
(Figure 3c) shows that distinct punctate defects (black-dot defects) dominated the damaged
microstructure, which appeared as white dots under dark-field conditions. In addition,
adjusting the focal length of the objective lens to overfocus and underfocus during the TEM
observation process did not find any obvious features of observed helium bubbles, ruling
out the possibility that these dot defects were He bubbles. Figure 3d,e are the dark-field
and bright-field TEM images of the damaged peak region, respectively. Several small-sized
black-dot defects (<1 nm) could not be clearly counted. Therefore, only the number density
of larger size (>1 nm) black-dot defects was calculated, which was ∼9.22 × 1023 m−3.
The TEM observation results confirmed that the irradiation conditions of 2.4 MeV He ion
irradiation with a fluence of 1.1 × 1016 cm−2 at room temperature did not induce the
formation of deposition phases or He bubbles in the FeCrAl used in this study; however, it
did induce a large number of black-dot defects in the region near the damage peak.
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3.2. Irradiation-Induced Hardness Evolution

In order to characterize the effect of black-dot defects on the hardness of FeCrAl,
nanoindentation tests with CSM were performed on virgin and irradiated FeCrAl samples.
The depth profiles of the averaged nanoindentation hardness of virgin and irradiated
samples are shown in Figure 4a; all hardness averages continuously decreased with in-
creasing indent depth due to the indentation size effect (ISE) [37]. The measured hardness
at indentation depths less than 80 nm was ignored due to uncertainty caused by surface
artifacts and the indenter tip complexity [22,38]. In addition, the radius of the plastically
affected zone was usually several times the indentation depth during nanoindentation
testing. Therefore, the unirradiated regions started to affect the hardness data (the softer
substrate effect (SSE)) when the indentation depth exceeded a certain value. As shown
in Figure 4b, the ratio of the average hardness values of the irradiated sample (Hirr) and
the virgin sample (Hvir) at the indentation depth peaked with the increase in indentation
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depth at approximately 900 nm. Beyond the depth of peak (900 nm), the SSE started to
influence the accuracy of the measurement of hardness in the irradiated region, and caused
a decrease in relative hardening [39]. It is worth noting that the peak depth (900 nm) was
approximately 1/4.5 of the depth (4080 nm) of the irradiation damage layer, which indicates
that for the FeCrAl used in our work, the indenter reflected the hardness of the indentation
region, and extended down nearly 4.5 times the contact depth.
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The Nix–Gao model, based on the geometrical necessary dislocation (GND) [40], was
utilized to eliminate the ISE and obtain an accurate hardness independent of the indentation
depth. The model’s description of the relationship between hardness and indentation depth
is as follows:

H = H0

√
1 +

h∗

h
(1)

where H is the measured hardness, h is the indentation depth, H0 is the hardness in the limit
of infinite depth, and h* is a characteristic length that depends on the indenter and the spe-
cific material. Despite the damage gradient effect (DGE), the Nix–Gao model is extensively
used to evaluate the bulk equivalent hardness of thin ion-irradiated layers [41–44].

Figure 5a shows the profiles plots of H2 versus h−1, which reveal that the profile of
the irradiated sample exhibited bilinearity. The inflection point was located at a depth of
~900 nm, which was consistent with the depth corresponding to the position of the ratio
peak in Figure 4b. However, the curve of the unirradiated sample also showed a slight
bilinearity due to significant surface effects. Therefore, assuming that the surface effect had
the same effect for irradiated and unirradiated samples, the amount of H0 of samples in
the range of 80–900 nm was calculated using the Nix–Gao model to minimize the surface
effect on hardening irradiation measurement. As shown in Figure 5b, compared with
the 2.87 GPa hardness of the unirradiated sample, the hardness of the irradiated sample
increased to 3.20 GPa, which was approximately 11.5% higher than the unirradiated sample.
The increase in hardness of irradiated samples indicates that irradiation-induced black-dot
defects could significantly affect the mechanical properties of materials. Irradiation-induced
black-dot defects were typically sessile, as opposed to glissile dislocations, which might
have moved under an externally applied load. In addition, further irradiation led to Cr
segregation on these defects, allowing defects to become more stable in bulk and to grow
further [24]. Due to Cr segregation, black-dot defects became stronger obstacles compared
with non-decorated defects. As a result, the possible Cr segregation at irradiation-induced
black-dot defects contributed to hardening. Therefore, the interaction of dislocations with
black-dot defects can be interpreted as the collision of several gliding dislocations with
fixed defect obstructions, which ultimately results in radiation hardening.
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4. Conclusions

In this study, the effect of black-dot defects on the hardness of FeCrAl subjected to
He2+ irradiation at room temperature was investigated based on the characterization of
structural and mechanical properties. The structural characterization results show that
He ion irradiation did not induce the formation of He bubbles or new phases in FeCrAl,
but did induce many black-dot defects at the end of the irradiating region. The black-dot
defects could act as fixed obstacles and hindered the movement of slip dislocations under
the applied load, thereby affecting the hardness of FeCrAl. Compared with the 2.87 GPa
hardness of the unirradiated sample, the hardness of the irradiated sample increased to
3.20 GPa, an increase of 11.5%. This study confirmed that, consistent with the effect of
dislocation loops, the small black-dot defects induced by irradiation could significantly
affect the hardness of FeCrAl.
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J.S. and M.Y.; formal analysis, J.S., M.Y., Z.W., H.D., W.M., Y.D. and Y.L.; investigation, J.S., M.Y.,
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