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Abstract: Gallium alloys are ideal base carriers for temperature-sensitive ferrofluids, which can
be used for energy convection, soft robotics, microchannels, magnetorheological devices, etc. In
this study, gallium was mixed with different substances (In, Sn, Zn, Ge, and Al) to obtain a low
melting point, reduce the wetness and adhesion of its alloys, and realize low viscosity. The melting
point, contact angle on certain solid plates, viscosity, and viscoelasticity of the gallium alloys were
measured, and some useful gallium alloys were obtained. The experimental results showed that
Ga80In10Sn10 had lower wettability at a larger contact angle of 148.6◦ on the Teflon plate. Here,
(Ga80In10Sn10)97Zn3 with a melting point of 8.2 ◦C, lower than the melting point of Galinstan, was
developed. It had a viscosity about three times that of water at room temperature and an elastic
response from 0.1 to 100 Hz at a 1% strain amplitude for the viscoelasticity. It was expected that a
kind of temperature-sensitive magnetic fluid with a gallium-based liquid alloy as the base carrier
liquid would be prepared in the future with Teflon as the container to achieve energy conversion
under the drive of the magnetic field.

Keywords: Ga alloy; melting point; viscoelasticity; wetness; eutectic; Galinstan; contact angle;
magnetic fluid

1. Introduction

Gallium alloy has been studied for making lead-free solders [1]. However, here, the low
melting temperature of the gallium alloy was studied for processing, chemistry, and func-
tion [2]. More specifically, gallium alloys are ideal base carriers for temperature-sensitive
ferrofluid (magnetic fluid) and energy convection. They can also be used in various fields
such as “soft robotics [3], microchannel [4], magnetorheological fluid [5], 3D printing [6],
catalysis, energy storage [7], chemical sensors [8], etc.” Our group studied gallium-based
ferrofluid [9]. Temperature-sensitive ferrofluid is very suitable as a medium for energy
transportation and energy conversion and has important application prospects in the heat
dissipation components of electronic products such as computers and cell phones [10,11],
and can also be applied to ferrofluid temperature difference power generation, ferrofluid
temperature difference drives, magnetic refrigeration, magnetic heating, magnetic thermal
medicine, and other fields [12]. Currently, most temperature-sensing ferrofluids are based
on oil or water. However, problems exist, such as high viscosity, low thermal conductivity,
and small magnetic variation with temperature changes [13]. The liquid metal gallium
and its liquid alloy are ideal for thermosensitive ferrofluid carrier liquids [14]. Gallium
(density 5.91 g/cm3, thermal conductivity 40.6 W·m−1 k−1) has a melting point of 29.8 ◦C.
Therefore, it has the advantage of remaining liquid when used at room temperature. It
has been reported that when silicon nanoparticles are dispersed in metal gallium with a
melting point of 30 ◦C, they remain liquid even at 0 ◦C due to the super-cooling effect [15].
Some gallium alloys can remain liquid at room temperature, with good electrical and
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thermal conductivity properties. Additionally, though the ferrofluid dispersing micron
size Gd powder (0.2–2.3 wt.%) in Galinstan was reported to use magnetocaloric liquid,
the oxidation prevention of particles and the liquid and higher dispersion of particles was
expected [16]. Here, the characteristics of metal liquid as a base carrier of ferrofluid that
did not disperse magnetic particles will be investigated.

Gallium alloy is a eutectic alloy with very low viscosity, high surface tension as
a “liquid”, and very high tensile thermal conductivity and electrical conductivity as a
“metal” [17]. Gallium has excellent properties and a low melting point, which are the
focus of our research. Gallium is commonly mentioned as α-gallium, i.e., an orthogonal
system in which each atom harmonizes with seven neighboring atoms to form a highly
an-isotropic atomic (Figure 1, made by VESTA 4.6.0). However, the fact is that gallium has
many sub-stable phases and a lower melting point. For example, mono-clinic β-gallium has
a melting point of −16.3 ◦C, orthorhombic γ-gallium has a melting point of −35.6 ◦C, and
rhombohedral δ-gallium has a melting point of −19.4 ◦C [18]. Furthermore, gallium has
different phase structures at high pressure, such as Ga-II and Ga-III [19]. This undoubtedly
shows the complexity of the gallium phase structure. However, there is still a lack of
knowledge about gallium and its liquid phase structure, and more basic research is still
needed to follow this up. It also provides an idea to lower its melting point and vigorously
trap or stabilize the sub-stable phase. These intrinsic characteristics result in a low melting
point, allowing gallium to behave in both covalent and metal bonding in the solid state.
When gallium and other metals are mixed at the atomic level, a greater distance between
the atoms constitutes a significant structural anisotropy. This indicates that the binding
is weak and promotes the rupture of the crystal structure at low temperatures, leading to
eutectic (a lower melting point) [17]. Here we have collected melting points of Ga-based
alloys from some literatures, as shown in Table 1.
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Table 1. Research status of the melting point of gallium-based liquid metal (each value in the metal
column means the weight percentage).

Metal Melting Point (◦C)

Pure Ga 29.76 [20]
Galinstan

(Ga68.5In21.5Sn10) 11 [5,20] (solidify point −19 [21,22])

(Ga78.3In14.9Sn6.8) 13.2 [8]
Galinstan + 0.2Gd 13.2 [16]
Galinstan + 1.2Gd 13.7 [16]
Galinstan + 2.3Gd 16.3 [16]

Ga75.5In24.5 15.4 [23]
Ga90Zn10 24.7 [20]

Ga62Sn32Bi6 128 [20]
Ga86.5Sn13.5 20.5/21 [20]
Ga91.6Sn8.4 20.6 [24]
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Table 1. Cont.

Metal Melting Point (◦C)

Ga85.8In14.2
Liquid at room temperature [25]Ga91.5Sn8.5

Ga77.2In14.4Sn8.4
Ga–In binary eutectic 15.3 [26]
Ga–Sn binary eutectic 20.5 [26]

Al–Ga–Sn eutectic 19 [26]
Al–Ga–In eutectic 15 [26]

Al–Ga–In–Sn eutectic 10.7 [26]
Al–In binary eutectic 156 [26]
Al–Sn binary eutectic 228 [26]

SnZn eutectic 198 [26]
SnZn + 1.8 Ga 195 [27]
SnZn + 2 Ga 199 [27]
SnZn + 3 Ga 195 [27]
SnZn + 4 Ga 188 [27]
SnZn + 6 Ga 174 [27]
SnZn + 8 Ga 155 [27]

Gallium and its alloys have the lowest melting points, about 10 ◦C. Galinstan exhibits
a low melting point from 11 ◦C to 13 ◦C [8,21]. However, it has high wetness (small
contact angle) and adhesion. The solidification (freezing) point of Galinstan is −19 ◦C.
Ga, In, and Sn alloys containing Zn, Gd, Bi, and Al have a low melting point. Here, the
synthesis of alloys with lower melting points has been investigated. However, they have
high wetness and adhesion [28,29] and make it difficult to maintain contact with glass or
metal [30]. Therefore, measuring the contact angle of liquid alloys on the plate of glass,
copper, aluminum, and plastics is necessary. Additionally, it is required for the Ga alloy to
show lower viscosity and to investigate viscoelasticity for it to be utilized in movement
applications such as in ferrofluids. Room-temperature gallium-based liquid metals have
been widely used in lubrication, sealing, battery, medical, liquid robotics, and many other
fields, which can significantly improve product and technical performance [31–38].

In this study, different gallium-based alloys with In, Sn, Zn, and Al were prepared, and
the melting point, wetness, and fluidity of gallium alloys were investigated. The purpose
was to obtain a liquid alloy with a low melting point and suitable properties that can be
used as a temperature-sensitive ferrofluid base carrier.

2. Experiment
2.1. Preparation of Gallium Alloy

Pure Ga(6N) produced by Dowa electronics materials Co., Ltd., Nisaki, Hyogo, Japan
was utilized. Metal In, Sn, Zn, and Al were purchased from Lijia metal material Co.,
Ltd., Xintai, Hebei, China. All the raw materials were stored in an argon-filled glove box.
First, the preparation of the type and ratio (weight percentage) for alloying elements was
performed in the glove box after the oxidized skin of the raw metal was removed with
sandpaper. Next, the prepared alloys were placed in a sample bag filled with alcohol and
set in an ultrasonic cleaner for 10 min to wash. After that, the sample was dried and put
into the glove box, which was weighed strictly on a balanced scale. Ga was first heated
to transform it into a molten state before being added to In, Sn, and other solid metals.
The sample was mixed, cooled, and stored in a test tube under a seal. The test tube was
removed and put in the ultrasonic cleaner at 40 ◦C for 1 h. The sample was uniformly
melted, and the gallium liquid alloy sample was finally prepared.

2.2. Melting Point Measurement

The melting point of gallium-based liquid metals was measured by differential scan-
ning calorimetry (DSC, NETZSCH DSC 200 F3, NETZSCH, Bavaria, Germany). First, to
eliminate the thermal history, the initial temperature was set at 40 ◦C and held for 1 min.
Then, the temperature was lowered to −50 ◦C at a rate of 5 ◦C/min, held for 1 min, and
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then raised to 40 ◦C at a rate of 5 ◦C/min to complete the test of the melting point of
gallium-based liquid metal.

2.3. Contact Angle Measurement

The flat plates of Teflon (PTFE (polytetrafluoroethylene)), Cu, SiO2, and Al were
purchased from the Chunshi new material Co. LTD. Dongguan, Guangdong, China. As
the contact angle affected the plate roughness, the plate’s average roughness (nm) was
measured using an atomic force microscope (AFM, 5100N, HITACHI, Tokyo, Japan).

The contact angle is a quantitative measure of the surface’s wettability, represented by
the angle at which a liquid or vapor interface interacts with a solid surface. The wetting
ability was determined using a contact angle measuring instrument (SINDIN SDC-200S,
Dongguan, Guangdong, China). A small amount of the gallium-based liquid alloy was
extracted with a syringe, a drop of the sample was placed on the substrate, and a screenshot
was taken for contact angle measurement. The gallium-based alloys have high wetness and
adhesion, and it is difficult to maintain contact with glass or metal. Therefore, it is necessary
to explore their contact surfaces. In this experiment, the test platform was at a constant
temperature of 20 ◦C and in an air atmosphere for practical utilization. Gallium-based
alloys were put on four different plate substrates of Al, Cu, silica (SiO2), and polymer
Teflon to observe the contact angle.

2.4. Viscosity Measurement

Due to the low melting point, low kinematic viscosity, stable properties, and easy
corrosion with other metals, many viscosity testing methods were unsuitable for the
room temperature viscosity measurement of gallium-based alloys. As the viscosity by the
capillary method was affected by adhesion [39], here, the parallel disc type viscometer (HR
20, TA instrument, New Castle, DE, USA) was mainly used, as shown in Figure 2.
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In addition, these viscoelastic tests were carried out for the samples using a stress-
controlled rheometer [40] (HR 20-TA instrument) with parallel plates, as shown in Figure 2.
However, the peculiarities of liquid metals made the experiment difficult because the
formation of oxide skins on the liquid metal prevented the uniform metal from filling
the gap between the two plates. As a result, the gallium-based alloys were prone to
extensive slippage. This was improved by applying a Teflon coating on the surface of the
parallel plates.

γ =
R×Ω

h
, σ =

2M
πR3 (1)

γ—shear rate; Ω—rotational angular velocity; σ—shear stress; M—torque

3. Results and Discussion
3.1. Melting Point Measurement

The DSC test curve of the alloy (Ga80In10Sn10)97Zn3 is shown in Figure 3. The melting
point of (Ga80In10Sn10)97Zn3 was 8.2 ◦C, and the solidifying point was −29.2 ◦C. The
melting point of gallium-based alloys was successfully reduced by adding In and Sn,
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compared with pure Ga. By using this method, various kinds of metal alloy melting points
were measured. The melting points of the gallium-based alloy are listed in Table 2. Table 2
shows the melting points of other GaIn alloys, as shown in Figure 4a. In the GaIn alloy, the
melting point was low, between 17.5 and 18.0 ◦C, with 10 to 70% In contents in Ga. The
melting points of GaSn and GaZn with the GaIn alloy are shown in Figure 4b. The GaSn
alloy’s melting point was a little higher, between 22.1 and 22.5 ◦C with 10 to 50% of Sn in
Ga. In the GaZn alloy, the melting point was high, between 26.7 and 26.8, with 10 to 30% of
Zn in Ga. The influence of reducing the melting point of the Gallium alloy was that the In
effect was larger than Sn and Zn.
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Table 2. Gallium-based alloy melting point with different elements (each value in the metal column
means weight percentage.).

Alloy Melting Point (◦C) Melting Width (◦C)

Ga90In10 17.6 10.3
Ga80In20 17.9 9.7
Ga70In30 17.7 10.2
Ga60In40 17.5 11.0
Ga50In50 17.5 9.8
Ga40In60 17.7 10.6
Ga30In70 18.0 10.8
Ga20In80 Solid at room temperature
Ga10In90
Ga90Sn10 22.5 11.4
Ga80Sn20 22.1 10.5
Ga70Sn30 22.4 11.5
Ga60Sn40 22.3 11.0
Ga50Sn50 22.3 11.2
Ga40Sn60

Solid at room temperatureGa30Sn70
Ga20Sn80
Ga10Sn90
Ga90Zn10 26.7 9.6
Ga80Zn20 26.8 10.0
Ga70Zn30 26.8 9.4
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Table 2. Cont.

Alloy Melting Point (◦C) Melting Width (◦C)

Ga60Zn40

Solid at room temperatureGa50Zn50
Ga90Al10
Ga95Al5

Ga80In5Sn15 19.6 10.2
Ga80In10Sn10 11.7 9.3
Ga80In15Sn5 14.9 10.1

Ga80In7.5Sn12.5 17.5 11.2
Ga80In12.5Sn7.5 16.2 10.5

(Ga80In10Sn10)97Zn3 8.2 8.9
(Ga80In10Sn10)97Ge3 10.1 8.3
(Ga80In10Sn10)97Al3 9.9 8.2

The melting points of the same components were relatively close, as shown in Figure 5a.
The melting point of the Ga-In-Sn ternary alloy was lower than that of binary alloys. The
melting points in the three phases of the GaInSn alloy, including 80% Ga, are shown
in Figure 5. The ternary alloy’s different contents greatly influenced the melting point,
which differed from the binary alloys. In the examined GaInSn alloy, except for Galin-
stan, the gallium-based alloy with the lowest melting point obtained was Ga80In10Sn10,
which had a melting point of 11.7 ◦C. The quaternary alloy was explored on the base of
Ga80In10Sn10. Small amounts of Al, Ge, and Zn were added to obtain lower melting point
alloys (Ga80In10Sn10)97Al3 9.9 ◦C, (Ga80In10Sn10)97Ge3 10.1 ◦C, and (Ga80In10Sn10)97Zn3
8.2 ◦C. In the periodic table, Al, Zn, and Ge are neighboring elements of Ga. Adding the
small amount of those elements decreased the melting point, and the density increased
to 6.79 g/cm3 for (Ga80In10Sn10)97Zn3. The Ga atom distance measurement in the liquid
alloy would be necessary using the X-ray adsorption fine structure analysis (EXAFS) [15]
to investigate the Ga-based liquid alloy’s melting point and density changes.

Alloy composition was an important factor affecting the melting point, which was
generally lower than the corresponding pure metal. Because the size of the atoms in
the alloy was different and their arrangement was not as regular as that of the pure
metal, the bonds between the atoms were weaker and reduced the melting temperature.
Adding elements such as In, Sn, and Zn changed the atomic arrangement structure of
Ga. The metal bonds weakened as the Ga atom connected seven anisotropic Ga atoms.
The situation with ternary alloys became complex, making the metal bonds more fragile.
Therefore, the melting point of the alloy was reduced. In the quaternary alloy, the heat of
melting (Ga80In10Sn10)97Zn3, (Ga80In10Sn10)97Al3, and (Ga80In10Sn10)97Ge3 was 89.72 J/g,
96.73 J/g, 97.83 J/g, respectively. More diversified alloy systems might be constructed
if more elements can be added. The (Ga80In10Sn10)97Zn3 alloy of a low melting point of
8.2 ◦C could be utilized as a liquid in a wider temperature range for the application.

Metals 2023, 13, x FOR PEER REVIEW 6 of 16 
 

 

Table 2. Gallium-based alloy melting point with different elements (each value in the metal column 
means weight percentage.). 

Alloy Melting Point (°C) Melting Width (°C) 
Ga90In10 17.6 10.3 
Ga80In20 17.9 9.7 
Ga70In30 17.7 10.2 
Ga60In40 17.5 11.0 
Ga50In50 17.5 9.8 
Ga40In60 17.7 10.6 
Ga30In70 18.0 10.8 
Ga20In80 

Solid at room temperature 
Ga10In90 
Ga90Sn10 22.5 11.4 
Ga80Sn20 22.1 10.5 
Ga70Sn30 22.4 11.5 
Ga60Sn40 22.3 11.0 
Ga50Sn50 22.3 11.2 
Ga40Sn60 

Solid at room temperature 
Ga30Sn70 
Ga20Sn80 
Ga10Sn90 
Ga90Zn10 26.7 9.6 
Ga80Zn20 26.8 10.0 
Ga70Zn30 26.8 9.4 
Ga60Zn40 

Solid at room temperature 
Ga50Zn50 
Ga90Al10 
Ga95Al5 

Ga80In5Sn15 19.6 10.2 
Ga80In10Sn10 11.7 9.3 
Ga80In15Sn5 14.9 10.1 

Ga80In7.5Sn12.5 17.5 11.2 
Ga80In12.5Sn7.5 16.2 10.5 

(Ga80In10Sn10)97Zn3 8.2 8.9 
(Ga80In10Sn10)97Ge3 10.1 8.3 
(Ga80In10Sn10)97Al3 9.9 8.2 

 

  
Figure 4. (a) Melting point of GaIn alloys (with error bar); (b) Melting point of binary gallium alloys. Figure 4. (a) Melting point of GaIn alloys (with error bar); (b) Melting point of binary gallium alloys.



Metals 2023, 13, 615 7 of 14

Metals 2023, 13, x FOR PEER REVIEW 7 of 16 
 

 

The melting points of the same components were relatively close, as shown in Figure 
5a. The melting point of the Ga-In-Sn ternary alloy was lower than that of binary alloys. 
The melting points in the three phases of the GaInSn alloy, including 80% Ga, are shown 
in Figure 5. The ternary alloy�s different contents greatly influenced the melting point, 
which differed from the binary alloys. In the examined GaInSn alloy, except for Galinstan, 
the gallium-based alloy with the lowest melting point obtained was Ga80In10Sn10, which 
had a melting point of 11.7 °C. The quaternary alloy was explored on the base of 
Ga80In10Sn10. Small amounts of Al, Ge, and Zn were added to obtain lower melting point 
alloys (Ga80In10Sn10)97Al3 9.9 °C, (Ga80In10Sn10)97Ge3 10.1 °C, and (Ga80In10Sn10)97Zn3 8.2 °C. 
In the periodic table, Al, Zn, and Ge are neighboring elements of Ga. Adding the small 
amount of those elements decreased the melting point, and the density increased to 6.79 
g/cm3 for (Ga80In10Sn10)97Zn3. The Ga atom distance measurement in the liquid alloy would 
be necessary using the X-ray adsorption fine structure analysis (EXAFS) [15] to investigate 
the Ga-based liquid alloy�s melting point and density changes. 

 
(a) (b) 

Figure 5. (a) Melting point diagram of Ga-In-Sn alloy; (b) Enlarged figure. 

Alloy composition was an important factor affecting the melting point, which was 
generally lower than the corresponding pure metal. Because the size of the atoms in the 
alloy was different and their arrangement was not as regular as that of the pure metal, the 
bonds between the atoms were weaker and reduced the melting temperature. Adding el-
ements such as In, Sn, and Zn changed the atomic arrangement structure of Ga. The metal 
bonds weakened as the Ga atom connected seven anisotropic Ga atoms. The situation with 
ternary alloys became complex, making the metal bonds more fragile. Therefore, the melt-
ing point of the alloy was reduced. In the quaternary alloy, the heat of melting 
(Ga80In10Sn10)97Zn3, (Ga80In10Sn10)97Al3, and (Ga80In10Sn10)97Ge3 was 89.72 J/g, 96.73 J/g, 97.83 
J/g, respectively. More diversified alloy systems might be constructed if more elements 
can be added. The (Ga80In10Sn10)97Zn3 alloy of a low melting point of 8.2 °C could be uti-
lized as a liquid in a wider temperature range for the application. 

3.2. Contact Angle Measurement 
The contact angle was measured as a quantitative measure of the surface�s wettabil-

ity, represented by the angle at which a liquid or vapor interface interacted with a solid 
surface to check the fluid utilization in the canister or pipe. There is an elliptical method 
for fitting tangent lines to obtain contact angles. For example, when the surface tensions 
among the three solid, liquid, and gas phases are γSG, γSL, and γLG, respectively, and the 
surface roughness factor is β, the Young equation shows the following formula [41]: 𝛽𝛾ீcos𝜃 = 𝛾ௌீ − 𝛾ௌ   (2)

Figure 5. (a) Melting point diagram of Ga-In-Sn alloy; (b) Enlarged figure.

3.2. Contact Angle Measurement

The contact angle was measured as a quantitative measure of the surface’s wettability,
represented by the angle at which a liquid or vapor interface interacted with a solid surface
to check the fluid utilization in the canister or pipe. There is an elliptical method for fitting
tangent lines to obtain contact angles. For example, when the surface tensions among
the three solid, liquid, and gas phases are γSG, γSL, and γLG, respectively, and the surface
roughness factor is β, the Young equation shows the following formula [41]:

βγLGcos θ = γSG − γSL (2)

Figure 6 shows two examples of contact angle microscopic images of Ga80In10Sn10 on
Al, Cu, silica (SiO2), and polymer Teflon substrates. When the substrates are very smooth, β
is one. The surface tension of liquid metals was strongly affected by oxygen, and the surface
tension γLG of the GaInSn [42] alloy was reported using the sessile drop method [43]. The
surface tension of the GaInSn alloy was estimated to range from 550 to 600 mN/m at 300 K.
Table 3 shows the contact angles of different alloy droplets on four kinds of substrates,
including Cu, Al, silica, and Teflon plates. The average roughness of the four types of plates
is also shown in Table 3, and they are very smooth by measuring with AFM (an atomic
force microscope). The wetting angles of different gallium-based alloys indicated more
than 90◦. The contact angle Ga80In10Sn10 showed the largest contact angle compared with
other Ga alloys on Cu, SiO2, and Teflon substrates except for Al. When the same Ga alloy
was used to measure the contact angle on four plates, the larger contact angle showed the
order of Teflon (PTFE) > Cu > SiO2 > Al or Teflon (PTFE) > Cu >Al > SiO2. However, they
all had close contact angle values between 130◦ and 150◦. Therefore, PTFE minimized the
wettability and was suitable as the vessel [22] to be transferred into Ga alloy. On the other
hand, Cu’s reaction with Ga [21] and Ga’s diffusion into Al [44] were reported, and Ga
formed a eutectic with silicon near room temperature [45].

The contact angle of Galinstan on silicon was reported at 141◦ in an N2 atmosphere that
did not contain oxidized Galinstan [46]. Therefore, the contact angle was higher than the
value of Table 3. In addition, it was reported that Galinstan formed a fast oxide layer [47].

The contact angles of the measured samples on the four different substrates were all
greater than 90◦, and none were wetted with the substrates. Among them, the contact
angle on the Teflon substrate was the largest, followed by the Cu substrate, Al, and SiO2
substrate. Compared with the listed Ga alloys, Ga90Sn10, Ga80Sn20, and Ga80In5Sn15 had
larger contact angles on different substrates, and especially, Ga80In10Sn10 showed the
largest contact angle. Figure 7 shows the effect of In and Sn content on the contact angle
of other Ga80InSn alloys at 20 ◦C. The contact angle of the Ga80Sn20 alloy on four kinds of
plate converged to 137.5 ± 3.9 when the Sn content increased to 20 wt.%, and the contact
angle of Ga90Sn10 was almost the same 135.2 ± 2.9, as shown in Table 3. In comparison,
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the contact angle difference on four kinds of the plate increased as the In content rose to
20 wt.%. Especially the Ga80In10Sn10 alloy showed a larger contact angle for four types of
substances. The change in alloying elements led to the change in metal atomic spacing,
the metal bonding force, and contact angle. On the other hand, when those alloys were
exposed on the plate in an air atmosphere for too long, such as one day, the gallium-based
alloy reacted and eroded Al, Cu, and SiO2 substrates, causing damage to the substrates.
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Figure 6. Contact angle between Ga80In10Sn10 and (a) Al substrate, (b) Cu substrate, (c) SiO2 substrate,
(d) Teflon substrate (20 ◦C).

Table 3. Contact angles of different gallium-based alloys on different plates at 20 ◦C.

Alloy Cu Al SiO2 Teflon

Average
roughness 7.45 nm 7.54 nm 0.0031 nm 1.73 nm

Ga90In10 132.8◦ 127.2◦ 130.7◦ 143.2◦

Ga80In20 135.3◦ 126.9◦ 131.6◦ 140.5◦

Ga90Sn10 136.5◦ 135.2◦ 132.5◦ 136.5◦

Ga80Sn20 137.7◦ 141.0◦ 133.6◦ 137.7◦

Ga80In10Sn10 145.4◦ 140.2◦ 144.7◦ 148.6◦

Ga80In5Sn15 134.6◦ 132.4◦ 142.7◦ 144.4◦

Ga80In15Sn5 142.7◦ 129.5◦ 128.2◦ 145.9◦

Ga80In7.5Sn12.5 139.6◦ 134.6◦ 128.2◦ 139.0◦

Ga80In12.5Sn7.5 132.4◦ 125.0◦ 130.3◦ 130.8◦

Galinstan
(Ga68.5In21.5Sn10) 142.4◦ 135.0◦ 129.8◦ 143.0◦

(Ga80In10Sn10)97Zn3 132.0◦ 131.1◦ 128.6◦ 135.0◦

(Ga80In10Sn10)97Ge3 134.6◦ 133.8◦ 131.5◦ 138.7◦

(Ga80In10Sn10)97Al3 138.3◦ 135.3◦ 125.9◦ 142.4◦
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The above experiments found a large contact angle between the gallium-based alloy
and these substrates. At the same time, the wetness was small, which is in line with the
experimental expectation. However, gallium-based alloys easily eroded Al, Cu, and SiO2
substrates. Therefore, they are not suitable as storage containers or reaction containers for
gallium-based alloys. Compared with them, Teflon is a better choice, with a wide range of
use frequency and high and low temperatures, good chemical stability, outstanding surface
non-stick, good lubrication, and atmospheric aging resistance. Therefore, Ga80In10Sn10 as
the base carrier fluid and Teflon as the container of Ga alloy fluid could be used in various
applications. For example, the Teflon pipe is convenient for the Ga alloy flow application.

Although the experimental results align with expectations, there are still some prob-
lems, including that the contact angle is too large. As a result, the oxidation of gallium-based
alloys has been avoided as much as possible. However, exposure to the air during testing
may result in some degree of oxidation in a short period, affecting the gallium-based alloy’s
contact surface with substrates and resulting in larger contact angles.

3.3. Viscosity Measurement

Temperature dependence is shown in the Arrhenius-type formula [42].

µ(T) = ηoexp(E/RT) (3)

where µ(T) is the dynamic viscosity, T is the absolute temperature, ηo is the pre-exponential
constant, E is the activation energy, and R is the gas constant. When the temperature
decreases, dynamic viscosity increases.

The viscosity test results of different gallium-based alloys are shown in Table 4.

Table 4. The viscosity of gallium-based alloys by rheometer (25 ◦C, shear rate = 3 1/s).

Alloy Density
(g/cm3)

Viscosity
(mPa·s)

Ga80In10Sn10 6.72 1.87 × 104

Ga80In15Sn5 6.75 1.78 × 104

Ga80In5Sn15 6.60 1.77 × 104

Ga80In12.5Sn7.5 6.76 1.85 × 104

Ga80In7.5Sn12.5 6.68 1.72 × 104

Galinstan (Ga68.5In21.5Sn10) 6.49 1.87 × 104

(Ga80In10Sn10)97Zn3 6.79 2.15 × 104

(Ga80In10Sn10)97Ge3 6.67 2.51 × 104

(Ga80In10Sn10)97Al3 6.59 2.98 × 104
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On the other hand, the viscosity of gallium-based alloys through the capillary method
at 20 ◦C is shown in Table S1. Those values were much smaller than the measurement
result of Table 4 using a rheometer viscometer, as shown in Figure 2, which used 3(1/s)
of the share rate. If the shear rate increased, the viscosity values would come near the
capillary method values. In Table S1, the kinetic viscosity of Ga-based alloy was about
3 mPa·s, about three times higher than that of water, and showed well fluidity. This was
slightly at odds with other literature, where there had been reports of Galinstan having a
viscosity of 2.4 mPa·s [48] and also reported of Galinstan having a viscosity of 2.5 times
that of water [49]. Still, neither of them indicated a specific temperature.

From the above experimental results, it can be found that the density of the Ga-
based alloy is significantly larger than that of Ga (6.08 g/cm3 at 29.8 ◦C) [50], and the
density of these alloys is similar from 6.6 to 6.8 g/cm3. (Ga80In10Sn10)97Al3 has the largest
viscosity of 2.98 × 104 mPa·s, and Ga80In7.5Sn12.5 has the smallest dynamic viscosity of
1.72 × 104 mPa·s in Table 4. The viscosities of the gallium-indium-tin alloys are relatively
similar, both being around 1.8 × 104 mPa·s. The viscosity of the quaternary alloys is
significantly higher than that of the ternary alloys, indicating that the addition of Al, Ge,
and Zn has a greater effect on the internal structure of the alloys. In this experiment, NaOH
was used to effectively remove the oxide film on the surface of the gallium-based alloy.

The shear stress, depending on the shear rate measured by parallel plates, is shown in
Figure 8. The viscosity was measured using the HR 20-TA instrument, as shown in Figure 2,
at 25 ◦C, with the shear rate rising from 1.0−6 to 10.0 1/s. All samples showed a similar
shape of shear stress change. In the shear rate interval of 0–0.3 1/s, the shear stress of the
samples increased with the increase in the shear rate. Between 0.3 and 3 1/s, the shear
stress hardly changed. When the shear rate increased, some alloys flew out of the parallel
plate, and the contact area between the alloy and the parallel plate also changed; therefore,
the graph was shown in less than three, as shown in Figure 9. In general, these alloys
are pseudoplastic, which is a fluid whose viscosity decreases as the shear rate increases.
The vast majority of viscoelastic fluids are pseudoplastic. Here, a qualitative analysis was
performed, and the quantitative analysis would be the future subject.
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Yang et al. [51] tested many gallium-indium alloys and found that the critical strain
amplitude was around 1% for all samples. This implied that the storage modulus, loss
modulus, and loss factor were approximately constant in the linear region. To determine
the amplitude of the strain range maintained by linear viscoelasticity, the strain scan
experiments were carried out at 25 ◦C in a strain amplitude range from 0.01 to 100% at
1 rad/s and 10 rad/s for (Ga80In10Sn10)97Zn3, respectively, and the result was shown in
Figure 9. The storage modulus (G’) refers to the amount of energy stored due to elastic
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(reversible) deformation when a material is deformed, which reflects the elasticity of the
material; Loss modulus (G”) refers to the amount of energy lost due to the (irreversible)
viscous deformation when the material is deformed, which reflects the viscosity of the
material to investigate the liquid fluidity in the liquid metal application. When γ0 < 0.1, the
storage modulus (G’) was stable, while the loss modulus (G”) showed some fluctuations
in nonlinear viscoelasticity. When 0.1 ≤ γ0 ≤ 1, the G’ was more constant, while the G”
increased linearly. The material loss factor (tanδ) is shown in the following formula:

Tanδ = G′′/G′ (4)

When the loss factor is very small, the alloy shows elastic properties in this region be-
cause the Ga-based alloy has a strong surface tension due to a small shear strain amplitude.
When γ0 > 1, the G’ decreased rapidly with the increase in the strain amplitude, while the
G” showed a rising trend before falling. The loss factor increases with the increase in the
strain amplitude. As a result, the energy storage capacity of the liquid alloy decreased
rapidly, and the viscous effect gradually took the dominant position.
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Figure 10 shows the storage modulus (G’) and loss modulus (G”) with an angular
frequency from 0.1 to 100 rad/s at an applied strain amplitude of 0.1% at 25 ◦C. At 0.1%
of the strain amplitude, the results for all alloys showed that the storage modulus (G’) was
much larger than the loss modulus (G”). Ga-based (Ga80In10Sn10)97Zn3 alloy behaves more
solidly than water. This indicates that the bulk phase was more inclined to elastic solids’
properties, and viscous fluids’ properties were weaker than those of elastic solids, indicating
that some alloys may have been subjected to oxidation. When the alloy is oxidized, an
oxide layer forms on the surface, which affects the contact surface between the alloy and the
instrument, thus affecting the viscosity test. Alloys are prepared and stored in an oxygen-free
environment; however, some tests do not guarantee oxygen-free conditions; therefore, the
test was performed as soon as possible after the sample removal to minimize the effects of
oxidation. In the frequency range of 0.1 to 100 rad/s, the G’ of the alloys hardly changed.
At the same time, G” gradually decreased with the increase in frequency. The G” of the
used alloys have relatively similar tendencies, and (Ga80In10Sn10)97Ge3 is the largest value,
whereas Galinstan is the smallest value. While (Ga80In10Sn10)97Al3 has the largest G’ and
Galinstan has the smallest G’. In addition, after adding Zn, Ge, and Al, it can be found that
the G’ and G” of the four-element alloy are higher than those of the three-element alloy.
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4. Conclusions

The low melting point of Ga alloy properties was investigated mainly for use “as a
base carrier of ferrofluid” and for other applications. The Ga-based liquid alloy has high
thermal conductivity compared with water and oil. As a result, the following characteristics
were obtained:

• The (Ga80In10Sn10)97Zn3 alloy produced a low melting point of 8.2 ◦C in In, Sn, Zn,
Ge, and Al of the Ga-based alloy, which was lower than that of Galinstan. This alloy
could be utilized as a liquid in a wider temperature range.

• The Ga80In10Sn10 alloy had a larger contact angle of 140–150◦ on the Cu, Al, SiO2, and
Teflon plate compared with other Ga-based alloys, and Teflon, for which the contact
angle was 148.6◦, was the best container, therefore, the Teflon pipe was convenient to
use in the Ga alloy fluid flow application.

• At 25 ◦C and a 3 1/s shear rate, (Ga80In10Sn10)97Al3 had the largest shear viscosity of
2.98 × 104 mPa·s, and Ga80In7.5Sn12.5 had the lowest viscosity of 1.72 × 104 mPa·s. In
addition, the kinetic viscosity of Ga-based alloy was about 3 mPa·s, which was only
three times that of water and showed well fluidity.

• For the viscoelasticity of Ga-based (Ga80In10Sn10)97Zn3 alloy, the storage modulus (G’)
was much larger than the loss modulus (G”) at a 0.1% strain amplitude, and it showed
properties more similar to those of elastic solids that behaved more solidly than water.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/met13030615/s1, Table S1: The viscosity of gallium-based alloys
by capillary method at 20 ◦C.
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