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Abstract: The surface engineering of metals develops high technology to detect microscale convex,
concave and flat surface patterns. It is because the manufacturing industry requires technologies to
recognize microscale surface features. Thus, it is necessary to develop microscopic vision technology
to recognize microscale concave, convex and flat surfaces. This study addresses microscale concave,
convex and flat surface recognition via Hu moments’ patterns based on micro-laser line contouring.
In this recognition, a Hu moments’ pattern is generated from a Bezier model to characterize the
surface recovered through microscopic scanning. The Bezier model is accomplished by employing a
genetic algorithm and surface coordinates. Thus, the flat, convex and concave surfaces are recognized
based on the Hu moments’ pattern of each one. The microscope system projects a 40 µm laser line on
the object and a camera acquires the object’s contour reflection to retrieve topographic coordinates.
The proposed technique enhances the microscale convex, concave, flat, and surface recognition, which
is performed via optical microscope systems. The contribution of microscopic shape recognition
based on the Hu moments’ pattern and microscopic laser line is elucidated by a discussion based on
the microscopic shape recognition performed through the optical microscopic image processing.

Keywords: microscopic shape recognition; microscopic laser line; Hu invariant moments; Bezier
surface model; microscope vision technology

1. Introduction

In recent years, metal surface engineering performs microscale surface recognition
to provide high technology to inspect surface features in additive manufacturing [1]. In
this way, the metals surface engineering performs microscale surface recognition to detect
concave, convex and flat shapes to determine surface quality. This leads to establishing the
quality and defects on metallic surface [2]. Thus, the microscale convex, concave and flat
surface recognition plays a fundamental role in the process to implement high technology
for metallic surface inspection. Typically, microscale convex, concave and flat surface
recognition has been performed via computer vision methods based on machine learning
to determine surface patterns on metals. For instance, microscale convex surface recogni-
tion has been performed through a saliency map which minimizes a function of convex
energy [3]. The spot defects and steel-pit defects are determined through an active contour
model to establish the surface quality. Moreover, a twin-illumination method has been
performed to recognize metallic convex surfaces via harmless signals [4]. Two images are
acquired from the same position but illuminated from the opposite direction to determine
concave and convex surfaces. Additionally, a deep learning method has been performed
to recognize convex defects on metals by means of residual networks ResNet50 [5]. The
classification method is carried out through a convolutional block module and a defect
dataset. In the same way, microscale concave surface recognition has been performed by
means of a deep learning method to recognize weld defects [6]. A convolutional neural
network is trained via deep learning to recognize some weld features. Moreover, microscale
concave surface recognition has been performed via faster convolutional neural networks
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to recognize steel concave defects [7]. A deformable convolution is carried out by offset-
ting the position in convolution to3 adapt three-dimensional surfaces. On the other hand,
microscale flat surface recognition has been performed by the means of a kernel extreme
learning machine to recognize flatness surfaces [8]. The particle swarm algorithm deter-
mines the setting parameters of the kernel extreme learning machine. Moreover, microscale
flat surface recognition has been performed by the means of a fuzzy neural network and a
cloud model which is accomplished through a genetic algorithm [9]. The inference network
is built by means of fuzzy logic and a cloud model. The above surface recognition methods
perform microscale concave, convex and flat surface recognition through the data which are
retrieved via microscope images. However, the image intensity profile does not represent
accurately the surface contour. This leads to producing surface recognition inaccuracies
which are generated due to the object’s skin material, laser diode and incident angle. Fur-
thermore, the above-mentioned methods do not retrieve the surface contour to perform
the surface recognition. Therefore, the traditional surface recognition methods produce
errors on the microscale convex, concave and flat surface recognition. On the other hand,
the traditional computer vision methods based on machine learning employ additional
parameters to surface data to accomplish surface recognition. As a consequence of those
parameters, complicated procedures should be optimized to perform surface recognition.
Therefore, the microscopic convex, concave and flat shape recognition still requires better
technology to improve the recognition accuracy and efficiency. This criterion indicates
that the microscale convex, concave and flat surface recognition performed through the
microscopic image processing needs to be improved. To enhance microscopic convex,
concave and flat shape recognition, it is required to implement recognition algorithms
based on contour data retrieved from the surface topography. Moreover, it is necessary
to develop recognition methods based on the intelligent algorithms whose structure is
performed through three-dimensional data. Unlike the above recognition methods, the
proposed microscale surface recognition is carried out through the surface contour which is
retrieved through the microscope vision system. The real object contour is depicted by the
line image captured from the scanned object. Additionally, pattern recognition is performed
by means of Hu moments which characterize a surface pattern through the surface contour
data. In this way, the surface pattern characterization via surface contour improves the
surface recognition accuracy which is performed by microscopic image processing.

In the proposed technique, the microscale convex, concave and flat surface recognition
is implemented by means of the Hu moments pattern in a Bezier surface model which
represents the object contour retrieved through the laser line image processing. The Hu
moments pattern characterizes the shape generated by the microscale surface model. Thus,
the Bezier mathematical model is constructed through the Bezier basis functions which
are accomplished by a genetic algorithm and surface contour data. In this procedure,
exploration and exploitation are computed to optimize the Bezier basis functions. In this
way, the convex, concave and flat surfaces are represented at microscale by Bezier surface
models. These surface models are characterized by means of the Hu moments patterns
to establish the concave, convex and flat surface patterns. In this way, the Hu moments
pattern of a surface is recognized when the pattern corresponds to the Hu moments pattern
of a concave, convex or flat surface. This recognition procedure is performed to recognize
concave, convex or flat patterns on metallic iron. Moreover, surface recognition is employed
for pattern recognition of materials, such as plastic and paper. The microscale convex,
concave and flat surface recognition is effectuated by means of an optical microscope
arrangement which includes a digital camera and a laser diode that provides a 40 µm line.
In this way, the laser diode projects the line perpendicularly on the object topography and
the digital camera captures the line image which provides the real object contour. In this
way, the microscope system computes the surface contour through the line position and the
arrangement geometry. Thus, the recognition in the micron’s interval of convex, concave
and flat topography is accomplished through the surface contour which is not retrieved
by the surface recognition performed via microscopic image processing. The main aim
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of the recognition technique via the Hu moments pattern is to improve the process and
accuracy of the surface recognition which is obtained at microscale via image processing
based on an optical microscope. To improve surface recognition procedure, the surface
recognition is deduced through the surface contour topography which is determined via
a camera model based on line coordinates. In this procedure, the object topography is
characterized via the Hu moments pattern in a very simple and robust form. It is because
the Hu moments are defined based on the surface topography which does not change with
viewer angle and surface reflectance variation. Moreover, Hu moments characterize the
microscale rough surface with its corresponding surface pattern. In this way, the accuracy
improvement of the surface recognition is achieved through the Hu moments pattern which
produces a characteristic pattern of the concave, convex and flat surface in the micron’s
interval. The characteristic pattern of each surface is computed based on the surface
contour. Therefore, the viewer angle and surface reflectance variation do not change
Hu moments pattern to achieve three-dimensional pattern recognition. Thus, surface
recognition computed through the Hu moments pattern and surface contour improves
the surface recognition accuracy of the microscopic image processing. Therefore, the
topographic recognition via Hu moments patterns and microscopic contouring enhances
the accuracy of the concave, convex and flat surface recognition which is accomplished by
microscopic image processing. In this case, the recognition accuracy is determined through
the relative error of the Hu moments pattern of the microscope system with respect to
the real Hu moments pattern. The viability of the micro-scale surface recognition via Hu
moments patterns and microscopic object contouring is elucidated by a2 discussion based
on the accuracy results of microscale surface recognition. Thus, the contribution of the
proposed microscopic surface recognition is established based on the microscale surface
recognition accuracy. The section included in the paper are mentioned as follows: the Hu
moments patterns of a convex, concave and flat surface model are indicated in Section 2.1,
the genetic algorithm to perform the Bezier surface modeling is implemented in Section 2.2,
the surface contouring in the microns interval and the microscope geometry are outlined in
Section 2.3, the recognition results’ convex, concave and flat topography are depicted in
Section 3, but the microscale surface recognition discussion based on microscope imaging
systems is discussed in Section 4.

2. Materials and Methods
2.1. Hu Moments Pattern for Surface Recognition at Micro-Scale

The microscale convex, concave and flat surface recognition is performed by means
of Hu moments pattern and a surface is retrieved via contouring based on line image
processing. Typically, the topography recognition in the micron interval is performed via
microscopic image processing. Surface recognition is performed through statistical, spectral
and model-based methods. However, these methods do not perform the surface recognition
through the surface contour and they produce inaccuracies in the results. Instead, the Hu
moments have been defined based on the surface form to characterize three-dimensional
shapes [10]. Therefore, a pattern based on Hu moments is generated to perform microscale
convex, concave and flat surface recognition [11]. The Hu invariant moments are described
based on the discrete statistical moments which are determined by the next expression:

Mpq =
m−1

∑
i = 0

n−1

∑
j = 0

xp
i,jy

q
i,j f (xi,j, yi,j). (1)

For this equation, f (xi,j, yj,i,j) is the surface to be analyzed by the coordinates (xi,j, yi,j).
Additionally, the sub-indexes (i,j) depict number of surface points in the x and y direction. In
this way, the central moments are determined via coordinates (xc,yc) by the next expression:

µpq =
m−1

∑
i = 0

n−1

∑
j = 0

(xi,j − xc)
p(yi,j − yc)

q f (xi,j, yi,j), xc =
M10

M00
, yc =

M01

M00
. (2)
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This equation provides the surface moments which are normalized based on center co-
ordinates. These moments are invariant to translation and scale. In this way, the normalized
moments are determined via the central moments through the expression:

ηpq =
µpq

µ
γ
00

, γ =
p + q

2
+ 1. (3)

From these normalized moments, seven shape descriptors are defined and they are
not changed by the scale, translation and orientation change [12]. These descriptors are
represented by means of the next expressions

φ1 = η20 + η02. (4)

φ2 = (η20 + η02)
2 − 4η2

11. (5)

φ3 = (η30 + 3η12)
2 − (3η2

11 − η03)
2
. (6)

φ4 = (η30 + η12)
2 − (η2

21 − η03)
2
. (7)

φ5 = (η30 − 3η12)(η30 + η12)
[
(η30 + η12)

2 − 3(η21 + η03)
2
]
+

(3η21 − η03)(η21 + η03)
[
3(η30 + η12)

2 − (η21 + η03)
2
] . (8)

φ6 = (η20 − η02)
[
(η30 + η12)

2 − (η21 + η03)
2
]
+ 4η11(η30 + η12)(η21 + η03). (9)

φ7 = (3η21 − η30)(η30 + η12)
[
(η30 + η12)

2 − 3(η21 + η03)
2
]
+

(3η12 − η30)(η21 + η03)
[
3(η03 + η12)

2 − (η21 + η03)
2
] . (10)

These invariant moments provide a pattern (φ1, φ2, φ3, φ4, φ5, φ6 and φ7) which
characterizes the shape of a three-dimensional surface. Thus, a surface is characterized by
means of a Hu moments pattern from a surface model [13]. In this way, a Bezier surface
model is built through the 4th-order functions and topographic coordinates. For the Bezier
model, the coordinates (xi,j, yi,j and zi,j) represent the topographic data which are shown
in Figure 1. In these topographic coordinates, the sub-indexes (i,j) indicate the number of
surface points in x and y axis.

Metals 2023, 13, x FOR PEER REVIEW 4 of 24 
 

 

For this equation, f(xi,j, yj,i,j) is the surface to be analyzed by the coordinates (xi,j, yi,j). 
Additionally, the sub-indexes (i,j) depict number of surface points in the x and y direc-
tion. In this way, the central moments are determined via coordinates (xc,yc) by the next 
expression: 


−

=

−

=
−−=

1

0

1

0
,,,, ),()()(

m

i

n

j
jiji

q
cji

p
cjipq yxfyyxxμ , 

00

10

M
Mx =c

, 
00

01

M
My =c

. (2)

This equation provides the surface moments which are normalized based on center 
coordinates. These moments are invariant to translation and scale. In this way, the nor-
malized moments are determined via the central moments through the expression: 

γμ
μ

η
00

pq
pq = , 1

2
++= qpγ . (3)

From these normalized moments, seven shape descriptors are defined and they are 
not changed by the scale, translation and orientation change [12]. These descriptors are 
represented by means of the next expressions 

02201 ηηφ += . (4)

2
11

2
02202 4)( ηηηφ −+= . (5)

2
03

2
11

2
12303 )3()3( ηηηηφ −−+= . (6)

2
03

2
21

2
12304 )()( ηηηηφ −−+= . (7)

[ ]
[ ]2

0321
2

123003210321

2
0321

2
1230123012305

)()(3))(3(
)(3)())(3(

ηηηηηηηη
ηηηηηηηηφ

+−++−

++−++−= . (8)

[ ] ))((4)()()( 0321123011
2

0321
2

123002206 ηηηηηηηηηηηφ ++++−+−= . (9)

[ ]
[ ]2

0321
2

120303213012

2
0321

2
1230123030217

)()(3))(3(
)(3)())(3(

ηηηηηηηη
ηηηηηηηηφ

+−++−

++−++−= . (10)

These invariant moments provide a pattern (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6 and ϕ7) which 
characterizes the shape of a three-dimensional surface. Thus, a surface is characterized 
by means of a Hu moments pattern from a surface model [13]. In this way, a Bezier sur-
face model is built through the 4th-order functions and topographic coordinates. For the 
Bezier model, the coordinates (xi,j, yi,j and zi,j) represent the topographic data which are 
shown in Figure 1. In these topographic coordinates, the sub-indexes (i,j) indicate the 
number of surface points in x and y axis. 

 
Figure 1. Contour points to compute a Hu moments pattern from a Bezier model. Figure 1. Contour points to compute a Hu moments pattern from a Bezier model.

Thus, the Bezier basis functions are constructed through the surface data z0i,j, for i = 0,
1, 2, 3, . . . , n and j = 0, 1, 2, 3, . . . , m. In this case, n and m are defined in the x-direction
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and y-direction, respectively. From the surface data, the Bezier basis functions are defined
through the next equation [14]:

Ss,t(u, v) =
g = 4

∑
g = 0

r = 4

∑
r = 0

Br(u)Bg(v)Pi,j, u ∈ [0, 1], v ∈ [0, 1], (11)

Br(u) =
4!

r!(4− r)!
(1− u)4−rur, Bg(v) =

4!
g!(4− g)!

(1− v)4−gvg,

ui,j =
(x4s−4,j − x0,j)xi,j

4s− 4
, vi,j =

(yi,4t−4 − yi,0)yi,j

4t− 4
.

For this equation, u and v are established in x and y axis, respectively. However, the
control Pi,j moves the surface Ss,t(u,v) toward the object contour zi,j. Additionally, (i, j) are
determined by i = r + s × 4 and j = g + t × 4, respectively. In addition, the Bezier model is
defined through the surfaces Ss,t(u,v) for s = 0, 1, 2, 3, . . . , n/4 and t = 0, 1, 2, 3, . . . , m/4.
From these surfaces, the Bezier model is generated by


S0,0(u, v)

S0,1(u, v)
...
Sn/4,m/4(u, v)

 =


B0(u)B0(v)P0,0 + B0(u)B1(v)P0,1 + B0(u)B2(v)P0,2 + , . . . . . ., + B4(u)B4(v)P4,4

B0(u)B0(v)P0,4 + B0(u)B1(v)P0,5 + B0(u)B2(v)P0,6 + , . . . . . ., + B4(u)B4(v)P4,8
...

B0(u)B0(v)Pn−1,m−4 + B0(u)B1(v)Pn−1,m−3 + B0(u)B2(v)Pn−1,m−2 + , . . . . . ., + B4(u)B4(v)Pn,m

. (12)

This equation system is accomplished by computing the control points Pi,j = zi,jwi,j
which determine the convex, concave and flat Bezier surface model. From the Bezier surface
model, the Hu moments are computed to determine the Hu moments pattern of the convex,
concave and flat surface. For instance, the Hu moments are computed to define the Hu
moments pattern of the flat surface. In this way, Equations (1)–(10) are computed from
the flat surface shown in Figure 2a which includes random roughness. Thus, the results
of the Hu moments for the flat surface are φ1 = 0.0964, φ2 = 0.0093, φ3 = 1.0770 × 10−8,
φ4 = 1.0398 × 10−8, φ5 = 1.0426 × 10−16, φ6 = 1.8066 × 10−10 and φ7 = −1.0508 × 10−16.
These Hu moments represent the Hu moments pattern of a flat surface. This pattern
describes a flat line from φ3 to φ7 and an increasing function from φ2 to φ1. In this case,
φ7 can take a negative value. Moreover, a similar Hu moment pattern is obtained in a flat
surface without roughness. In the same way, the Hu moments are computed to define the
Hu moments pattern of the concave topography given in Figure 2b. In this case, the Hu
moments for the concave surface are φ1 = 0.0087, φ2 = 7.5395 × 10−5, φ3 = 3.1626 × 10−12,
φ4 = 1.5968 × 10−11, φ5 = −2.3344 × 10−21, φ6 = 1.1946 × 10−15 and φ7 = 6.9730 × 10−23.
These Hu moments represent the Hu moments pattern of a concave surface. In this case,
the Hu pattern describes a flat line from φ3 to φ7 but increases from φ2 to φ1. In this case, φ5
is a negative and φ7 can be negative. Moreover, a similar Hu moment pattern is obtained
for a concave surface without roughness. Additionally, the Hu moments pattern of a
convex surface is defined. To do so, the Hu moments are computed for the convex surface
shown in Figure 2c. The results of the Hu moments are φ1 = 0.0129, φ2 = 1.6526 × 10−4,
φ3 = 3.8968 × 10−10, φ4 = 4.0918 × 10−10, φ5 = −5.7007 × 10−20, φ6 = 2.7008 × 10−12 and
φ7 = −2.0500 × 10−20. This Hu pattern describes a flat line from φ3 to φ7 but increases
from φ2 to φ1. In this case, φ5 is a negative and φ7 can be negative. Therefore, convex and
concave surfaces provide a similar Hu moment pattern. However, the position of the line
projection determines if the pattern corresponds to a concaveor convex surface. The genetic
algorithm to compute the control points Pi,j is described in Section 2.2.
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2.2. Bezier Surface Modeling through a Genetic Algorithm

The microscale surface recognition of a Bezier surface model is accomplished through
the surface contour which is retrieved at microscale through the microscope arrangement.
In this way, a Bezier surface model represents the object shape under study. Thus, mathe-
matical model is generated from the surface contour indicated in Figure 1, where (xi,j, yi,j
and zi,j) represent the topography coordinates, whose sub-indexes (i,j) are established in
x-direction and y-direction, respectively. The Bezier model is constructed by accomplishing
Equation (11) through the control points Pi,j which move the Bezier surface toward the real
surface contour. In this way, the control points Pi,j = wi,jzi,j are determined through the
weights wi,j. These weights are determined by substituting zi,j and (ui,j, vi,j) in Equation (11)
and solving the next equation system


Ss,t(u0,0, v0,0)
Ss,t(u0,0, v0,1)
Ss,t(u0,0, v0,2)

Ss,t(u4,4, v4,4)

 =



B0(u0,0)B0(v0,0) + B0(u0,0)B1(v0,0) + B0(u0,0)B2(v0,0) + . . . + B4(u0,0)B4(v0,0)
B0(u0,0)B0(v0,1) + B0(u0,0)B1(v0,1) + B0(u0,0)B2(v0,1) + . . . + B4(u0,0)B4(v0,1)
B0(u0,0)B0(v0,2) + B0(u0,2)B1(v0,0) + B0(u0,2)B2(v0,0) + . . . + B4(u0,0)B4(v0,2)
...

...
...

B0(u4,4)B0(v4,4) + B0(u4,4)B1(v4,4) + B0(u4,4)B2(v4,4) + . . . + B4(u4,4)B4(v4,4)




w0,0, z0,0
w0,0, z0,1
w0,0, z0,2
...
w4,4, z4,4

. (13)

For this equation system, ui,j and vi,j are determined via expressions given in
Equation (11) and Ss,t(ui,j,vi,j) = zi,j. By employing these parameters, a genetic algorithm
computes wi,j to accomplish the Bezier surface Ss,t(u,v). To do so, Equation (13) is solved
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via genetic algorithm to obtain the weights wi,j which accomplish the Bezier surface
model Equation (12). In this case, the genetic procedure performs an exploration inside
of the research space and exploitation outside of solution space to compute the optimized
weights [15]. Based on these stages, a mathematical Bezier model is performed through a
genetic algorithm and surface contour data. In this way, the weights are computed via the
genetic algorithm which is explicated as follows.

In the first step, the research space is defined to compute the first weights population.
To do so, the Bezier surface Equation (11) is computed via wi,j = 1 to establish the solution
space of each weight. In this case, Equation (11) is calculated via Pi,j = zi,j. Thus, if the Bezier
surface Equation (11) provides a value over the surface zi,j, the solution space is defined in
the interval [0.3, 1]. However, if the Bezier surface Equation (11) provides a minor value
than zi,j, the solution space is determined in the interval [1, 7]. In this way, the Bezier
surface Equation (11) has determined the solution apace interval of each weight. Then,
the first population is generated by taking randomly four values from the search interval.
Thus, the four data define the first parents (W1,k,W2,k), (W3,k,W4,k) whose k-index depicts
the number of each generation. In this way, the first weights population is defined via
first parents (W1,1,W2,1,), (W3,1,W4,1) of each weight. From this process, the first weight
population has been determined.

Then, the second step performs a crossover to generate the children of current k-
generation. The crossover computes the inside parents’ children via exploration and the
outside parents’ children through exploitation [16]. Thus, the current children w1+3l+4q,k are
computed via parents (W1,k andW2,k) for l = 0, l = 1, q = 0 and q = 1. However, the children
w2+l +4q,k are computed via (W3,k andW4,k). In this way, the current children are computed
by means of the next expressions

w1 + 3l + 4q,k =

{
W1 + 2q,k − 0.5β(W1 + 2q,k −W0 + 5l), if W1 + l + 2q,k <W2−l + 2q,k
W2 + 2q,k − 0.5β(W2 + 2q,k −W0 + 5l), if W2−l + 2q,k <W1 + l + 2q,k

, (14)

w2 + l + 4q,k = 0.5
[(
W1 + 2q,k + W2 + 2q,k

)
+ (−1)

l
β
∣∣∣W1 + 2q,k −W2 + 2q,k

∣∣∣],
β =

{√
2α if α > 0.5, α ∈ [0, 1].√
2(α− 1), otherwhise

(15)

These equations are computed for l = 0, l = 1, q = 0 and q = 1. W0 corresponds to the
minimum andW5 corresponds to the maximum of each weight. Additionally, the probabil-
ity distribution β is computed by means of the parameter α that is generated in the interval
[0, 1]. In this way, Equation (14) computes children outside parents and Equation (15) com-
putes children inside parents. Therefore, Equations (14) and (15) compute the children (w1,k,
w2,k, w3,k and w4,k) via (W1,k andW2,k) and q = 0. In the same way, Equations (14) and (15)
compute (w5,k, w6,k, w7,k and w8,k) via (W3,k and W4,k) and q = 1. From this procedure,
Equations (14) and (15) compute the children in each k-generation. Additionally, the Bezier
surface Ss,t(u,v) should provide continuity G1. The Pi,j should be smooth in the border [17].
These smooth points are computed by means of P4+4×s,j = (P4+4s−1,j + P4+4s+1,j)/2 and
Pi,4+4t = (Pi,4+4t−1 + Pi,4+4t+1)/2.

The third step computes an objective function by employing the surface Ss,t(ui,j, vi,j) to
determine the fitness. Thus, the fitness is computed by the expression
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

F0,0

F1,0

...

Fn/4,m/4


=



min

{
1

25

√
g = 4

∑
g = 0

r = 4
∑

r = 0

[
S0,0(ui,j, vi,j)− zi,j

]2}

min

{
1

25

√
g = 4

∑
g = 0

r = 4
∑

r = 0

[
S1,0(ui,j, vi,j)− zi,j

]2}

...

min

{
1

25

√
g = 4

∑
g = 0

r = 4
∑

r = 0

[
Sn/4,m/4(ui,j, vi,j)− zi,j

]2}


, f itness =

F0,0 + F1,0 + F2,0 + ... + Fn/4,m/4
(n/4)(m/4) . (16)

This fitness expression is computed trough the1 surface data zi,j and the Bezier surface
Ss,t(ui,j,vi,j).

Then, the fourth step selects the (k + 1)-generation parents by means of fitness. Thus,
W1,k+1 is taken from (W1,k,W2,k) andW3,k+1 is taken from (W3,k,W4,k). However,W2,k+1
is taken (w1,k, w2,k, w3,k, w4,k) from andW4,k+1 is taken from (w5,k, w6,k, w7,k, w8,k).

Then, the fifth step mutates one parent to elude trapping in a local minimum. To do
so, a new parent replaces the worst parent which is determined via Equation (16). In this
way, the Bezier surface Equation (13) is calculated to compute the fitness via Equation (16).
If fitness is enhanced, the selected worst parent is successfully mutated. Otherwise, the
mutation is not achieved. Additionally, one weight is mutated from a parent that is
randomly designated. To carry it out, the selected weight is substituted with a new
weight in the Bezier surface Equation (13) to compute the fitness via Equation (16). If the
new weight provides better fitness, the mutation is successful. Otherwise, the mutation
is achieved. From this mutation procedure, the (k + 1)-generation parents have been
accomplished. Moreover, Equations (14) and (15) compute the (k + 1)-generation children.
With this step, the (k + 1)-generation population is determined. The procedure to determine
the (k + 1)-generation population is computed iteratively until optimizing Equation (16).

To illustrate the weights optimization, the weights of the S0,0(ui,j,vi,j) are determined
from the topography contour given in Figure 2b. The steps to optimize the weights
are described in the flowchart of Figure 3 which describes the structure of the genetic
algorithm. Thus, the first step computes the first parents of the weights. This step computes
Equation (11) via wi,j = 1 to determine the search space of each weight wi,j. Thus, if S0,0(ui,j,
vi,j) is over zi,j, the research space is defined in interval [0.3, 1]. However, if the Bezier
surface is under zi,j, the search space is defined in the interval [1, 1.7]. In this case, the
weights, w0,0 = 1 and w4,4 = 1, are deduced from the Bezier basis functions. However, the
expressions, P4+4s,j = (P4+4s−1,j +P4+4s+1,j)/2 and Pi,4+4t = (Pi,4+4t−1 + Pi,4+4t+1)/2, the weights
(W4,0,W4,1,W4,2,W4,3,W0,4,W1,4,W2,4,W3,4) are determined to provide continuity G1.
Thus, four values are chosen from the solution space in random form to obtain the initial
parents of each weight. The first parents are pointed out in Table 1. In this table, the first
column indicates the control points to be optimized and the parents (W1,1, W2,1, W3,1,
W4,1) are indicated in the second to fifth column. Then, the second step computes the first
children by means of Equations (14) and (15). These equations are computed via parents
(W1,k andW2,k) for l = 0, l = 1 and q = 0 to obtain the children (w1,k, w2,k, w3,k and w4,k).
Moreover, (w5,k, w6,k, w7,k and w8,k) are computed via Equations (14) and (15) for l = 0,
l = 1 and q = 1. These children are pointed out in Table 1 in the sixth to thirteenth column.
Next, the third step computes the fitness through the objective function Equation (16) by
means of Bezier surface Ss,t(ui,j,vi,j) and zi,j. The fitness evaluation indicates that the initial
population provides a low error.

Then, the fourth step determines the (k + 1)-generation parents through the current
population. To do so, W1,k+1 is taken from (W1,k and W2,k), and W3,k+1 is chosen from
(W3,k,W4,k). In the same way,W2,k+1 is selected from (w1,k, w2,k, w3,k and w4,k) andW4,k+1 is
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selected from (w5,k, w6,k, w7,k and w8,k), respectively. In this case,W1,2 =W1,1,W3,2 =W3,1,
W2,2 = w1,1 andW4,2 = w5,1.
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Table 1. First generation population generated via genetic algorithm.

Pi,j W1,1 W2,1 W3,1 W4,1 w1.1 w2,1 w3,1 w4,1 w5,1 w6,1 w7,1 w8,1

P0,1 4.7773 4.7800 4.7583 3.9536 4.1286 4.7785 4.7789 4.8174 3.1435 4.1669 4.5235 4.7871
P0,2 3.5287 2.8255 1.9636 4.2704 2.3522 3.1669 3.2724 3.7293 1.6870 2.6238 3.3893 4.3249
P0,3 3.6140 3.7200 1.7605 3.2390 2.8483 3.6670 3.6705 3.8549 1.7513 2.4157 2.6209 3.7004
P1,0 2.2926 3.6831 3.6715 4.0298 2.1644 2.9004 3.1384 4.2026 3.4689 3.8051 3.8911 4.1741
P1,1 1.9470 2.2920 1.3373 2.4125 1.8310 2.0431 2.1852 3.2480 1.3371 1.6601 1.9109 2.4792
P1,2 2.0331 3.2020 2.2460 3.8576 1.8880 2.5084 2.7590 3.6850 2.0772 2.9500 3.2875 3.9469
P1,3 6.0711 5.0629 4.8280 5.0324 4.9800 5.4444 5.6921 6.4131 4.5137 4.8863 4.9614 5.5557
P2,0 4.4185 4.2947 1.4866 1.5336 3.3928 4.3534 4.3615 4.4331 1.4474 1.5069 1.5193 2.1067
P2,1 3.1289 2.6901 1.5340 3.3676 2.6680 2.8453 2.9708 3.2359 1.5219 2.0230 2.5697 3.4520
P2,2 5.5178 4.2465 5.1380 6.6700 4.2402 4.6895 5.0558 5.5786 4.7730 5.7343 5.9294 6.6918
P2,3 6.0749 5.6100 5.9917 4.2305 5.3861 5.7350 5.9156 6.2530 4.0962 4.7596 5.3026 6.2314
P3,0 3.7742 2.8934 3.9840 2.5912 2.8176 3.2176 3.4539 3.8605 2.3545 3.2651 3.4773 4.1501
P3,1 3.1066 1.8414 1.2777 1.4801 1.7958 2.4197 2.4955 3.4937 1.2734 1.3341 1.4050 2.7164
P3,2 2.9129 3.0561 3.0618 2.3274 2.8058 2.9828 2.9981 3.2064 2.0881 2.6173 2.7638 3.3897
P3,3 3.1086 1.2363 3.1767 3.2293 1.1794 1.7222 2.2487 3.2756 2.7820 3.1970 3.2035 3.3208

fitness 0.3224 0.6652 1.1678 1.4217 1.7809 2.3323 3.2111 4.9090 5.4896 7.1749 10.0922 16.4013

In the fifth step,W4,2 is chosen to be mutated by a new parent obtained from the search
space. Thus, Equation (16) is computed to determine fitness. As fitness was improved,W4,2
was changed by the new parent. Then, w2,0 was randomly determined to mutate fromW3,2.
Next, a new weight replaces w2,0 inW3,2 to compute Equation (16), and it was improved.
Therefore, the weight w2,0 is changed by the new weight. Then, algorithm computes
(k + 1)-generation children by means of Equations (14) and (15). Moreover, Equation (16)
is computed to determine the fitness of (k + 1)-generation children. Table 2 provides the
population of (k + 1)-generation. Where, the (k + 1)-generation corresponds to the second
generation. In the same way, the procedure to obtain the (k + 1)-generation population is
computed iteratively to minimize Equation (16). Table 2 includes the optimal control points
in column fifteenth. Thus, the Bezier surface S0,0(u,v) is defined by the optimal control
points Pi,j = wi,jzi,j. From this procedure, the Bezier surface is generated through weight
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provided by the genetic algorithm. In the same procedure, the weights of the Bezier basis
function S1,0(u,v), . . . , Sn/4,0(u,v), . . . , Sn/4,m/4(u,v) are determined to construct the Bezier
model Equation (12). In this way, the Bezier model has been accomplished via weights. The
optical setup to retrieve three-dimensional surfaces via an optical microscope is described
in Section 2.3.

Table 2. Second generation population computed via genetic algorithm.

Pi,j W1,2 W2,2 W3,2 W4,2 w1.2 w2,2 w3,2 w4,2 w5,2 w6,2 w7,2 w8,2

P0,1 4.7773 4.1286 4.7583 2.7363 3.4413 4.4383 4.5722 4.7776 2.3527 3.2636 3.9482 4.8031 4.5975
P0,2 3.5287 2.3522 1.9636 3.7694 1.9998 2.6527 3.0004 3.7899 1.6586 2.7490 3.0989 3.9729 4.1833
P0,3 3.6140 2.8483 1.7605 3.6536 2.5338 3.1380 3.3748 3.6551 1.7501 2.5315 3.0352 3.9397 4.2334
P1,0 2.2926 2.1644 3.6715 2.7929 1.9997 2.2243 2.2440 3.5333 2.5505 3.1600 3.4020 3.8566 4.6253
P1,1 1.9470 1.8310 1.3373 2.1250 1.7871 1.8690 1.8967 2.5211 1.3370 1.5576 1.8690 3.0055 4.2622
P1,2 2.0331 1.8880 2.2460 2.2674 1.5818 1.9460 1.9653 2.8178 1.8023 2.2558 2.2569 2.7300 4.1903
P1,3 6.0711 4.9800 4.8280 6.7910 4.9363 5.3483 5.7853 6.2568 4.6187 5.7769 6.0519 6.8100 4.0716
P2,0 4.4185 3.3928 4.6059 2.8543 3.0938 3.8314 4.0990 4.4219 2.7964 3.4144 4.0651 4.6444 4.2639
P2,1 3.1289 2.6680 1.5340 2.3397 2.0968 2.8553 2.9337 3.3264 1.4366 1.9030 2.1008 2.7721 4.0849
P2,2 5.5178 4.2402 5.1380 6.1288 4.1506 4.5613 4.9948 5.9815 4.7658 5.4646 5.6353 6.3440 4.0963
P2,3 6.0749 5.3861 5.9917 4.8183 4.6421 5.6249 5.8653 6.0755 4.4173 5.2168 5.4574 6.1211 3.8562
P3,0 3.7742 2.8176 3.9840 4.0754 2.6532 3.1648 3.3098 3.9525 3.4286 4.0254 4.0311 4.0868 4.3741
P3,1 3.1066 1.7958 1.2777 1.7333 1.7056 2.1418 2.7726 3.3674 1.2461 1.4267 1.5330 2.6698 3.9306
P3,2 2.9129 2.8058 3.0618 2.1111 2.0253 2.8559 2.8778 3.0425 1.7954 2.4762 2.8058 3.1492 3.7650
P3,3 3.1086 1.1794 3.1767 3.3495 1.1421 1.9837 2.3739 3.2132 2.4318 3.2527 3.2940 3.4383 3.5289

fitness 0.3224 1.7809 1.1678 5.4896 0.7635 0.9486 1.0912 1.3764 1.8031 2.2433 2.8813 4.3100 0.000342

2.3. Micro-Scale Surface Recovering via Micro Laser Line Projection

The optical setup to retrieve contour topography at microscale is exposed in Figure 4a.
This microscopic vision system is implemented by means through an optical microscope
that includes a digital camera and a laser line projector. This optical microscope is placed on
a movement system which is moved through a computer to scan the surface via projector
line. In this microscope setup, the topography area is established in x and y axis but the
object height is indicated in z-direction. The microscope geometry in x-direction is depicted
in Figure 4b. The laser diode projects a 40 µm line on the object contour which is reflected on
the CCD array through the microscope. In this case, the symbol θ represents the microscope
alignment angle. Moreover, the length d0 depicts the distance between the topography
point O and the objective lens. The length d1 depicts the length from the intermediate plane
to the first objective lens but F1 indicates the objective focus position. Length L depicts
the length defined from the ocular lens to the intermediate image plane. The length d2
depicts the length defined from the CCD array to ocular lens and F2 indicates the ocular
focus position. The lateral configuration of the microscope arrangement in y-axis is shown
in Figure 4c. The position of the laser line in the image plane is indicated by (xi,j, yi,j).

The coordinates (xc and yc) represent the center of the image plane, and the pixel
dimension is depicted by the symbol η. The surface height zi,j and the coordinate yi,j are
defined based on the geometry depicted in Figure 4b,c. Thus, (zi,j and yi,j) are computed by
the equations

zi,j =
η(xi,j − xc)F1F2

(F1 − d1)(d2 − F2)sinθ
+ O, (17)

yi,j =
η(yi,j − yc)F1F2

(F1 − d1)(d2 − F2)
+ ηyc. (18)

The surface length xi,j is given by the slider device in the x-direction. Based on
Equations (17) and (18), the surface height zi,j and the coordinate yi,j are computed through
the vision parameters (xc, yc, η, θ, d1, F1, d2 and F2). These parameters are computed
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from Equations (17) and (18) through the genetic algorithm steps which are mentioned
as follows.
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The first step computes the solution space of each parameter. From the image size,
the maximum and minimum are determined for the parameters (xc, yc, η). However, the
search space of the microscope parameters (d1, F1, d2 and F2,θ) is obtained by means of
the microscope geometry. In this way, the ocular lens ratio provides the minimum F2,
but two times the ocular lens ratio provides the maximum F2. Moreover, the ocular ratio
provides the minimum d2, but four times the ocular ratio provides the maximum d2. In the
same way, the objective lens ratio provides the minimum F1, and two times the objective
ratio provides the maximum F1. Moreover, objective ratio produces the minimum d1,
and four times the objective ratio produces the maximum d1. Moreover, the minimum
θ is established as 12◦, and maximum θ is established as 50◦. Thus, the research space
has been obtained. From this search space, four parents (W1,k,W2,k,W3,k andW4,k) are
randomly taken for each vision parameter. Thus, the four values of each parameter (xc, yc,
η, θ, d1, F1, d2 and F2) are determined as the first parents. Then, the second step computes
Equations (14) and (15) to generate the current children. To do so, (W1,k and W2,k) are
replaced in Equations (14) and (15) to compute (w1,k, w2,k, w3,k and w4,k) by employing l = 0,
l = 1 and q = 0. Moreover, (W3,k) are replaced in Equations (14) and (15) to compute (w5,k,
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w6,k, w7,k and w8,k) by employing l = 0, l = 1 and q = 1. Then, the third step evaluates the
fitness through the microscope parameters by the next equations

Ob1 = min

{
1

mxn

n

∑
i=

m

∑
j = 0

[
(zi,j − zi,m)−

η(xi,j − xc)F1F2

(F1 − d1)(d2 − F2)sinθ
+

η(xi,m − xc)F1F2

(F1 − d1)(d2 − F2)sinθ

]2}
, (19)

Ob2 = min

{
1

mxn

n

∑
i=

m

∑
j = 0

[
(yi,j − yi,m)−

η(yi,j − yc)F1F2

(F1 − d1)(d2 − F2)
+

η(yi,m − yc)F1F2

(d1 − F1)(d2 − F2)

]2}
. (20)

These equations are computed by employing the known data (zi,j – zi,m) and (yi,j − yi,1),
but the fitness is calculated by the expression Obj = (Ob1 + Ob2)/2. Then, the fourth step
generates the (k + 1)-generation population. Thus,W1,k+1 is chosen from (W1,k andW2,k),
andW3,k+1 is chosen from (W3,k,W4,k). In the same way,W2,k+1 is chosen from (w1,k, w2,k,
w3,k and w4,k) and W4,k+1 is chosen from (w5,k, w6,k, w7,k and w8,k). Then, the fifth step
mutates the worst parent determined via Equation (16). Moreover, a new parent replaces
the worst parent to compute the fitness via Equations (19) and (20). If the new parent
enhances the fitness, the worst parent mutation is successfully carried out. Otherwise,
the mutation is not applied. In the same way, one parameter is designated in random
form to be mutated. In this procedure, a new parameter replaces the selected parameter
to compute Equations (19) and (20). If the new vision parameter enhances the fitness, the
selected parameter is changed, if not, the mutation is not mutated applied. With this step,
the mutation is finished and the (k + 1)-generation parents have been completed. Then,
Equations (14) and (15) compute performed the (k + 1)-generation children. Additionally,
the fitness of these children is calculated by computing Equations (19) and (20). With
this step, the (k + 1)-generation population is obtained. The step to generate the (k + 1)-
generation population is computed until to minimize Equations (19) and (20). Moreover,
expression z0,j = η(x0,j − xc) F1 F2/(F1 − d1)(f 2 − F2)sinθ computes the length between zero
and the point O. On the other hand, the laser line position (xi,j, yi,j) is determined from
the maximum intensity in x-direction. In this way, the coordinate xi,j is calculated from
the maximum intensity in x-direction [18]. To perform this procedure, a Bezier curve is
generated in x-direction from the laser intensity through the expressions

x(u) =
N

∑
i = 0
Ci(1− u)N−iuixi,j, Ci = Ci−1(N + 1− i)/i, C0 = 1, 0 ≤ u ≤ 1. (21)

I(u) =
N

∑
i = 0
Ci(1− u)N−iui Ii,j, Ci = Ci−1(N + 1− i)/i, C0 = 1, 0 ≤ u ≤ 1. (22)

For these equations, xi,j represents the line pixel position in x-axis, Ii,j represents pixel
intensity and N indicates the laser line width in pixels. However, the sub-indices (i, j) depict
the pixel number in x and y directions. To perform the fitting, xi,j and Ii,j are substituted in
Equations (21) and (22), respectively. In this way, a concave curve {x(u), I(u)} is generated.
For this curve, I′′(u) is positive in the interval 0 ≤ u ≤ 1. Therefore, the Bezier curve
maximum is calculated through the derivative I′(u) = 0. For this derivative, u is computed
through the Bisection algorithm. Thus, u is substituted in Equation (21) to compute x(u)
which represents the line position xi,j = x(u) in x-direction. The coordinate yi,j is taken from
the number of rows in y-direction. Moreover, the laser line edges yi,0 and yi,m are computed
through the first derivative in y-direction. Thus, Equation (17) computes the object height
zi,j by means of xi,j, and Equation (18) computes the surface width yi,j by employing yi,j.
Thus, zi,j and yi,j have been computed through the laser line image which is provided by the
camera. However, the slider device provides the surface length xi,j. Thus, the microscale
contouring has been computed.
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In the microscope system, the radial distortion is deduced via line coordinate xi,j. The
coordinate xi,j is calculated via Equations (21) and (22), and yi,j is obtained through the row
number. In this way, the distortion is calculated from the expressions xi,j = xi,j + δxi and
yi,j = yi,j + δyj. Thus, the distortion is represented by (δxi, δyj), and (xi,j, yi,j) represent the
distorted coordinates. Additionally, a line shifting is given by the expression si,j = (x1,j + δx1)
− (xi,j + δxi), but a distorted line shifting is represented by Si,j = x1,j − xi,j. From these
expressions, δxi = (x1,j − xi,j) − si,j + δx1 = Si,j − si,j + δx1 is obtained to compute the
distortion in x-direction. Furthermore, the first line shifting is obtained without distortion
by projecting the line by position of the coordinate xc where δx1 = 0 and s1,j = S1,j. In this
way, the line shifting si,j is calculated through the first shifting by the expression S1,j by
si,j = i × S1,j. Thus, the distortion in x-direction is determined by the expression δxi = (x1,j
− xi,j) − i × S1,j. In the same way, the distortion in direction of y-axis is deduced through
the expressions (yi,1 − yi,j) = (yi,1 + δy1) − (yi,j + δyj) and Ti,j = (yi,1 − yi,j). From these
expressions, δyj = (yi,1 − yi,j) − j × Ti,1 is obtained to calculate the distortion in y-axis. In
Section 3, the results of microscale convex, concave and flat surface recognition via Hu
moments patterns are described.

3. Results

The microscale convex, concave and flat surface recognition is computed by means of
the microscope setup given in Figure 4a. The surface recognition is performed on concave,
convex and flat metallic iron. In this way, the first shape recognition at the microscale is
carried out for the convex iron surface which is illustrated in Figure 5a, where the scale in the
x-axis is indicated in mm. Figure 5b shows a laser line projected on the iron surface. In this
way, surface recognition is performed through the surface contour which is recovered via
the microbe vision system. To retrieve the surface contour, the iron topography is scanned
by the laser line in the x-direction. In this procedure, the camera aquires the line reflection
to calculate the coordinates (xi,j and yi,j) by the means of Equations (21) and (22). Then,
Equation (17) computes the surface high zi,j through the xi,j, and Equation (18) computes the
surface width yi,j through the yi,j. Additionally, the slider device provides the coordinate xi,j.
In this way, two hundred and sixteen laser lines were employed to compute the contour
topography shown in Figure 5c. The scale of x and y axis are indicated in mm, but the scale
of the z-axis is given in microns. The contouring accuracy is defined via relative error [19]
which is determined based on measurements given by a physical contact process. Thus, the
error of the contour measurement is computed through the next equation

Error% =
100

n ·m
n

∑
i = 0

m

∑
j = 0

∣∣zi,j − hi,j
∣∣

hi,j
, (23)

where hi,j is given by the contact procedure, zi,j is determined through Equation (17) and
n·m depicts the number of computed data. Then, the relative error is computed via
Equation (23) for the surface given in Figure 5c, and the result is a relative error of 0.883%.

Then, a Bezier model is built via a genetic algorithm by employing the topography
data shown in Figure 5c as described in Section 2.3. To do so, the first step determines the
search space and the first parents of each weight. Thus, the search space is established in
the interval [0.3, 1.7] for each weight. From the search space, four parents are randomly
chosen for the weights of the functions Ss,t(u,v). However, the second step computes
Equations (14) and (15) for l = 0, l = 1, q = 0 and q = 1 to create the first children. Then, the
third step replaces the control points Pi,j = zi,jwi,j in Equation (11) to compute the fitness
via Equation (16). Then, the fourth selects the (k + 1)-parents, whereW1,k+1 andW3,k+1 are
selected from (W1,k,W2,k) and (W3,k,W4,k), respectively. Moreover,W2,k+1 andW4,k+1 are
collected from (w1,k, w2,k, w3,k and w4,k) and (w5,k, w6,k, w7,k and w8,k), respectively. Then, the
fifth step mutates the lowest fitness parent which is chosen through Equation (16). Thus, a
new parent replaces the worst parent to compute Equation (16). If the new parent improves
the fitness, the worst parent is mutated, if not, the mutation is not applied. In the same way,
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one weight is selected to be mutated from a parent that is randomly selected. To carry it out,
a new weight replaces the selected weight to compute Equation (16) which determines the
fitness. Thus, if the new weight enhances fitness, the selected weight is changed, if not, the
mutation is not applied. Then, the second step computes Equations (14) and (15) to generate
the (k + 1)-generation children. The fitness of these children is computed via Equation (16).
The procedure to compute the (k + 1)-generation population is computed iteratively to find
the weights which minimizes Equation (16). In this way, 247 generations were calculated to
accomplish the Bezier model. Then, the optimal Pi,j = zi,jwi,j is replaced in Equation (11) to
determine the Bezier model that computes the topography contour shown in Figure 5d. The
Bezier model accuracy is determined by computing Equation (23), where zi,j is determined
via Equation (17), hi,j is computed via Ss,t(u, v) and the number of data is represented by
n·m. In this case, the Bezier model provides a relative error of 0.9012% with respect to the
iron topography given in Figure 5c. Then, the Hu moments are computed from the Bezier
surface to determine the Hu moments pattern. In this way, Equations (1)–(10) are computed
from the Bezier surface shown in Figure 5d. Thus, the Hu moments are computed, and
the results are φ1 = 0.0098, φ2 = 9.5861 × 10−5, φ3 = 8.8027 × 10−11, φ4 = 5.7037 × 10−14,
φ5 = 5.3374 × 10−25, φ6 = −5.4946 × 10−17, φ7 = −1.4123 × 10−25. This Hu pattern de-
scribes a flat pattern from φ3 to φ7, but, and increases from φ2 to φ1. In this case, φ5
is negative, and φ7 is negative. Therefore, the Hu moments pattern can be a convex or a
concave surface as pointed out in Section 2.1. However, laser line position xi,0 and xi,m
corresponds to a maximum position in the x-axis; therefore, the Hu pattern corresponds to
a convex surface. Thus, the surface shown in Figure 5d has been recognized as a convex
surface through the Hu moments pattern.

The second surface recognition is carried out for the metallic iron topography shown
in Figure 6a. However, Figure 6b illustrates the laser line projected on the iron topography.
In this way, the iron topography is scanned in the x-direction. During the scanning, the
coordinates (xi,j and yi,j) are computed via Equations (21) and (22). Then, Equation (17)
computes zi,j by employing xi,j, and Equation (18) computes yi,j by the means of yi,j.
However, the slider device provides xi,j. Thus, two hundred and twenty images were
employed to compute the topography contour shown in Figure 6c. The scale of the x and
y axis are given in mm, but the scale of the z-axis is indicated in microns. The relative
error of the surface contouring is determined by computing Equation (23),where zi,j is the
topography contour computed by Equation (17) and hi,j indicates the reference surface.
Thus, the relative is calculated via Equation (23), and the accuracy is a relative error of
0.7362%. Then, the Bezier model is generated by employing the contour data given in
Figure 6c where the control points Pi,j = zi,jwi,j are computed via genetic algorithm. In this
way, the first step defines the search space in the interval [0.3, 1.7] for each weight. From
this search space, four parents are randomly taken for each weight of the Bezier surface
Equation (11). Then, the second step computes the crossover via Equations (14) and (15) to
create the first children. Then, the third step computes Equation (16) via points Pi,j = zi,jwi,j
to determine the fitness. Then, the fourth step selects the (k + 1)-generation parents via
fitness., W1,k+1, W3,k+1, W2,k+1, andW4,k+1 are collected from (W1,k, W2,k), (W3,k, W4,k),
(w1,k, w2,k, w3,k, w4,k) and (w5,k, w6,k, w7,k, w8,k), respectively. Then, the fifth step mutates
the lowest fitness parent that is chosen by computing Equation (16). Thus, if the fitness is
improved through the mutation, the worst parent is changed by the new parent, if not, the
mutation is not applied. Moreover, one weight is selected to be mutated from a parent that
is determined random form. Thus, a new weight replaces the selected weight to compute
Equation (16). Thus, if the fitness is improved by the new weight, the selected weight is
changed by the new weight.

Then, the second step computes the children of the (k + 1)-generation via Equations (14)
and (15). The procedure to compute the (k + 1)-generation population is repeated to
minimize the objective function Equation (16) where 203 iterations were performed to
obtain the optimal weights. Thus, the optimal control points Pi,j = zi,jwi,j are replaced in
Equation (11) to compute the topography contour shown in Figure 6d. The Bezier model
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accuracy is computed via Equation (23), where zi,j is the computed by Equation (17), and
hi,j is the Bezier surface Ss,t(u, v). In this case, the Bezier model provides a relative error of
0.8651%. Then, the Hu moments pattern is computed from the Bezier surface data given in
Figure 6d. Thus, Equations (1)–(10) are computed from the contour data shown in Figure 6d.
The result of these Hu moments are φ1 = 0.0061, φ2 = 3.7308 × 10−5, φ3 = 1.6666 × 10−12,
φ4 = 1.6949 × 10−12, φ5 = 2.9203 × 10−24, φ6 = 1.8667 × 10−15 and φ7 = −2.8675 × 10−24.
This pattern describes a flat line from φ3 to φ7, but an increasing function from φ2 to φ1.
In this case, φ7 is a negative value. Therefore, the Hu moment pattern is established as a
flat surface as pointed out in Section 2.1. Thus, the surface shown in Figure 6d has been
recognized as a flat surface through the Hu moments pattern.
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The third iron surface recognition at microscale is computed for the concave topog-
raphy shown in Figure 7a. However, Figure 7b shows the microlaser line projected on
the iron object. To perform the recognition, the object topography is retrieved via laser
line scanning in the x-direction. From the scanning, the coordinates (xi,j and yi,j) are com-
puted by Equations (21) and (22). Then, Equation (17) computes zi,j through the position
xi,j, and Equation (18) computes yi,j through the position yi,j. However, the slider device
provides the coordinate xi,j. In this case, two hundred and fourteen images were employed
to retrieve the topography shown in Figure 7c, where the scale of the x and y axis are
given in mm, but the scale of the z-axis is given in microns. The relative error of the con-
toured surface is calculated via Equation (23) by employing the reference surface hi,j. Thus,
Equation (23) is computed, and the result is a relative error of 0.902%. Then, the Bezier
model is computed from the contour data given in Figure 7c. Thus, the control points
Pi,j = zi,jwi,j are computed via genetic algorithm, where the first step determines the search
space in the interval [0.3, 1.7], and four parents are randomly taken for each weight wi,j.
Then, the second step computes the first children via crossover Equations (14) and (15).
Then, the third step computes the fitness Equation (16) via control points Pi,j = zi,jwi,j.
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Then, the fourth step selects (W1,k+1, W3,k+1, W 2,k+1 and W4,k+1) from (W1,k and W2,k),
(W3,k andW4,k), (w1,k, w2,k, w3,k and w4,k) and (w5,k, w6,k, w7,k and w8,k). Then, the lowest
fitness parent is mutated in the fifth step. Moreover, one weight designated in random
form is mutated. Then, the second step computes the (k + 1)-generation children via
Equations (14) and (15). The procedure to compute the (k + 1)-generation population is
computed iteratively to minimize Equation (16). In this procedure, 228 generations were
employed to compute the optimal weights. Then, the Bezier model Equation (11) is com-
puted by employing Pi,j = zi,jwi,j to obtain the surface shown in Figure 7d. The relative
error of this Bezier surface is computed via Equation (23), where zi,j is determined by
Equation (17) and hi,j is the Bezier surface Ss,t(u,v) computed via Equation (11). Thus, the
Bezier surface model provides a relative error of 0.981%. Then, the Hu moments pattern
is determined from the Bezier surface. In this way, Equations (1)–(10) are computed from
the contour topography data given in Figure 6d to establish the Hu moments pattern.
The results are φ1 = 0.0128, φ2 = 1.6507 × 10−4, φ3 = 4.1305 × 10−10, φ4 = 4.3164 × 10−10,
φ5 = −4.4624 × 10−20, φ6 = 2.9023 × 10−12 and φ7 = −3.4863 × 10−20. This Hu pattern
describes a flat pattern from φ3 to φ7, but increases from φ2 to φ1. In this case, φ5 is negative
and φ7 is negative. Therefore, the Hu moments pattern can be a convex or a concave surface
as pointed out in Section 2.1. However, the laser line position xi,0 and xi,m correspond to a
minimum position in the x-axis; therefore, the Hu pattern corresponds to a concave surface.
Thus, the surface shown in Figure 7d has been recognized as a concave surface through the
Hu moments pattern.

Additionally, the surface recognition at microscale is computed on materials, such
as plastic and paper. Thus, surface recognition is computed for the plastic topography
shown in Figure 8a. To do so, the plastic surface is retrieved is scaned in x-axis, where
the coordinates (xi,j, yi,j) are computed by Equations (21) and (22). Then, Equation (17)
computes surface height zi,j, Equation (18) computes the coordinate yi,j, but the slider
device provides surface width xi,j. In this case, two hundred and twenty two images were
employed to retrieve the surface. The surface accuracy is computed via Equation (23), and
the result is a relative error of 0.896%. Next, the Bezier model is computed from the surface
height zi,j by computing the control points Pi,j = zi,jwi,j through the genetic algorithm. To do
so, the search space is determined in the first step in the interval [0.3, 1.7] and four parents
are randomly taken for each weight wi,j.

The second step computes Equations (14) and (15) to determine the first children. The
third step computes the fitness Equation (16) via control points Pi,j = zi,jwi,j. Then, the
fourth step selects (W1,k+1,W3,k+1,W 2,k+1 andW4,k+1) from (W1,k andW2,k), (W3,k and
W4,k), (w1,k, w2,k, w3,k and w4,k) and (w5,k, w6,k, w7,k and w8,k). Then, the fifth step mutates
the lowest fitness parent, and one weight from a parent which is randomly selected. Then,
the second step computes the (k + 1)-generation children through Equations (14) and (15).
Thus, the procedure to generate the (k + 1)-generation population is computed iteratively to
minimize Equation (16). In this procedure, 238 iterations were computed to find the optimal
weights. Then, the Bezier model Equation (11) is computed by means of Pi,j = zi,jwi,j to
obtain the surface shown in Figure 8b. The relative error of this Bezier surface is computed
through Equation (23), where zi,j is computed via Equation (17) and hi,j is the Bezier surface
Ss,t(u,v) computed via Equation (11). Thus, the Bezier surface model provides a relative
error of 0.932%. Then, the Hu moments pattern is determined from the Bezier surface
shown in Figure 8b. In this way, Equations (1)–(10) are computed from the Bezier surface
to establish the Hu moments pattern. The results are φ1 = 0.0096, φ2 = 9.2463 × 10−5,
φ3 = 1.8333 × 10−11, φ4 = 4.1469 × 10−12, φ5 = −5.0870 × 10−22, φ6 = 5.4574 × 10−16 and
φ7 = 2.3880 × 10−23. This Hu pattern describes a flat pattern from φ3 to φ7, but increases
from φ2 to φ1. In this case, φ5 is negative. Therefore, the Hu moments pattern can be
a convex or a concave surface as pointed out in Section 2.1. However, the line position
xi,0 and xi,m correspond to a maximum position in the x-axis; therefore, the Hu pattern
corresponds to a convex surface. Thus, the topography contour shown in Figure 8b has
been recognized as a convex surface through the Hu moments pattern.
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In the same way, the microscale surface recognition is computed for the paper surface
given in Figure 8c. This procedure is carried out by scanning the paper topography in the
x-direction to compute the coordinates (xi,j, yi,j) through Equations (21) and (22). Then,
(zi,j, yi,j) are computed via Equations (17) and (18), but xi,j is collected from the slider
device. In this case, two hundred and eighteen images were employed to compute the
surface topography. The surface accuracy is determined by computing Equation (23) which
provides a relative error of 0.921%. Then, the Bezier surface is computed from the surface
zi,j by computing the control points Pi,j = zi,jwi,j. Thus, the first step determines the search
space in the interval [0.3, 1.7] and four parents are randomly taken for each weight wi,j. The
second step computes the first children via Equations (14) and (15). The third step computes
the fitness Equation (16). Then, the fourth step selects (W1,k+1,W3,k+1,W 2,k+1 andW4,k+1)
from (W1,k andW2,k), (W3,k andW4,k), (w1,k, w2,k, w3,k and w4,k) and (w5,k, w6,k, w7,k and
w8,k), respectively. Then, the fifth step mutates the lowest fitness parent and one weight from
a parent which is randomly selected. Then, the second step computes the (k + 1)-generation
children via Equations (14) and (15). Thus, the procedure to generate the (k + 1)-generation
population is computed iteratively to minimize Equation (16). Thus, 208 generations
were computed to determine the optimal weights. Then, the Bezier model Equation (11) is
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computed via the means of Pi,j = zi,jwi,j to obtain the surface topography shown in Figure 8d.
The relative error of this topography is computed via Equation (23), where zi,j is computed
via Equation (17) and hi,j is the Bezier surface Ss,t(u, v) computed via Equation (11). Thus,
the Bezier surface model provides a relative error of 0.952%. Then, the Hu moments pattern
is determined from the Bezier surface shown in Figure 8d. Thus, Equations (1)–(10) are
computed from the Bezier surface to establish the Hu moments pattern. The result of these
Hu moments are φ1 = 0.0059, φ2 = 3.4819 × 10−5, φ3 = 3.5756 × 10−11, φ4 = 3.5594 × 10−11,
φ5 = 1.2611 × 10−21, φ6 = 3.7812 × 10−14 and φ7 = −1.2610 × 10−21. This Hu pattern
describes a flat line from φ3 to φ7, but an increasing function from φ2 to φ1. In this case,
φ7 is a negative value. Therefore, the Hu moment pattern is established as a flat surface as
pointed out in Section 2.1. Thus, the paper surface shown in Figure 8d has been recognized
as a flat surface through the Hu moments pattern.
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To elucidate the validity of the proposed microscale surface recognition, the advantages
over the optical microscope imaging systems are described as follows. Firstly, the Hu
moments pattern and microlaser provide a recognition accuracy of a relative error of 0.674%
for microscale concave, convex and flat surface recognition, where the recognition accuracy
is computed via a relative error in Equation (23). In this case, Equation (23) is computed
by employing the Hu moments provided on the surface contoured via microlaser line
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projection and Hu moments provided by the surface contoured through a contact method.
This recognition accuracy represents an advantage over the optical microscope imaging
systems which provide a relative error of over 2%. Secondly, the Hu moments pattern and
microlaser line provide good robustness for characterizing microscale concave, convex and
flat surface patterns. In this matter, a flat surface contoured via microlaser line produces
always the same Hu moments pattern. Therefore, the microscale flat surface is always
recognized with a small relative error of 0.527%. In the same way, the Hu moments pattern
always provides the same pattern for a concave and convex surface. However, the laser line
position in the x-direction determines if the topography is concave or convex. In this way,
the microscopic convex and concave surface are always recognized with a small relative
error of 0.674%. This robustness is not provided by optical microscope systems based on
image processing. It is because the Hu moments pattern varies with the image intensity
variation. In this way, the robustness characterizing represents an advantage over the
optical microscope imaging systems. Thirdly, the contouring based on a microscopic laser
line provides the real surface shape at microscale. This contouring accuracy is achieved
because the microlaser line reflects the real object contour on the camera image plane.
Instead, the optical microscope imaging systems do not depict the topography contour
accurately and the surface recognition is not so accurate. Therefore, surface contouring
represents an advantage over the optical microscope systems which determine topographic
data by means of gray-level image processing. Fourthly, the simple method for surface
recognition provides a very easy form to perform the surface recognition, where the
recognition procedure is performed by computing Hu moments for Equations (4)–(10) from
a Bezier surface which is computed from surface data contoured via laser line scanning.
Instead, the image processing of an optical microscope requires complicated procedures
and great quantity of sampled images to perform the training procedures. Therefore, the
recognition structure based on the Hu moments pattern and the microlaser line provides a
suitable structure algorithm for surface recognition at the microscale. Based on these criteria,
the concave, convex and flat surface recognition at the microscale has been achieved in a
good manner. A discussion of the viability of the proposed surface recognition is explained
in Section 4.

4. Discussion

The viability of the surface recognition at the microscale is determined through the
recognition accuracy [20,21]. Moreover, the capability of the microscale concave, convex
and flat surface recognition is deduced by means of the recognition accuracy [22,23].
Therefore, the contribution of the proposed microscale surface recognition is established
through recognition accuracy, where recognition accuracy is determined through surface
recognition via a method based on contact [24]. Moreover, the efficiency of the recognition
system structure is involved in the viability. In the proposed microscale surface recognition,
the recognition accuracy and the microscope system efficiency provide good results. For
instance, surface recognition via Hu moments pattern and micro laser line projection always
recognizes flat metallic surfaces. It is because a flat metallic surface always produces the
same Hu moments pattern which describes a flat line from φ3 to φ7 but an increasing value
from φ2 to φ1. The small variations of the Hu moments pattern are produced due to the
surface roughness. In this way, the variation of the Hu moments pattern for the flat surface
is 0.527% which is computed through the relative error. Moreover, the recognition via
Hu moments pattern and microlaser line projection always recognize concave and convex
metallic surfaces. It is because concave and convex metallic surfaces always produce the
same Hu moments pattern which describes a flat line from φ3 to φ7, where φ5 is a negative
value. However, the Hu moments pattern provides an increasing value from φ2 to φ1.
Additionally, the laser line position xi,0 and xi,m determine if the surface is concave based on
the maximum and minimum position in the x-axis. The small variation of the Hu moments
pattern due to the surface roughness for the concave and convex surface is a relative error
of 0.674%. To elucidate the viability of the proposed surface recognition, the accuracy of
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the concave, convex and flat surface recognition reported in recent years is commented
on as follows. The surface recognition accuracy of the optical microscope vision system is
related to surface contouring which is not included in surface recognition via microscope
image processing. Typically, microscopic concave, convex and flat surface recognition is
performed with a relative error of over 2.5% [25–27], where the surface shape is determined
through microscope images based on gray level. Therefore, surface recognition is not
carried out through the surface topography contour. The missing of this process reduces
the surface recognition accuracy. Moreover, the traditional optical microscope techniques
compute the contour data via image intensity to characterize the surface pattern [28,29].
However, the image intensity does not depict the topography contour with great accuracy.
Thus, the surface pattern characterizing is not so accurate. Instead, the microlaser line
reproduces the topography contour on the image plane with great accuracy. It is because
the laser line reflects the real surface contour in the image plane through the microscope.
This procedure leads to obtaining the same Hu moments pattern for each surface shape
which includes roughness. This criterion has been corroborated through the results of
the concave, convex and flat surface recognition pointed out in Section 3. On the other
hand, the efficiency of the proposed surface recognition is established through the system
structure to perform the surface recognition. For instance, the microlaser line contouring
performs topography measurement at microscale in the accurate form. It is because the laser
line reflects the topography contour in the CCD camera. Also, the Bezier surface model
Equation (11) provides all necessary surface points to compute the Hu moments pattern.
In this way, the Hu moments provide the same characteristic pattern for a flat surface.
Moreover, the Hu moments provide the same characteristic pattern for a concave and a
convex surface, where the microlaser line position establishes if the pattern corresponds to
a concave or a convex surface. Thus, pattern characterization is carried out through efficient
stages which produce an efficient and accurate surface recognition. It is because pattern
characterization always produces the same pattern for the same surface topography. These
statements have been corroborated by several microscale concave, convex and flat surface
recognition trials. Instead, deep learning methods have emerged for surface recognition.
The deep learning methods lie in a well-designed convolutional neural network and a huge
data set of images related to the target. Thus, the recent methods based on deep learning
perform pattern training through several hundred images [30] which do not produce the
same pattern. It is because pattern characterization is carried out via image intensity
which does not depict the surface topography in its accurate form. In this way, the pattern
characterization depends on the surface reflectance, light pattern intensity and reflection
angle. Thus, the training via image gray level requires several hundred samples of the
same surface topography to perform pattern characterization. Thus, the suitable structure
of the surface recognition via Hu moments pattern and micro laser line contouring gives
a better efficiency than the surface recognition performed via pattern characterization
based on gray-level images. This criterion has been corroborated through the steps of the
surface recognition via Hu moments pattern and micro laser line contouring. Moreover, the
capability of microscale surface recognition via Hu moments pattern has been corroborated
by performing surface recognition on other materials, such as plastic and paper. In the
case of the plastic surface, the laser line image depicts the real topography contour. This
statement is corroborated by the microlaser line displayed in Figure 8a. Therefore, the
Bezier surface model Equation (11) computes the surface topography with great accuracy
and a relative error of 0.932%. Moreover, the Bezier surface produces a Hu moments pattern
which is very similar to the Hu moments pattern of the metalic surface. The variation of
the Hu moments pattern for the convex surface is a relative error of 0.624%. Additionally,
the laser line position xi,0 and xi,m determine that the Hu pattern corresponds to a convex
surface. Thus, it is elucidated that the microscale laser line contouring provides good
surface recognition at the microscale of metals and other materials. This criterion is also
elucidated by performing surface recognition on the paper surface. In the case of the
paper surface, the laser line image depicts the real topography contour. This statement is
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demonstrated by the micro laser line illustrated in Figure 8a. Therefore, the Bezier surface
model Equation (11) computes the surface topography with great accuracy and a relative
error of 0.952%. Moreover, the Bezier surface produces a Hu moment pattern which is very
similar to the Hu moments pattern of the flat metallic surface, where the variation of the Hu
moments pattern for the flat surface is 0.502%. From these criteria, it is corroborated that
the microscale surface recognition via micro laser line provides good surface recognition
for different surface materials. It is the difference in recognition techniques based on
microscope gray-level images, where the surface material modifies the image intensity
which determines the topographic data. This limitation decreases surface recognition
accuracy. Thus, the viability of the microscale concave, convex and flat surface recognition
via the Hu moments pattern and microlaser line projection has been corroborated. In
addition, the basic optical setup provides an inexpensive system that increases the viability
of the proposed microscale concave, convex and flat surface recognition. Thus, the proposed
surface recognition makes an enhancement in the field of the microscale concave, convex
and flat surface recognition of the microscope imaging systems.

The concave, convex and flat surface recognition at microscale has been implemented
in a computer at 2.2 GHz of velocity. This computer performs the program to capture
64 images per second via a digital camera. Moreover, the slider device is moved through a
computer program. Thus, the topography transverse section is recovered in 0.0052 s by
processing one laser line image. The time consumed to perform the surface recognition
includes the topography contouring via laser line scanning, surface modeling and pattern
characterization. Thus, the convex surface recognition of the iron topography given in
Figure 5b is performed in 96.38 s, the flat surface recognition of the iron surface shown in
Figure 6b is performed in 84.37 s and the concave surface recognition of the iron topography
illustrated in Figure 7b is carried in 92.49 s. Additionally, the convex surface recognition of
the plastic topography given in Figure 8b is performed in 98.12 s, and the recognition of
the flat paper surface shown in Figure 8d is performed in 83.598 s.

5. Conclusions

A technique to make concave, convex and flat surface recognition via Hu moments
pattern and microlaser line contouring has been elucidated. The surface recognition per-
formed via microlaser line contouring enhances the surface recognition accuracy of the
concave, convex and flat surface recognition which is performed via optical microscope
imaging systems. This viability of microscale surface recognition has been elucidated
through the surface recognition accuracy, and the efficient structure to characterize concave,
convex and flat surface patterns. In this way, Hu moments pattern and the microlaser line
contouring have improved the accuracy of the microscopic surface recognition of optical
microscope imaging systems by reducing the relative error from 2.0% to 0.67%. It is because
the microscale concave, convex and flat surface recognition is performed by means of the
real topography contour. Furthermore, the algorithm structure based on the Hu moments
pattern and microlaser line contouring provides a pattern characterization efficient and
more robust than the pattern characterization computed by the traditional microscope
imaging systems. Thus, the surface recognition via Hu moments pattern and microlaser
line contouring provides a valuable tool to perform surface recognition via systems based
on optical microscope. Moreover, the basic microscope arrangement makes a suitable
optical setup to make microscale surface recognition which corroborates the capability
of the proposed system. Thus, the concave, convex and flat surface recognition via Hu
moments pattern and microlaser line projection has been performed at the microscale with
good results.
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