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Abstract: This study focuses on time-resolved surface modifications of a single-phase Ti25Zr25Nb15V15Ta20

high-entropy alloy (HEA) when immersed in 0.9 wt% NaCl and phosphate-buffer solutions (PBS)
at 37 ◦C. A remarkable transition from high ionic diffusion to electron conduction was observed in
PBS, whereas the existing conductivity in NaCl solution was further enhanced after 3 h of exposure.
During in-situ testing, NaCl improved passivation conceived by the decrease in passivation-current
density and increase in Tafel slope. Heterogeneously dispersed oxide particles with NaCl could have
accounted for the moderate increase in conductivity while not affecting the capacitive behavior. The
Tafel slope decreased after 2 h of immersion in PBS linked to K+ and P−3 accumulation on the surface.
The pronounced change in the post-PBS treated sample was also revealed by a four-fold increase
in HEA-electrolyte resistance. A visible decrease in the constant-phase-element parameter of the
HEA-electrolyte interface after long-term PBS immersion indicated a rise in electrode conductivity
and ionic build-up on the surface. The findings suggest that compared to PBS, the selected HEA has
a faster passive-layer formation in NaCl with smaller changes in interface resistivity upon long-term
immersion, which is promising for enhanced protein-adsorption rates and loading amount.

Keywords: high-entropy alloy; transition metal; biocorrosion; electrochemical-impedance spectroscopy;
potentiodynamic polarization; energy-dispersive X-ray

1. Introduction

High-entropy alloys (HEAs), discovered by Yeh et al. and Cantor et al. in 2004 [1,2], are
a unique class of alloys with favorable thermal, magnetic, hydrogen-storage, mechanical,
and biomedical properties [3–11]. HEAs contain five or more main elements, each within 5
to 35 wt% in equi-/near-equimolar concentrations [12,13]. During their synthesis, four core
effects, namely, (1) high configurational entropy stabilizing the solid solutions relative to
intermetallic phases, (2) severely strained lattices bestowing different effects on mechanical
and physical properties, (3) sluggish diffusion kinetics because of the fluctuations in the
bonding environment, and (4) a “cocktail effect” generated by inter-element interactions
yielding composite structures and outstanding properties, are utilized [13]. HEA fibers
with excellent performance potential are desired for functional, structural, and biomedical
applications [14–16].

E-beam melting has clear advantages over other conventional methods since it enables
production of refractory and chemically active materials with the crucible-free melting
mode [17–19], resulting in microfibers with close tolerances and high quality. This crucible-
free melting method yields micro/nanocrystalline or amorphous structures with a single
phase due to rapid (~106 K·s−1) quenching rates [18].

Different HEAs have been hitherto studied in terms of electrocatalytic activity, passiv-
ity and passivation behavior, diffusion kinetics, and electron-transfer reactions in aqueous
solutions [20–27]. However, the samples were either in bulk, ribbon, or nanocatalyst forms.
Our recent publication [28] focuses on the electrochemical-corrosion behavior and hydro-
gen activity of transition-metal-based HEA microfibers composed of IVB (Ti, Zr, Hf) and
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VB (V, Nb, Ta) elements in 1 M KOH solution using potentiodynamic polarization, Tafel
fitting, and the Butler–Volmer equation. The main findings indicated ultra-low corrosion
down to several microns per year and a stable supercapacitive response over a wide range
of frequencies originating from the oxide-layer formation. The highest stability with a
very slight shift of the corrosion potential ∆Ecorr = 5 mV (from −451 mV to −446 mV) was
observed for the Ti25Zr25Nb15V15Ta20 HEA, as the onset potential of the potentiodynamic
polarization from a cathodic to an anodic regime iteratively increased at each cycle. Fur-
thermore, the highest Ecorr was attained for this alloy composition, which is indicative of
better corrosion resistance.

It is possible that the stainless steel commonly used for surgical instruments, i.e.,
scalpels, forceps, operating tables, etc., is at risk of an accumulation of harmful bacteria,
biofilm formation, and corrosion [29]. The high stability of the selected transition-group
elements and their alloys in various environments can be beneficial for using HEA mi-
crofibers in saline solution for dentistry and simulated physiological solutions for surgeries
and body implantations [30,31]. Along with their very high flexibility and strength [32,33],
these HEA microfibers can be an alternative material for surgical tools.

In terms of HEAs, cast, cold-rolled, and annealed Fe50Mn27Ni10Cr13 [34]; CoCrFeMnNi
fabricated by selective laser melting [35]; and laser-clad FeCoNiCrNb0.5Mox coatings [36]
were reported to show acceptable corrosion performance in NaCl solution. However, until
now, no studies besides that of our group have demonstrated the influence of corrosion on
microfibers when they are in metallic form. This study concentrates on the time-dependent
biocorrosion of the same HEA produced by electron-beam melting with a pendant-drop-
melt extraction in saline and phosphate-buffer solutions at a standard body temperature of
37 ◦C. The near-atomic Ti25Zr25Nb15V15Ta20 HEA is preferred to its equiatomic counterpart,
i.e., Ti20Zr20Nb20V20Ta20, because TiZr alloys have been shown many times to achieve
excellent osseointegration and biocompatibility [37–40]. Furthermore, it was recently re-
ported that the inclusion of Ta in Ti-Zr leads to ZrO2 and Ta2O5 formation and to improved
corrosion resistance compared to cp-Ti and Ti-6Al-4V alloys [41]. For these reasons, we
increased the amount of Ti and Zr while retaining Ta. Our initial trial of this composition in
0.9 wt% NaCl at room temperature yielded promising results (Figure 6 in [28]). In the cur-
rent study, frequency-dependent alterations as a function of immersion time were examined
by electrochemical impedance spectroscopy (EIS) and simulated by a suitable equivalent-
circuit model (ECM) to extract the resistive and capacitive behavior of the bulk sample
and the formed oxide layer. The stability of the samples over immersion time was tested
by potentiodynamic polarization, where the linear Tafel slopes determined the changes in
the cathodic activity. The single-phase structure of the as-spun fibers was confirmed by
X-ray diffraction (XRD) and scanning-electron-microscopy (SEM) imaging, whereas surface
modifications due to oxide accumulation were registered by energy-dispersive X-ray (EDX)
attached to SEM.

2. Materials and Methods
2.1. HEA-Microfiber Synthesis

Granules of Zr (99.5%), Ti (99.5%), V (99.7%), Nb (99.95%), Hf (99.5%), and Ta (99.95%)
were used for the preparation of ingots by arc-melting (Edmund Bühler GmbH). The mi-
crofibers were produced by a custom-built device in which electron-beam melting of the
billet in a vacuum chamber takes place. In this technique, the lower end of a vertical billet
melts with the formation of a hanging melt drop. Billets in the form of rods with cm-sized
diameters are used. The drop solidifies once it contacts the rotating isosceles triangle and
detaches from the tip of the ingot due to centrifugal forces. High cooling rates of up to
106 K·s−1 can be possible, allowing for a nanocrystalline or amorphous structure depending
on the composition. Discrete fibers with sizes of components smaller than those of tradi-
tional spraying can be achieved using this method [18]. The compositional homogeneity of
the microfibers was previously verified by cross-sectional high-angle annular dark-field–
scanning transmission electron microscopy (HAADF-STEM) and elemental mapping with
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energy-dispersive X-ray [28]. The microfibers were rectangular in cross-section and had an
average width of 235 ± 15 µm, a thickness of 15.3 ± 1 µm, and a length of 2 ± 0.2 cm.

2.2. Electrochemical Measurements

A premixed aqueous phosphate-buffer solution (PBS) (ROTI®Cell PBS—Na2HPO4:
5.599 mM, KH2PO4: 1.058 mM, NaCl: 154.004 m, pH = 7.4 ± 0.1, Carl Roth GmbH + Co.
KG) and a 0.9 wt% NaCl aqueous solution (CELLPURE® ≥ 99.5%, Carl Roth GmbH +
Co. KG) were prepared for this study. In order to reduce the corrosion rates and increase
the polarization resistance of the stainless steel, a 5 mL solution with electrodes at very
close distances was deaerated for the measurements for 15 min using Ar gas. Since the
microfiber area was extremely small, a metal wrap between the clamp and microfiber
was utilized in order to hold the material tight and straight and establish conductivity
during electrochemical measurements. One microfiber edge was coiled by copper tape
(Busch 1799) to fit into clips (SKS Hirschmann KLEPS 2600), which mediated high electrical
conductivity. Before the test, the microfiber–Cu-tape junction was proven to be electrically
conductive by a multimeter, where the electrical conductivity of the Cu tape was measured
to be 65 MS·m−1, yielding an extremely small resistivity of 0.0154 µΩ·m. The samples were
immersed in the solution preheated to 37 ± 1 ◦C in a conventional cell using a hot plate
with a temperature probe, and measurements were conducted immediately after reaching
the temperature. During the measurements, the cell was covered by Parafilm® in order
to eliminate oxygen entrance and exit and minimize the change in solution concentration.
The electrochemical measurements were conducted using a Pt-counter electrode 0.8 mm in
diameter and an Ag(s)/AgCl(s) reference electrode in a saturated KCl solution. The redox
potential of the Ag/AgCl electrode in the test solutions can be estimated by the following:
The redox potential of PBS is +0.640 V (EAg/AgCl + E◦Ag/AgCl (0.197 − 0.00101 × T (37−25))
V + 0.0615 × pH (7.4)) vs. a reference hydrogen electrode (RHE). For 0.9 wt% NaCl,
this value is +0.523 V (EAg/AgCl + E◦Ag/AgCl (0.197 − 0.00101 × T (37−25)) V + 0.0615
× pH (5.5)) vs. RHE. The immersed surface areas were 0.030 ± 0.006 cm2 within NaCl
and 0.029 ± 0.002 cm2 within PBS. Three samples in each solution were measured. The
error margins due to surface roughness (vein-like patterns and striations stemming from
the production) were determined by recording the optical micrographs with Olympus
BX51 Fluorescence Microscope using the Olympus Stream Motion 1.9.3. software and
analyzing with Gwyddion SPM data-visualization and -analysis software. Because of the
selected microfiber-production technique, the deviation between the surface areas varied
only slightly. An extremely sensitive PARSTAT 4000A Potentiostat Galvanostat (AMETEK
GmbH, Meerbusch, Germany, equipped with a VersaStudio 2.62.2 software module) with an
applied-voltage resolution of 30 µV for±1 V signal and an applied-current accuracy of 0.2%
of the reading was used for the measurements. The electrochemical measurements were
performed using electrochemical-impedance spectroscopy (EIS) and a potentiodynamic
polarization sweep (from cathode to anode) every 30 min of immersion time after EIS. It is
important to note that the immersion time indicated in this paper is the total waiting time
between measurements excluding the duration of EIS and polarization tests. The solution
concentrations remained stable, confirmed by the pH meter before the electrochemical test
and after the test was completed. In the beginning, EIS analysis was carried out at open-
circuit potential (OCP) at 10 mV AC amplitude with 10 points per decade registered from
100,000 Hz to 0.1 Hz. OCP in 0.9 wt% NaCl and PBS solutions were recorded as 0.375 V
and 0.025 V, respectively. The OCP analysis was measured for one minute before each EIS
every 0.5 h, and the time-resolved OCP value stayed quite constant with each solution
(within ±5 mV). Equivalent-circuit modeling (ECM) of the EIS data was performed using
the ZSimpWin V.3.10 analysis program. Potentiodynamic polarization was registered from
±1 V vs. OCP in 0.9 wt% NaCl and in PBS at a scan rate of 0.005 V·s−1. The overpotential
was calculated by adding the shift of the actual potential from the equilibrium state (i.e.,
+0.523 V for 0.9 wt% NaCl and +0.640 V for PBS).
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2.3. Determination of Crystalline State

Structural characterization of the HEA microfibers was performed using a Rigaku
SmartLab 5-axis X-ray diffractometer with Co Kα radiation (λ = 1.7902 Å) and Bragg–
Brentano θ-2θ configuration. The stack of HEA microfibers was glued to a (100) Si wafer by
paraffin, and the scan was performed between 20◦ and 120◦ at a step size of 0.02◦.

2.4. Morphology and Composition Investigation

The microstructural characterization of the microfiber samples was carried out by
scanning electron microscopy between 500× (FoV: 558 µm) and 5000× (FoV: 55.8 µm) using
TESCAN MAGNA with ultra-high resolution and high-contrast imaging equipped with
a QUANTAX EDS for composition analysis. An acceleration voltage (AV) of 20 keV, an
aperture size of 30 µm, and a working distance (WD) of 6 mm were employed for the
scanning-electron-microscopy (SEM) imaging. Energy-dispersive-X-ray (EDX) analysis
was performed at 5000×magnification with an AV of 20 keV and a WD of 8.5 mm, and at
3500× magnification with an AV of 20 keV and a WD of 8.6 mm for samples tested in NaCl
and PBS solutions, respectively.

3. Results and Discussion
3.1. Morphology and Structural Analysis of As-Quenched Fiber

The morphological investigation of a rapidly quenched fiber showed a solidified river-
like pattern formed during sputtering with some tiny pores. The pore size range determined
from scanning electron microscopy was 0.5–6 µm (Figure 1b). The edge part of the fiber
showed an irregular surface originating from the production conditions (Figure 1c). The
XRD plot of the HEA indicated mainly a single-phase BCC structure (Figure 1d). The lattice
parameter was calculated as 0.334 ± 0.01 nm. The BCC structure was also corroborated
previously by selected-area electron diffraction performed using transmission electron
microscopy. In addition, the cross-sectional investigation by HAADF-STEM analysis
corroborated the defect-free structure with high compositional homogeneity [28].

3.2. Electrochemical Impedance of HEA Microfibers

In order to evaluate the behavior of a Ti25Zr25Nb15V15Ta20 HEA in simulated biologi-
cal fluids, a procedure combining electrochemical-impedance spectroscopy followed by
potentiodynamic polarization tests was performed immediately after immersion. These
alternating tests were conducted at 30 min intervals for 3 h of immersion time. Before
each EIS, 1 min of OCP determination was applied. Figure 2 depicts the Nyquist and Bode
plots obtained in 0.9 wt% NaCl solution at 37 ◦C. The Nyquist plots showed, in all cases,
a single semicircle characteristic of near-ideal charge-transfer resistance. The diameter of
the incomplete semicircle tended to decrease for 30 min of immersion and then increase
to the initial stage after 1 h (Figure 2a). This phenomenon could have been due to the
unstable solution and electrode conditions right after immersion, which can take time to
reach stability for different electrode–electrolyte systems [42]. However, one of the key
investigation points of this paper is to analyze the in-situ changes while reaching stability.
After this point, the semicircle diameter tended to decrease, indicating a continuous reduc-
tion in the resistance of this film, and hence, the Bode magnitude measured at the lowest
frequency (0.1Hz) decreased from |Z| = ~46400 to ~34000 Ω·cm2 (Figure 2b). In contrast,
|Z| at the highest measured frequency (100 kHz) directly measured from the plots was
slightly higher after 3 h of immersion (c.f. ~2.7 for 1 h vs. ~3.1 Ω·cm2 for 3 h immersion).
This change indicates that the electrode’s kinetics in the selected solution and conditions
varied oppositely in near-DC and high-frequency regions, where this transition could be
observed in the 2–25 Hz range. This is also the region where the largest difference between
the phase angles’ ϕ was observed (∆ϕ = 6.6◦ at 25 Hz) (Figure 2c). At 0.5 h, the maximum
recorded ϕ was 81.1◦ at 316 Hz, whereas this point at 3 h shifted to 631 Hz with a slight
drop in ϕ (79.7◦). These findings show that the characteristic kinetics of the HEA in the
low-, medium-, and high-frequency ranges varied remarkably upon immersion time.
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Figure 1. SEM imaging of a Ti25Zr25Nb15V15Ta20 as-quenched fiber taken at (a-top) 1000×, (b) 2000×,
and (c) 5000×. (d) The X-ray diffractogram of the single-BCC-phase HEA. (a-bottom) depicts the
surface marks recorded at 10,000×.

When the same immersion protocol was applied in PBS solution at 37 ◦C, a tran-
sition from a capacitive (represented by a straight line) to conductive (represented by a
semicircle—near-ideal charge-transfer resistance) circuit was observed within 3 h of im-
mersion (Figure 3a). This change can be linked to the oxide-film formation as a barrier
layer upon potentiodynamic polarization cycles, proven for a Ti–35.5Nb–7.3Zr–5.7Ta alloy
tested under similar conditions [42]. HEA was unstable right after immersion, showing a
relatively larger |Z| values but reaching stability after 0.5 h immersion (cf. 6 Ω·cm2 for 0 h
vs. 1.3 Ω·cm2 for 3 h immersion) (Figure 3b). After reaching stability, the maximum ϕ of
77◦ was observed at 1000 Hz (Figure 3c). The dramatic change in the Bode-phase profiles
is related to double-layer formation mainly caused by the P−3 and K+ ions. Furthermore,
compared to the NaCl solution, two-time constants at ~15 and ~1000 Hz were clearly
visualized in this solution. Thus, compared to the 0.9 wt% NaCl solution at 37 ◦C, the
changes in the electrode kinetics were more pronounced in the PBS solution at 37 ◦C upon
long-term immersion.
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HEA in PBS solution at 37 ◦C. Measurements (scattered data) were taken at 30 min intervals and
recorded at open-circuit potentials. The dotted lines indicate the simulated data using an R(Q(R(QR)))
equivalent-circuit model.

3.3. Equivalent-Circuit Modeling

Table 1 and 2 show the simulation of the EIS data recorded at OCP performed in
0.9 wt% NaCl and PBS solutions at 37 ◦C, respectively. The EIS data were fitted by the
following circuit model given in Tables 1 and 2. Here, Q1 is the constant-phase element of
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the double layer, and Q2 is the constant-phase element of the native oxide and oxide–metal
interface. Before the electrochemical measurements, a non-porous Zr-rich native oxide
for this composition formed upon production was recorded as 1.5 nm by high-resolution
transmission electron microscopy (see Figure S1 in [28]). The impedance of the constant-
phase element had a direct relationship with Y and n, i.e., Z(Q) = Y0

−1(jω)−n , where
j =
√
−1 and ω = 2π f [42]. Among all the circuit models, the R(Q(R(QR))) model yielded

the lowest chi-squared values (χ2 < 10−4) for both the PBS and NaCl solutions. Our group
has used similar types of circuits multiple times to indicate the influence of oxide on the
hydrogen–metal interactions, methanol oxidation, and corrosion properties of different
alloy types [43–45]. The two-time constants observed for both the NaCl and PBS solutions
are represented by the electron transfer from the surface into the bulk state (represented by
R1 and Q1) and the interaction between the oxide and double layer (represented by R2 and
Q2). For the NaCl solution, the solution resistance Rs was minimal and almost constant
after 3 h of immersion, indicating the electrolyte-sample stability from the beginning of
the experiment. The constant-phase-element (CPE) parameter defining the double-layer
capacitance Y1 dropped from 5.9 × 10−6 to 4.7 × 10−6 S sn cm–2, which was probably
linked to the time delay in establishing a stable electrode–electrolyte interface. During this
time, an order-of-magnitude decrease in the charge-transfer resistance R1 was observed
(from ~4900 to ~460 Ω cm2). After this point, a rise in R1 values can refer to the oxide-layer
growth as a function of immersion time. The high and stable CPE exponent n1 values
(>0.9) followed a typical power law and indicated a relatively smooth surface [46]. The
CPE parameter for the oxide and HEA–oxide interface Y2 fluctuated as the immersion time
increased, whereas the related resistance R2 tended to decrease significantly (from 5300 to
3180 Ω·cm2) between 1 and 3 h of immersion. This difference should mainly be related to
the transition from a relatively rough surface to a relatively smoother one, as evidenced by
the increase in the n2 CPE exponent [46]. For the sample submerged in PBS, it is evident
from EIS data that 0.5 h of immersion was necessary to bring the sample to stability. After
this point, Rs became almost constant. Y1 tended to decrease steadily from 1.8 × 10–6 to
1.1 × 10–6 as 3 h of immersion was reached. On the other hand, no clear correlation can be
made with the R1, which seemed to decrease at 1.5 h and increase again. The high n1 values
refer again to the smooth surface. A four-fold drop in R2 (HEA-electrolyte resistance, from
~220,000 to ~55,500) and the increase in Y2 (CPE parameter of HEA-electrolyte interface)
indicate a rise in the electrode conductivity due to the possible ionic build-up on the surface.
On the other hand, the roughness factor related to n2 did not play a major role in these
changes.

Table 1. ECM of the Ti25Zr25Nb15V15Ta20 HEA in 0.9 wt% NaCl solution at 37 ◦C using the
R(Q(R(QR))) model. Very high fitting reliability (χ2 < 10−4) is present for all measurements.
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the possible ionic build-up on the surface. On the other hand, the roughness factor related 
to n2 did not play a major role in these changes. 
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Y2 (Ssn cm−2) 3.84×10−6 4.52×10−6 4.293×10−6 4.043×10−6 3.427×10−6 3.722×10−6 3.65×10−6 
n2 (−) 0.6632 0.5633 0.6157 0.6603 0.7085 0.7378 0.7606 

R2 (Ω cm2) 4.577×104 4.032×104 5.31×104 4.74×104 3.77×104 3.583×104 3.183×104 
χ2  3.233×10−4 1.990×10−4 2.045×10−4 1.640×10−4 1.631×10−4 1.706×10−4 1.386×10−4 

0 h 0.5 h 1 h 1.5 h 2 h 2.5 h 3 h

Rs (Ω cm2) 2.492 2.428 2.559 2.611 2.593 2.666 2.744
Y1 (Ssncm−2) 5.893 × 10−6 5.503 × 10−6 4.699 × 10−6 4.692 × 10−6 4.905 × 10−6 4.749 × 10−6 4.722 × 10−6

n1 (−) 0.9265 0.9248 0.9324 0.9287 0.923 0.92 0.9166
R1 (Ω cm2) 3917 4908 459.4 1568 2802 3574 4104

Y2(Ssn cm−2) 3.84 × 10−6 4.52 × 10−6 4.293 × 10−6 4.043 × 10−6 3.427 × 10−6 3.722 × 10−6 3.65 × 10−6

n2 (−) 0.6632 0.5633 0.6157 0.6603 0.7085 0.7378 0.7606
R2 (Ω cm2) 4.577 × 104 4.032 × 104 5.31 × 104 4.74 × 104 3.77 × 104 3.583 × 104 3.183 × 104

χ2 3.233 × 10−4 1.990 × 10−4 2.045 × 10−4 1.640 × 10−4 1.631 × 10−4 1.706 × 10−4 1.386 × 10−4
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Table 2. ECM of the Ti25Zr25Nb15V15Ta20 HEA in PBS solution at 37 ◦C using the R(Q(R(QR))) model.
Very high fitting reliability (χ2 < 10−4) is present for all measurements except 0 h.

Metals 2023, 13, x FOR PEER REVIEW 10 of 17 
 

 

Table 2. ECM of the Ti25Zr25Nb15V15Ta20 HEA in PBS solution at 37 °C using the R(Q(R(QR))) model. 
Very high fitting reliability (χ2 < 10−4) is present for all measurements except 0 h. 

0 h 0.5 h 1 h 1.5 h 2 h 2.5 h 3 h 

Rs (Ω cm2) 5.911 1.182 1.705 0.9315 1.032 1.08 1.16 
Y1 (Ω cm−2) 1.241×10−5 1.803×10−5 1.694×10−5 1.343×10−5 1.285×10−5 1.186×10−5 1.109×10−5 

n1 (−) 0.9191 0.8908 0.8913 0.9066 0.9047 0.9083 0.9103 
R1 (Ω cm2) 5.463 527.5 650.6 192 505.5 448.4 448 
Y2 (Ω cm−2) 1.231×10−5 7.444×10−6 9.671×10−6 1.219×10−5 9.644×10−6 1.06×10−5 1.201×10−5 

n2 (−) 0.867 0.7067 0.7175 0.692 0.6997 0.6974 0.6949 
R2 (Ω cm2) 2.73×106 2.198×105 1.57×105 1.106×105 7.655×104 6.69×104 5.558×104 

χ2  1.335×10−3 3.088×10−4 4.396×10−4 2.491×10−4 1.597×10−4 5.840×10−4 1.774×10−4 

3.4. Time-Resolved Potentiodynamic Polarization 
The potentiodynamic polarization curves within NaCl at 37 °C as a function of immer-

sion time showed relatively smooth and repeatable behavior, particularly in the cathodic 
regime (Figure 4a). Even though the corrosion potential stayed at almost a constant value of 
Ecorr = 0.270 ± 0.015 V, the corrosion current density Jcorr tended to decrease from 3.4 × 10−6 A 
cm−2 to 1.6 × 10−6 A cm−2. Jpass values were determined from the last point of the straight part 
of the anodic section, where the deviation point from straightness was confirmed by inter-
secting with a straight line. The passivation current Jpass steadily dropped from 7.3 × 10−6 A 
cm−2 to 2.2 × 10−6 A cm−2. The main goal was to examine a time-resolved study of the elec-
trodes due to ion accumulation on the surface and not by building up a new oxide layer. For 
this reason, the potentiodynamic polarization curves were stopped at early stages (i.e., right 
after observing the passivation-current density). These findings confirm that although the 
corrosion resistance decreased upon immersion time, a better passivity in a wide range was 
observed. A peak at 0.130 V was pronounced after long-term immersion, which can be 
linked to metastable pitting. Conversely, the potentiodynamic polarization taken in the PBS 
solution at 37 °C showed a very high scatter in the short-term immersion but tended to be-
come relatively smoother as the immersion time increased (Figure 4b). Here, it must be 
noted that the PBS data were smoothed by a 10-point sliding-average function to show the 
transition in terms of immersion time. The smoothing was necessary, particularly for the 
zero and first hours of testing. This may be because the ionic balance was established at later 
stages in the PBS solution. Ecorr tended to shift towards positive values (from −0.214 V to 
−0.146 V) as the immersion time increased. In the meantime, the passivation current increased 
to Jpass = 9.2 × 10−6 A cm−2. Jpass resembled the commercially pure Ti and Ti-4Al-6V (~1–10 μA 
cm2) tested under similar conditions [47]. During this 3 h immersion time, the corrosion 
resistance increased for the PBS solution to 4.0 × 10−6 A cm−2. The evolution of the electro-
chemical parameters as a function of time is summarized in Table 3. The general finding 
is that the Jcorr and Jpass decreased for the NaCl and increased for the PBS solutions after 3 
h. 

Table 3. Comparison of the potentiodynamic polarization tests of Ti25Zr25Nb15V15Ta20 HEA in 0.9 
wt% NaCl and PBS solutions at the initial stage (0 h) and every 0.5 h of immersion time until 3 h. 
Ecorr and Jcorr were determined by the extrapolation of the cathodic and anodic branches and inter-
secting them with the steady-state OCP as described in [48]. Note that N/A corresponds to values 
that cannot be accurately measured. 

Solution—Time Ecorr (mV) Jcorr (A cm−2) Jpass (A cm−2) 
NaCl—0 h −292 ± 2 3.4 ± 0.2 × 10−6 7.3 ± 0.4 × 10−6 

NaCl—0.5 h −272 ± 2 3.4 ± 0.3 × 10−6 5.9 ± 0.2 × 10−6 
NaCl—1 h −268 ± 2 2.4 ± 0.1 × 10−6 4.0 ± 0.2 × 10−6 

0 h 0.5 h 1 h 1.5 h 2 h 2.5 h 3 h

Rs (Ω cm2) 5.911 1.182 1.705 0.9315 1.032 1.08 1.16
Y1 (Ω cm−2) 1.241 × 10−5 1.803 × 10−5 1.694 × 10−5 1.343 × 10−5 1.285 × 10−5 1.186 × 10−5 1.109 × 10−5

n1 (–) 0.9191 0.8908 0.8913 0.9066 0.9047 0.9083 0.9103
R1 (Ω cm2) 5.463 527.5 650.6 192 505.5 448.4 448
Y2(Ω cm−2) 1.231 × 10−5 7.444 × 10−6 9.671 × 10−6 1.219 × 10−5 9.644 × 10−6 1.06 × 10−5 1.201 × 10−5

n2 (–) 0.867 0.7067 0.7175 0.692 0.6997 0.6974 0.6949
R2 (Ω cm2) 2.73 × 106 2.198 × 105 1.57 × 105 1.106 × 105 7.655 × 104 6.69 × 104 5.558 × 104

χ2 1.335 × 10−3 3.088 × 10−4 4.396 × 10−4 2.491 × 10−4 1.597 × 10−4 5.840 × 10−4 1.774 × 10−4

3.4. Time-Resolved Potentiodynamic Polarization

The potentiodynamic polarization curves within NaCl at 37 ◦C as a function of immer-
sion time showed relatively smooth and repeatable behavior, particularly in the cathodic
regime (Figure 4a). Even though the corrosion potential stayed at almost a constant value
of Ecorr = 0.270 ± 0.015 V, the corrosion current density Jcorr tended to decrease from
3.4 × 10−6 A cm−2 to 1.6 × 10−6 A cm−2. Jpass values were determined from the last point
of the straight part of the anodic section, where the deviation point from straightness
was confirmed by intersecting with a straight line. The passivation current Jpass steadily
dropped from 7.3 × 10−6 A cm−2 to 2.2 × 10−6 A cm−2. The main goal was to examine a
time-resolved study of the electrodes due to ion accumulation on the surface and not by
building up a new oxide layer. For this reason, the potentiodynamic polarization curves
were stopped at early stages (i.e., right after observing the passivation-current density).
These findings confirm that although the corrosion resistance decreased upon immersion
time, a better passivity in a wide range was observed. A peak at 0.130 V was pronounced
after long-term immersion, which can be linked to metastable pitting. Conversely, the
potentiodynamic polarization taken in the PBS solution at 37 ◦C showed a very high scatter
in the short-term immersion but tended to become relatively smoother as the immersion
time increased (Figure 4b). Here, it must be noted that the PBS data were smoothed by a
10-point sliding-average function to show the transition in terms of immersion time. The
smoothing was necessary, particularly for the zero and first hours of testing. This may be
because the ionic balance was established at later stages in the PBS solution. Ecorr tended to
shift towards positive values (from −0.214 V to −0.146 V) as the immersion time increased.
In the meantime, the passivation current increased to Jpass = 9.2 × 10−6 A cm−2. Jpass
resembled the commercially pure Ti and Ti-4Al-6V (~1–10 µA cm2) tested under similar
conditions [47]. During this 3 h immersion time, the corrosion resistance increased for the
PBS solution to 4.0 × 10−6 A cm−2. The evolution of the electrochemical parameters as a
function of time is summarized in Table 3. The general finding is that the Jcorr and Jpass
decreased for the NaCl and increased for the PBS solutions after 3 h.
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Figure 4. Potentiodynamic polarization of the Ti25Zr25Nb15V15Ta20 HEA in (a) 0.9 wt% NaCl and
(b) PBS solutions at 37 ◦C. (c,d) Corresponding Tafel plots.

Table 3. Comparison of the potentiodynamic polarization tests of Ti25Zr25Nb15V15Ta20 HEA in
0.9 wt% NaCl and PBS solutions at the initial stage (0 h) and every 0.5 h of immersion time until
3 h. Ecorr and Jcorr were determined by the extrapolation of the cathodic and anodic branches and
intersecting them with the steady-state OCP as described in [48]. Note that N/A corresponds to
values that cannot be accurately measured.

Solution—Time Ecorr (mV) Jcorr (A cm−2) Jpass (A cm−2)

NaCl—0 h −292 ± 2 3.4 ± 0.2 × 10−6 7.3 ± 0.4 × 10−6

NaCl—0.5 h −272 ± 2 3.4 ± 0.3 × 10−6 5.9 ± 0.2 × 10−6

NaCl—1 h −268 ± 2 2.4 ± 0.1 × 10−6 4.0 ± 0.2 × 10−6

NaCl—1.5 h −266 ± 6 2.2 ± 0.1 × 10−6 3.8 ± 0.2 × 10−6

NaCl—2 h −258 ± 4 2.2 ± 0.1 × 10−6 3.4 ± 0.2 × 10−6

NaCl—2.5 h −255 ± 2 1.6 ± 0.1 × 10−6 2.5 ± 0.1 × 10−6

NaCl—3 h −260 ± 5 1.6 ± 0.1 × 10−6 2.2 ± 0.1 × 10−6

PBS—0 h N/A N/A N/A
PBS—0.5 h −214 ± 2 N/A N/A
PBS—1 h −142 ± 2 N/A N/A

PBS—1.5 h −148 ± 2 1.9 ± 0.1 × 10−6 5.5 ± 0.1 × 10−6

PBS—2 h −82 ± 2 3.3 ± 0.3 × 10−6 6.8 ± 0.2 × 10−6

PBS—2.5 h −118 ± 4 3.7 ± 0.3 × 10−6 7.9 ± 0.2 × 10−6

PBS—3 h −146 ± 2 4.0 ± 0.3 × 10−6 9.2 ± 0.3 × 10−6

In comparison to cp-Ti, although Jcorr was several times larger for the selected HEA, in
this study, Ecorr was significantly more positive, cf. ~−527 mV vs. ~−260 mV vs. Ag/AgCl
(value after the stabilization of the OCP) in 0.9 wt% NaCl solution at 37 ◦C [49]. TiZr (Nb, Hf,
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Ta) medium-entropy alloys (MEAs) exhibited Jcorr on the nA cm−2 levels in 0.9 wt% NaCl,
which was mainly because the samples were in bulk form (on mm scale) and had a remark-
ably smaller surface-area-to-volume ratio, and experiments were conducted at room temper-
ature. Nevertheless, in the same paper, it is reported that these MEAs showed more negative
Ecorr (between −380 mV and −490 mV vs. Ag/AgCl) [50], indicating a higher probability
of occurrence of corrosion [51]. The measured Jcorr values were in the same order of magni-
tude with FeCoNiCrNb0.5Mox HEA with a relatively more positive Ecorr [52]. Jcorr and/or
Ecorr values retrieved in this study were smaller than those of most of the other HEAs,
including CoCrFeNi(Cu) [53], FeCrCoAlMn0.5Mo0.1 [54], (CoFe2NiV0.5Mo0.2)100-xNbx [55],
CoCrFeNi(W1-xMox) [56], CoCrFeNiTix [57], AlCoCrFeNiTix [58], and 316L [54] stainless
steel in the literature at various NaCl concentrations and temperatures.

In the PBS solution, although the Ti-Zr-Nb MEAs exhibited lower Jcorr values,
Ti25Zr25Nb15V15Ta20 HEA showed a more positive Ecorr (<−148 mV after stabilization) in
comparison to Ecorr, ranging from −400 mV to −600 mV vs. SCE for the MEA alloys [59].
Ecorr of the TiZrHfNbFex (x = 0, 0.25, 0.5, 0.75, 1, 1.5, and 2) was also slightly more negative
in the PBS solution, with relatively better corrosion resistance, which may be because
the experiments were conducted at room temperature with slower ion activity [60]. In
bulk form, Ti20Zr20Nb20Ta20Mo20 HEA showed Ecorr = −607 ± 55 mV vs. SCE in PBS at
37 ◦C [30]. Furthermore, the present HEA showed superior corrosion resistance compared
to 316L stainless steel at 37 ◦C in PBS [61].

The Tafel slope for the NaCl solution increased from 260 to 308 mV·dec−1, which
could be linked to the ionic balance reached after 1.5 h as well the surface ions, i.e., Cl−.
(Figure 4c). Interestingly, for the PBS solution, the Tafel slope started to show a rapid
decrease (from 533 to 429 mV·dec−1) after 2 h of immersion (Figure 4d). This was also when
the potentiodynamic polarization curves became smoother, and sharp V-shape profiles can
be observed in Figure 4b. This finding may be related to the K+ and P−3 ions, as discussed
later in the energy-dispersive-X-ray analysis.

McCafferty reported on the corrosion activity of conventional iron in various deaerated
electrolytes at different temperatures [48]. The example given for the 0.6 M NaCl solution
(equal to 0.9 wt% NaCl) at room temperature had a steep anodic slope and horizontal
cathodic-extrapolation line. On the other hand, the selected high-entropy alloy, in our
case, showed a very symmetric polarization profile for the curves where Jcorr could be
determined (see Table 3). Figure S1a and S1b show the polarization curves and extrapolation
from cathodic and anodic branches and their intersection at OCP for representative scans
in 0.9 wt% NaCl at 1 h and in PBS at 1.5 h, respectively. The cathodic and anodic branch
extrapolated back intersected at the steady-state OCP potential, which means that both
branches were under activation control, corrosion happened uniformly, changes in electrode
potential did not induce additional electrode reactions, and there were well-defined Tafel
regions present on these dashed lines [48]. This method also confirmed the validity of the
cathodic Tafel slopes presented in Figure 4c,d.

3.5. Post-Electrochemical-Composition Analysis

Figure 5a shows a representative SEM micrograph of an HEA after 3 h of NaCl
immersion. Figure 5b–k represents the EDX elemental mapping of the sample after NaCl
immersion. The homogenous distribution of Ti (Figure 5b), Zr (Figure 5c), Nb (Figure 5d),
V (Figure 5e), and Ta (Figure 5f) was confirmed for the overall sample. The phase contrast
in the middle part of Figure 5a was Na, Cl, and O rich (Figure 5g–i), as can be visualized
from the superimposed EDX analysis in Figure 5j. In comparison, the superimposed EDX
analysis of the as-cast sample (Figure 5k) showed a homogenous elemental distribution
across the sample without any accumulation from the solvents or oxide formation due to
electrochemical-corrosion tests. Based on the results and literature, the OH−, O2−, and Cl−

ions from the electrolyte were expected to be adsorbed on the surface by interacting with
metallic surfaces assessed by first-principle calculations [62].
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Figure 5. (a) SEM micrographs of the Ti25Zr25Nb15V15Ta20 HEA submerged in 0.9 wt% NaCl at 37 ◦C.
Corresponding EDX elemental mapping for (b) Ti, (c) Zr, (d) Nb, (e) V, (f) Ta, (g) Na, (h) Cl, and
(i) O. (j) The superimposed EDX image including all the investigated elements. (k) Comparative
superimposed EDX image of the as-spun sample.

After submerging the sample for 3 h in PBS solution, the SEM micrograph showed
a phase contrast (Figure 6a). Figure 6b–l represents the EDX elemental mapping of the
sample after PBS immersion. The superimposed EDX analysis showed yellowish spots
(Figure 6b). There was no remarkable change in the elements of the HEA (Figure 6b–g).
There was homogenous P (Figure 6h) and K (Figure 6i) absorbance on the surface of the
PBS solution, where potassium was relatively more concentrated in some regions on the
top and bottom sections of the microfiber. Strong localization for the Na, Cl, and partial
oxygen indicates oxide-particle accumulation in the presence of salt. The X-ray-fluorescence
analysis previously confirmed the existence of phosphate groups bound to the surface [63].

A new oxide-layer formation after electrochemical tests should not be expected since neither
NaCl and PBS nor water (with a very small amount of dissolved OH− = 10−7 mol·L−1 [64])
can provide sufficient OH− ions that can build up a new oxide layer. SEM observations
before and after electrochemical measurements in NaCl and PBS solutions in this study as
well as in KOH and H2SO4 solutions in our previous study [28], revealed that the regions
of ion accumulation are independent of the pore locations that come from casting. In
general, for the sample submerged in NaCl, the oxide, sodium, and chloride particles
were recorded. For the samples submerged in PBS, in addition to oxide, phosphorus and
potassium accumulation was present. Since the potentiodynamic polarization scans were
stopped in the anodic region right after passivation, the samples did not show any pits
or cracks after potentiodynamic polarization. Another important finding is that samples
rinsed with distilled water after electrochemical tests did not exhibit any K, P, Na, Cl, or O
segregation, resulting in an EDX map similar to that in Figure 1k (see Figure S2). Hence, it
can be deduced that the particle accumulation happened after measurement upon drying
and not by a surface reaction between HEA and the mentioned elements.
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(b) The superimposed EDX image including all the investigated elements. Corresponding EDX
microanalysis for (c) Ti, (d) Zr, (e) Nb, (f) V, (g) Ta, (h) P, (i) K, (j) Na, (k) Cl, and (l) O.

4. Conclusions

This study examined the time-dependent electrochemical behavior of Ti25Zr25Nb15V15Ta20
HEA microfibers and the modifications in the surface morphology and chemistry in 0.9 wt%
NaCl and standard PBS solutions at 37 ◦C. The potentiodynamic polarization results in
the NaCl solution showed high stability along with of an increase in corrosion resistance.
Resistance decreased as immersion time increased, reflected by an increase in the Tafel slope
from 260 to 308 mV·dec−1. The potentiodynamic polarization curves of the HEA sample
within the PBS solution became relatively smoother as the immersion time increased,
confirming that the time to reach stability within the PBS solution was longer than that
of the NaCl solution. The Tafel slope started to decrease after 2 h of immersion, probably
because of the K+ and P−3 accumulation of the surface originating from the PBS solution.
Despite the very high surface area per volume compared to bulk samples and coatings,
the corrosion-current-density values were moderately low, with extremely low corrosion
potentials in both 0.9 wt% NaCl and PBS solutions at 37 ◦C. An extensive transition from a
capacitive to a conductive electrode was observed within 3 h of immersion in PBS, whereas
this difference was much less in NaCl, and the size of the semicircle became slightly smaller,
indicating a continuous reduction in the resistance of the oxide film. Compared to NaCl,
with only some decrease in resistivity values (by ~30%) of R2 (HEA-electrolyte resistance),
the 50-fold drop in R2 within 3 h of immersion and the increase in Y2 (CPE parameter of
HEA-electrolyte interface) after 2 h of PBS immersion indicated an increase in electrode
conductivity and ionic buildup on the surface.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/met13050951/s1. Figure S1: Extrapolated cathodic and anodic
branches and their intersection with the steady-state OCP potential at 37 ◦C for (a) 0.9 wt% NaCl at
1 h and (b) PBS solutions at 1.5 h, Figure S2: Sample surface after polarization in PBS solution and
subsequent rinsing with water.
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