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Abstract: β-titanium (β-Ti) alloys are used in various biomedical applications, especially for ortho-
pedic implants, due to their superior biocompatibility, excellent corrosion resistance, and enhanced
mechanical properties. However, the inferior tribological properties of β-Ti alloys lead to fretting
wear and a strong tendency to seize, which is a major concern in orthopedic applications involving
continuous friction. This work aims to address this issue by incorporating biocompatible nitrides
in Ti-Nb-Zr-Ta (TNZT) β-Ti alloys. TNZT composites comprising 2 wt.% of biocompatible nitrides
(TiN, NbN, ZrN, and TaN) were prepared using high-energy ball milling followed by spark plasma
sintering. All the nitrides improved the hardness and wear resistance of TNZT alloys and showed
excellent biocompatibility. TNZT-2 wt.% TiN showed the average highest hardness of 311.8 HV and
the lowest coefficient of friction of 0.659, suggesting the highest efficiency of TiN in improving the
tribological performance of TNZT alloys. The underlying mechanisms behind the superior perfor-
mance of nitride-reinforced TNZT composites are discussed in detail. The effect of TiN concentration
was also studied by preparing TNZT composites with 5 and 10 wt.% TiN, which showcased a higher
hardness of 388.5 HV and 444.3 HV, respectively. This work will aid in producing superior β-Ti alloys
for advanced orthopedic applications.

Keywords: TNZT alloys; microstructure; nitrides; wear resistance; biocompatibility

1. Introduction

Recent advancements in the design of modern orthopedic implants have been greatly
enhanced by the development of composite materials [1]. Several metallic, ceramic, and
polymer-based composite biomaterials have been developed by researchers for various
orthopedic applications [2–6]. About 80% of orthopedic implants are metal-based due to
their excellent biocompatibility and superior mechanical properties. Metallic biomaterials
are also remarkably important for reconstructing failed tissues [7]. Amongst all metallic
biomaterials, titanium (Ti) and its alloys, mainly Ti-6Al-4V alloys, are the most widely used
materials for orthopedic applications due to their excellent biocompatibility and corrosion
resistance [8–10]. However, commercially used Ti alloys have a higher elastic modulus
(110 ± 10 GPa) than human bones (10–40 GPa) [11,12]. The higher Young’s modulus of
metallic biomaterials compared with bone can lead to bone atrophy and stress shielding in
joints, leading to the failure of an implant [13,14]. In order to improve the fatigue strength
and wear resistance of metallic biomaterials, different types of reinforcements are added to
the metal matrix [15–17].

The popularly known β-phase metastable Ti alloys, particularly Ti-Nb-Zr-Ta (TNZT),
were developed to overcome stress-related failures by offering a lower Young’s modulus
than Ti-6Al-4V [18,19]. Additionally, the complicated flowing environment inside the body,
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influenced by blood, proteins, and mechanical stress, encourages the release of alloying
elements such as V, Ni, and Al, leading to allergic reactions and major long-term health
issues, which can be overcome in these TNZT alloys [20–23]. With an elastic modulus of
50–65 GPa, which is closer to that of human bone, enhanced properties such as increased
corrosion resistance, improved biocompatibility, better ductility, and formability compared
to other variants of Ti alloys make β-Ti alloys suitable over other materials for orthopedic
implants [7]. Although β-Ti alloys exhibit excellent biocompatibility and mechanical
properties compared to traditional Ti alloys, they exhibit inferior tribological behavior,
leading to wear (adhesion) failure and fretting fatigue [24–26]. To use β-titanium alloys
(e.g., TNZT) for load-bearing orthopedic applications, the material should have a high
abrasion resistance to minimize debris formation due to dynamic body movements [27,28].
Therefore, there is a critical need to improve the wear behavior of these β-Ti alloys. Several
methods such as thermal spraying, laser treatment, ion implantation, plasma nitriding,
physical vapor deposition (PVD), and laser gas nitriding, to name a few, are being used for
the same purpose [29–32].

Based on recent research, ceramic-reinforced metal matrix composites (MMCs) exhibit
promising results in terms of fracture toughness, wear resistance, and the mechanical
strength of the alloy [33,34]. These MMCs offer enhanced interfacial bonding between the
reinforcement and matrix. Typically, these reinforced particles are distributed uniformly
within the matrix, resulting in better mechanical properties. Using this approach, a variety
of matrix materials (Al, Ti, Cu, Ni, and Fe) and second-phase particles (borides, carbides,
nitrides, and oxides) have been produced [35,36]. Therefore, reinforcing second-phase
particles with a β-Ti alloy can potentially improve the tribological properties of the alloy
in terms of wear and fretting fatigue. Composites reinforced with ex situ second-phase
particles can be produced by different methods. Mechanical alloying (MA) is a solid-state
powder processing method that involves the repeated cold welding and fracture of particles
to produce various metallic alloys and composites [37,38]. This method can produce
fine-grained alloyed powder particles in metal–metal and metal–ceramic systems [39,40].
In recent years, MA has been extensively used to fabricate ex situ particle-reinforced
MMCs [41].

Spark plasma sintering (SPS) is an advanced processing technique that sinters mechan-
ically alloyed metallic and composite powders. The SPS of ball-milled powders allows the
fabrication of bulk materials from powders through a fast heating rate and short holding
times at low sintering temperatures. This method is opted due to its efficiency and short
processing time compared with traditional manufacturing methods for processing metallic
alloys, such as hot isostatic pressing (HIP) and vacuum arc melting (VAM) [42]. Therefore,
reinforcing biocompatible nitrides in the TNZT matrix through MA followed by the SPS
process can result in modified wear properties. The main purpose of selecting nitride-based
reinforcement is to increase the surface hardness of the material, its wear resistance, fatigue
life, and corrosion resistance.

In this article, TNZT alloys have been reinforced with biocompatible nitrides (TiN,
NbN, ZrN, and TaN) using MA followed by SPS processing. This study aims to investigate
the effect of nitrides on microstructure, mechanical and tribological behavior, and the
biocompatibility of nitride-reinforced TNZT composites.

2. Materials and Methods
2.1. Material Synthesis and Characterization

The prealloyed TNZT powder with a chemical composition of 53 wt.% Ti, 35 wt.%
Nb, 7 wt.% Zr, and 5 wt.% Ta, with a purity of 99.9%, was procured from Tosoh SMD,
Inc. (Grove City, OH, USA). Two sets of powdered samples were prepared. The first set
consisted of a 2 wt.% of each nitride (TiN, NbN, ZrN, and TaN) mixed with TNZT powder.
The second set contained a 5 wt.% and 10 wt.% of TiN mixed with TNZT powder.

The powder mixtures were ball milled using a Planetary mill PULVERISETTE 7
(FRITSCH, Idar-Oberstein, Germany). The ball-to-powder ratio (BPR) was maintained at
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10:1 with the addition of 1 to 2 wt.% stearic acid (Sigma Aldrich, St. Louis, MO, USA) to
prevent the cold welding of the alloy mixture during the mechanical alloying process. The
mixture was mechanically alloyed for 1 h with a rotational speed of 200 rpm.

The mechanically alloyed powders were compacted into a bulk shape using an SPS
10–3 furnace by Thermal Technologies LLC (Santa Rosa, CA, USA). All samples were
sintered at a temperature of 1100 ◦C for 5 min with a heating rate of 100 ◦C/min. This
process was carried out under a controlled argon atmosphere to prevent any oxidation,
while a pressure of 65 MPa was maintained throughout the sintering process. The final
sample after SPS consolidation was in the form of a thin disc with a 20 mm diameter and
2.5 mm thickness.

The bulk densities of samples were determined using Archimedes’ principle with DI
water as the working medium. Relative density was calculated from the ratio of bulk density
to theoretical density. The sintered samples were mounted using an ALLIED TechPress
3TM Mounting Press (Allied High Tech Products, Inc., Cerritos, CA, USA). The samples
were polished with SiC abrasive paper (from grit size 240 to 1200) using a BUEHLER
AutoMetTM 250 Grinder-Polisher (Beuhler, Lake Bluff, IL, USA)and then sonicated using
ethanol for 10 min to remove any residual SiC that embedded itself in the samples while
polishing. These polished samples were characterized by SEM/EDS using Inspect F50 (FEI
now Thermo Fisher Scientific, Hillsboro, OR, USA). An electron backscatter diffraction
analysis was performed to examine the crystalline orientation of the processed structure.
The sintered, nitrided TNZT samples were subjected to X-ray diffraction (XRD), which was
performed using a Rigaku Ultima III X-ray diffractometer (Rigaku Americas Corporation,
Chapel Hill, NC, USA) with Cu Kα (λ = 1.54 Å). The EDS and XRD analyses were conducted
to analyze the different phases present in the sintered sample. The microhardness was
measured using a Microhardness Tester (Wilson VH1202 BUEHLER, Lake Bluff, IL, USA)
under a load of 1.96 N for 15 s, with the average of 10 readings considered. Wear behavior
was determined using a ball-on-disc tribometer. Wear tests on the alloy samples were
conducted against a silicon nitride (Si3N4) ball of a diameter of 3 mm under a normal load
of 1 N. The Si3N4 ball was used because of its high hardness and chemical stability. The
sliding speed was set to 1260 mm/min with a radius of 2 mm for a total sliding distance of
200 m.

2.2. Biocompatibility Tests of the Alloys
2.2.1. Materials

Human MG-63 (CRL-1427) cells and an MTT cell proliferation assay kit were pur-
chased from the American Type Culture Collection (Manassas, VA, USA). Cell culture
materials including low-glucose Dulbecco’s Modified Eagle Medium (Billerica, MA, USA),
heat-inactivated fetal bovine serum (FBS; Gibco), penicillin/streptomycin (Gibco), 0.05%
Trypsin-EDTA (Gibco), Hank’s Balance Salt Solution (HBSS), and cell culture flasks were
purchased from Thermo Fisher Scientific (Waltham, MA, USA). A Live/Dead viabil-
ity/Cytotoxicity Assay Kit was purchased from Millipore Sigma (Billerica, MA, USA).
An inverted fluorescence microscope (ZEISS Axio Vert.A1) (Dublin, CA, USA) and a Biotek
Synergy H1Hybrid Multi-Mode microplate reader (Santa Clara, CA, USA) were used to
obtain images and analyze samples, respectively. A Wilson VH 1202 micro hardness tester
machine was used to determine the cellular adhesion on metal samples.

2.2.2. MG-63 Cell Culture

Human MG-63 cells (14-year-old, Caucasian, male, patient with osteosarcoma) were
seeded in T-75 cell culture flasks using L-DMEM supplemented with 10% FBS and 1%
penicillin/streptomycin and maintained at 37 ◦C in 95% humidity and 5% CO2 incubators.
After passaging, cells were seeded on metal discs placed in 12-well culture plates at a density
of 38,000 cells/well. Four different alloy compositions were tested, with n = 4 discs/alloy
type. The alloy discs were placed in separate wells in a 12-well plate, and 200 µL of cell
suspension and 500 µL of complete medium were added to the surface of each alloy surface.
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The samples were then placed in an incubator for 2 h to facilitate cell attachment. Then,
1.5 mL of additional complete media was added to each well. For the live/dead cell toxicity
assay and the MTT colorimetric assay, the cells were grown for 48 h and 96 h, respectively.

2.2.3. Cell Viability Test

MG-63 cell viability was tested using a Live/Dead® assay kit from Millipore Sigma
(Billerica, MA, USA) to determine the biocompatibility of alloys after 48 h exposure. Cells
were stained with calcein-AM and ethidium homodimer solutions (37 ◦C, 1 h), washed
with 1× PBS twice, and imaged using an inverted fluorescence microscope. Cells cultured
directly on the plastic surfaces with no alloy discs served as controls.

2.2.4. MTT Assay

MG-63 cells were seeded on the alloy surfaces, at a density of 38,000 cells per well, in
12-well plates, and cultured for 96 h at 37 ◦C, 95% relative humidity, and 5% CO2 levels.
Then, 0.2 mL of MTT reagent was added to each well and incubated for 1 h. Upon a clearly
visible purple precipitation, 0.2 mL of detergent reagent was added to each well. The plates
were incubated for 1 h at 37 ◦C, and the absorbance was measured at a wavelength of
570 nm in a microplate reader. Cells cultured directly on the plastic surfaces with no alloy
discs served as controls.

2.2.5. Cell Adhesion

The adhesion of MG-63 cells was analyzed using a Wilson VH1202 Micro Hardness
Tester microscope (Lake Bluff, IL, USA). Cells were cultured on the surface of alloy samples
for 48 h, washed with 1× PBS, fixed with 4% paraformaldehyde for 1 h, and washed again
with PBS. The metal surfaces were imaged using a microhardness tester. Cells cultured
directly on the plastic surfaces with no alloy discs served as controls.

3. Results
3.1. X-ray Diffraction

The XRD patterns of sintered pure TNZT alloy and TNZT composites with 2 wt.%
of TiN, NbN, ZrN, and TaN are shown in Figure 1. Strong peaks at ~38.39◦, ~55.53◦, and
~69.60◦ indicate the firm presence of atoms in the (110), (200), and (211) planes, respectively,
suggesting a single-phase BCC β-Ti phase. This phase is associated with the lower elastic
modulus in Ti alloys required for ensuring superior biocompatibility and an appropriate
environment for the growth of tissues near implants. The (110) plane showed the highest
intensity, suggesting the preferred tendency of atoms to reside in this plane due to its
association with a lower Gibbs free energy and stable atomic arrangement. No peaks of the
HCP α-phase were observed due to the large amounts of β-stabilizing alloying elements
(Ta and Nb). Ta and Nb promote the lowering of β-transformation temperature and aid
in stabilizing β microstructure. The relatively higher XRD peak intensities of the (110),
(200), and (211) planes of TNZT composites reinforced with TaN and NbN are in strong
agreement with the same. The (211)/(200) intensity ratio is close to 1 for the pure TNZT
alloy and TNZT-ZrN composite. This ratio increases to ~1.5 for TNZT–TaN and TNZT–
NbN composites and ~2.2 for TNZT–TiN composites. The ratio of the highest (110) peak
with other peaks showed no significant change in all the samples. The lattice parameters
of all the samples were in close approximation to that reported for the β-Ti alloy (~3.3 Å).
The XRD patterns of the nitride-reinforced TNZT composites do not show peaks associated
with corresponding nitrides, primarily due to their low wt.% in these composites. Also,
the addition of these nitride reinforcements did not affect the crystal structure or phase
formation in these TNZT composites.
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(BCC) structure.

3.2. Scanning Electron Microscopy

The SEM images of the SPS-processed pure TNZT alloy and nitride-reinforced TNZT
composites are shown in Figure 2. The pure TNZT alloy showed no evidence of com-
positional inhomogeneity, suggesting one dominant phase (β-Ti). No secondary phases
were detected in this sintered alloy. The microstructures of TNZT-NbN, TNZT-TaN, and
TNZT-ZrN composites also showed a dominant β-Ti phase (Figure 2c–h).

The SEM microstructures are in good agreement with the density measurements
showing high densification (over 99%) and no significant porosity. The bright spots in
all the SEM images are Ta-rich regions on the TNZT surface [43], as Ta being the heavier
element appears bright in the backscattered images. Dark spots correspond to the presence
of nitrides which are distributed throughout the β matrix. The SEM images depict that
the grains are polyhedral and equiaxed with fine dark phases segregating at the grain
boundaries for the nitrided TNZT composites. The grain-size analysis was performed by
using ImageJ version 1.54h software to identify the effect of nitride reinforcement on grain
size. Overall, 50 grains were considered to predict the average grain size of the sample.
The measured grain sizes for pure TNZT, TNZT–NbN, TNZT–TaN, and TNZT–ZrN were
60.79 µm, 58.07 µm, 32.03 µm, and 34.03 µm. A lower grain refinement was observed
for the TNZT–NbN composites, mainly due to the agglomeration of NbN within the
TNZT matrix. The addition of TaN and ZrN shows a significant grain refinement, mainly
due to the uniform distribution of these nitrides along the grain boundaries with less
agglomeration, which is shown in Figure 2e,f and Figure 2g,h, respectively. The presence
of nitride reinforcement prevents grain development and creates nucleation sites for new
TNZT grains to grow during the recrystallization process, leading to grain refinement
inside the TNZT matrix. A similar grain refinement was reported due to the reinforcement
of TiB in the TNZT matrix [44].

Figure 3 shows the microstructure of the TNZT–TiN composites with 2 wt.% TiN,
5 wt.% TiN, and 10 wt.% TiN. The size and location of black spots in the TNZT–TiN com-
posites with 5 wt.% TiN and 10 wt.% TiN suggest the higher segregation and nonuniform
distribution of nitrides in the β-Ti matrix. In comparison with the 2 wt.% reinforcement of
other nitrides (NbN, TaN, and ZrN), the 2 wt.% TiN shows the highest grain refinement
with a grain size of 30.80 µm. Further, an increase in TiN reinforcement to 5 wt.% and
10 wt.% results in a further grain-size reduction to 20.28 µm and 16.78 µm, respectively.

The EDS map of TNZT-2 wt.% TiN composites showcasing the distribution of Ti and N
is shown in Figure 4. It can be observed that the dark regions are TiN-rich regions, whereas
the bright regions comprise Ti, Zr, Nb, and Ta distributed uniformly throughout the matrix.
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magnification.
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3.3. Microhardness

The microhardness results for the SPS-processed pure TNZT alloys and TNZT com-
posites with 2 wt.% ZrN, TaN, NbN, and TiN are shown in Figure 5a. The pure TNZT alloy
demonstrated the lowest average hardness of 183.1 HV. The average hardness of the TNZT
composites with 2 wt.% ZrN, TaN, and NbN was 281.4, 288.1, and 292 HV, respectively.
This showed that the addition of ZrN improved the hardness by ~53%, the addition of TaN
improved the hardness by ~57%, and the addition of NbN improved the hardness by ~59%.
TNZT composites reinforced with 2 wt.% TiN showed the maximum average hardness of
311.8 HV, enhancing the hardness of TNZT alloys by ~70%. The addition of nitrides leads
to grain refinement, resulting in an increase in hardness, which can be expressed by using
the Hall–Petch equation shown in Equation (1) [45]:

HV = H0 + kd−1/2 (1)

where HV is the hardness of the composite, d is the grain size, and H0 and k are the empirical
constants. As the hardness of the composite is inversely proportional to the square root of
the grain size, a decreasing grain size contributes to an increase in hardness. An increase
in the number of grain boundaries in small grains compared to coarse grains effectively
restricts the movement of dislocation, which is responsible for a lower plastic deformation
during indentation loading and contributes to a higher hardness. All nitride-reinforced
TNZT composites followed the trend that an increase in hardness corresponds to a decrease
in grain size. A greater hardness value for the TNZT–NbN composite can be attributed
to the higher hardness of NbN, which effectively inhibits matrix movement near NbN
particles during loading. The microhardness results are in agreement with the SEM results
and EDS analysis which showed the distribution of nitrides in nitride-reinforced TNZT
composites cause an enhanced hardness and associated mechanical properties.
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The effect of increasing the TiN content on the microhardness of sintered TNZT
composites is shown in Figure 5b. It can be observed that the average hardness values
increase with a higher incorporation of TiN. TNZT-5 wt.% TiN showed an average hardness
of 388.5 HV, improving the hardness of TNZT alloys by ~112%. TNZT-10 wt.% TiN
showed an average hardness of 444.3 HV, improving the hardness of TNZT alloys by
~143%. An increase in TiN reinforcement leads to a decrease in the grain-size increase in
hardness values.

The relatively inhomogeneous distributions of TiN may have caused a drastic im-
provement in the hardness of TNZT-10 wt.% TiN composites.

3.4. Wear Behavior

Wear experiments were performed to compare the tribological performance of nitride-
reinforced TNZT composites with pure TNZT alloys and to understand two relevant
tribological phenomena: friction and wear. These phenomena help in predicting the extent
of deterioration in materials and the dissipation of energy. Friction is associated with the
force that opposes or restricts the relative sliding motion between two solid surfaces. Wear
represents the loss of material from one or both mating solid surfaces. The understanding
of the friction and wear of TNZT composites is crucial for making orthopedic implants
that are subjected to continuous friction. Coefficient of friction (CoF) measurements and
wear track analysis are the quantitative assessments used to understand the tribological
behavior of various materials. CoF is the ratio between the force of friction (F) acting on
two bodies and the normal force (P) that presses them together.

The sliding wear behavior for all sintered TNZT composites with sliding distance
Is shown in Figure 6. Figure 6a compares the CoF of different nitride TNZT composites
with the pure TNZT alloy, whereas Figure 6b shows the effect of TiN addition on the
CoF of TNZT composites. The reported result for the tribology test reflects that the pure
TNZT sample has the highest CoF, equal to 0.823, compared to all nitride-reinforced TNZT
composites. The average CoF of the TNZT composites with 2 wt.% ZrN, TaN, and NbN
was 0.774, 0.752, and 0.739, respectively. Among all the reinforcing nitrides, the addition of
2 wt.% TiN in TNZT composites achieved the highest reduction in CoF compared to the
pure TNZT matrix. The addition of 2 wt.% TiN in TNZT reduced the 0.823 CoF of pure
TNZT to 0.659. CoF plots exhibited a fluctuating trend for the 2 wt.% TiN–TNZT composite
with an insignificant fluctuation in CoF from 0.6 to 0.7 mainly due to the waviness of the
specimen. A similar fluctuation trend was observed in previous research results from
waviness [46]. As TNZT is softer and less abrasive, its surface undergoes a plastic shear
deformation during wear loading resulting in the smearing and ductile stacking of coarse
wear platelets aligned along the sliding direction [38]. Long and Rack also explained
the excessive plastic deformation, including significant surface depressions with material
removal, prows of smeared metal, micro-cracking, and micro-plowing as potential wear
mechanisms for the pure TNZT during wear testing [47]. A higher hardness leads to a
lower wear volume, resulting in a lower CoF governed by Archard Law. The variation in
CoF with a different nitride incorporation is in accordance with a variation in hardness. An
improved hardness reduces the true contact area between the nitrided composites and the
Si3N4 counterface, leading to lower wear and hence a lower CoF. The ability of nitrides
to increase the tribological performance of TNZT alloys by reducing the CoF presented
the following trend: TiN > NbN > TaN > ZrN. In the case of the TiN–TNZT composite,
along with hardness, the creation of more stable shear bands formed due to strain-induced
plastic deformation showed the capacity to bear the interfacial shear stresses during sliding
contact, resulting in minimized wear [38].
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The average CoF of TNZT composites with 5 wt.% TiN and 10 wt.% TiN was 0.674 and
0.715, respectively. This increase in CoF with a higher amount of TiN addition is attributed
to the nonhomogeneous distribution of TiN reinforcements, which leads to a higher wear
and material deterioration. The SEM wear track images and EDS maps for TNZT-2 wt.%
TiN and TNZT-10 wt.% TiN composites after wear testing are shown in Figures 7 and 8,
respectively. The coarse wear debris along the moving direction was observed over the wear
track. For the TNZT-2 wt.% TiN composite, less wear debris compared to TNZT-10 wt.%
TiN was observed in the SEM micrographs, which is in good agreement with the CoF
plots represented in Figure 6b. The ductile stacking and irregular elongated course layer
plates with microcracks in the SEM images confirm that plastic shear deformation can be a
potential wear mechanism for the TNZT–TiN composite. The nonhomogenous distribution
of hard and brittle TiN in TNZT-10 wt.% TiN gives short wear debris over the wear surface,
indicating a three-body abrasive wear mechanism. Three-body wear is the result of loose
particles from the brittle surface freely rolling, sliding, and scraping the soft surface. This
further inflicts damage and causes high wear volume [48]. Wear track EDS mapping
shows the presence of no element other than Ti, N, Nb, Zr, and Ta, which suggests TiN
reinforcement is primarily responsible for the improved wear volume and lower CoF in
TNZT–TiN compared to other nitrides. This can be observed and confirmed with the EDS
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maps shown in Figures 7 and 8 for TNZT-2 wt.% TiN and TNZT-10 wt.% TiN, respectively,
where the latter showed a higher wear and more material loss in wear tracks.
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3.5. Cytotoxicity Studies

Cell viability was tested using cytotoxicity staining protocols after culturing cells in
incubators for 48 h at 37 ◦C and 5% CO2 on four different alloy surfaces (n = 4 wells/
alloy type). The images were obtained using an inverted fluorescence microscope. The
green stain represents live cells, while the red stain represents dead cells in these cultures.
Representative images (Figure 9) suggest that there are very few dead cells in all four cases,
suggesting there was no perceivable acute toxicity of the alloys on MG-63 cells. Quantitative
analysis suggested that cell survival was similar to that noted in control cultures (Figure 10).
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Figure 10. Quantification of MG-63 cell viability on alloy samples for (a) 48 h and (b) 96 h. No
discernible difference was noted between the control cultures and the cultures on alloy samples, sug-
gesting that the metals are not acutely toxic to these cells. The results shown are the mean ± standard
error. Sample 1 (TNZT-2 wt.% ZrN), Sample 2 (TNZT-2 wt.% TaN), Sample 3 (TNZT-2 wt.% TiN),
and Sample 4 (TNZT-2 wt.% NbN).

The results from the MTT assay (Figure 10) showed no significant differences in cell
proliferation between the control cultures (cells cultured on a plastic surface) and the
cultures on alloy surfaces over the 96 h duration.

MG-63 cells seeded on the surfaces of various alloys were imaged using a Wilson
VH1202 Micro Hardness Tester microscope, using a 10× objective. Representative images
(Figure 11) show cell attachment and proliferation on the surface of alloy surfaces. A
spindle-shaped cell morphology was noted in all the cases similar to those in the controls.
The microscale imperfections on the alloy surfaces are common for such specimens.

A cytotoxicity analysis was performed for the four different metal alloy compositions.
An MG-63 osteoblast-like cell line was used as a model cell for this study, and its survival,
proliferation, and attachment to these alloy surfaces were assessed. Osteogenic sarcoma
cells (e.g., MG-63 cell line) are ideal for evaluating the cytotoxicity of such alloys, as
they proliferate and rapidly grow while still maintaining a sensitivity to variations in
their microenvironment. The results from the cytotoxicity test and MTT assay suggest no
acute toxicity emanating from these alloys compared to that in control cultures. Despite
differences in the composition of each ingredient in these TNZT alloys, osteoblasts [49,50]
or fibroblasts [51,52] cultured on TNZT surfaces showed no noticeable compromise in cell
viability even at chronic time points (>180 days in culture). This could perhaps be due to
an excellent corrosion resistance and the nontoxicity of the elements in these alloys in cell
culture media.
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Figure 11. Representative images of cell adhesion on the surfaces of various metal alloys. Scale bar:
200 µm. Sample 1 (TNZT-2 wt.% ZrN), Sample 2 (TNZT-2 wt.% TaN), Sample 3 (TNZT-2 wt.% TiN),
and Sample 4 (TNZT-2 wt.% NbN). Controls represent cultures on 2D tissue culture plastic dishes.

The results are in broad agreement with similar reports on the biocompatibility of
TNZT alloys. For instance, human dental pulp stem cells and MG-63 cells have exhibited
excellent viability, adhesion, proliferation, and differentiation, with no conceivable cyto-
toxicity when cultured in the presence of as-cast Ti–35Nb–7Zr–5Ta alloys [53]. Similarly,
TNZT alloys of a similar composition and prepared via laser powder bed fusion showed
excellent in vitro cytocompatibility (survival, adhesion, proliferation) when MC3T3-E1
cells were cultured on their surfaces and the addition of silicon of up to 5% did not alter
such biocompatibility properties [54]. In yet another study, L929 cells (mouse fibroblast
cell line) cultured on Ti–30Nb–5Ta–3Zr alloys manufactured by a powder-based selective
laser melting process adhered well to the surface and proliferated similar to those in con-
trols [51]. In general, the biocompatibility of these alloys appears to be independent of their
microstructural features (porosity, pore size, surface roughness), chemical composition, and
mechanical characteristics and seem to arise from low-stress shielding and the nontoxic
and nonallergenic nature of the compounds in the alloy.

4. Conclusions

The effect of various nitride (TiN, NbN, ZrN, and TaN) reinforcement on the mechani-
cal, tribological, and biological properties of β-Ti (TNZT) alloys was studied using XRD,
SEM/EDS, microhardness testing, and wear testing.

• All nitride-reinforced TNZT composites demonstrated superior tribological perfor-
mance over pure TNZT alloys while retaining a single-phase BCC structure and
excellent biocompatibility. This was attributed to the presence of very hard and strong
nitrides in the β-Ti matrix.

• TNZT-2 wt.% TiN exhibited the optimum hardness (311.8 HV) and lowest CoF (0.659),
showcasing the highest efficiency of TiN among other nitrides in improving the
tribological performance of TNZT alloys.

• TNZT composites with 5 wt.% TiN and 10 wt.% TiN showed a higher hardness
(388.5 HV and 444.3 HV, respectively) but also showed a higher CoF (0.674 and 0.715,
respectively). This was attributed to the higher but nonuniform presence of TiN.
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• This work will aid in producing superior β-Ti alloys for advanced orthopedic applica-
tions.
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