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Abstract: Neutron irradiation poses a substantial challenge in the development and application of
tungsten (W) and its alloys, predominantly in the framework of nuclear fusion and fission environ-
ments. Although W is well-acknowledged for its unique properties like its high melting temperature
and higher resistance to sputtering, transmutation products, such as Re and Os, form and impact
the alloy properties as a result of neutron irradiation. This transmutation effect accompanied by
significant microstructure damage due to neutron irradiation can lead to the significant degradation
of mechanical properties. This review surveys the literature focusing on the microstructural modifica-
tions post-irradiation and its impacts on the irradiation hardening. This review provides insights into
the elaborative understanding on the neutron radiation damage on W and W alloys by exploring the
microstructural evolution and hardness changes post-irradiation. The gaps and future opportunities
for understanding neutron radiation damage in W are briefly summarized

Keywords: neutron; irradiation; tungsten; tungsten–rhenium; dislocation loop; precipitates; irradiation
hardening

1. Introduction

Owing to its exceptional characteristics such as its ultrahigh melting temperature
(>3400 ◦C), effective heat transfer rate, lower sputtering yield, low erosion rate via particle
bombardment, and low tritium retention, tungsten (W) is considered as a promising and
widely employed plasma facing material (PFM) in fusion environments [1–3]. When tung-
sten is exposed to neutron irradiation involving higher temperatures and heat flux, it expe-
riences significant microstructural variations and alterations in their thermo-mechanical
characteristics [4,5]. High energy neutron irradiations result in severe lattice structure
damage, producing microscale and nanoscale defects like dislocation loops, voids, and
precipitates [6,7]. These precipitates are often enriched with transmutation products like
rhenium (Re) and osmium (Os) in W along with the formation of voids and dislocation
loops [8]. With the application of increased level of neutron flux, the accretion of solid trans-
mutation elements takes place, which further results in the transformation of pure W into
W-Re, W-Re-Os, or W-Os alloys [9]. Radiation induced void swelling and precipitates can
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introduce substantial irradiation hardening, the elevation of the ductile-to-brittle transition
temperature (DBTT), and radiation embrittlement in W [10,11].

Tungsten shows brittle behavior at room temperature. To improve the ductility, al-
loying elements (Re, Os, Ti) could be incorporated. Among all solutes, Re displays better
performance in reducing the DBTT of W and, thereby, improving the ductility [12]. The
responses of W and its alloy to neutron exposure have been investigated extensively, seek-
ing correlation among the temperature, dose rate, neutron flux, He bubble density, type of
reactors, and neutron energy spectrum [13–15]. Several inferences have been drawn based
on the existing research through microstructural investigations of the irradiated W. The
testing temperature ranges from low (~300 ◦C) to high temperature values (>1000 ◦C), and
dose rates ranging from as low as 0.03 to more than 4 dpa have been studied [16]. The
generation of defects like voids, dislocation loops, and precipitates post-irradiation greatly
depends upon the irradiation conditions.

The transmutation effects on W characteristics are quite complex. A study shows the
decrement of thermal conductivity to nearly half of pure W when 5% Re is added into
W [17], whereas its addition enhances the mechanical properties at high and low values
of temperature [18,19]. Many research groups are engulfed in this topic since early 1980.
Figure 1 shows a histogram plot displaying the neutron-irradiation-related publications
since 2000 and up to mid-2024 and by specific research groups. Sikka et al. [20] studied
the generation of precipitates post neutron irradiation of W. Precipitates of the χ phase
(W-Re3) were observed at 1000 ◦C in W-25%Re. Nemato and Hasegawa [21] studied
the microstructural modification in W-Re under neutron irradiation. They performed a
comparative study based on their previous work on W-26%Re. Different temperatures (372,
405, 518, 599, and 800 ◦C) were opted for irradiation in a fast flux test facility involving
a JOYO reactor. The results showed the presence of χ- and σ-phase precipitates, which
resulted in increased irradiation hardening and embrittlement. The irradiation-induced
transmutation and corresponding effects on W are subjective to the neutron spectrum in
different reactors [22–26]. Hasegawa reported the effects of the neutron irradiation of W
and its alloys in different reactors, showcasing the relation and dependence of the dose rate,
temperatures, and neutron energy spectrum [27,28]. Increases in precipitate and solution
hardening owing to an increase in Re and Os content were discovered. A higher degree of
irradiation hardening was observed in HFIR as compared to JOYO along with an upsurge
in electrical resistivity in samples exposed in HFIR.
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In the present literature on the neutron irradiation of W and its alloys, limited studies
are available to comprehensively evaluate the correlation between the microstructural
damage (including voids, dislocation loops, and transmutation precipitates) and variations
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of mechanical properties, and the influence of the energy spectrum of different reactors
on such correlations. Some research groups have tried to generate defects as functions
of dose rates and variations in temperature and investigate micromechanical property
changes occurring in W and W alloys [29,30]. A simple methodology for the analysis of
the existing literature on the neutron irradiation of the W and W-Re alloy was adopted
by plotting various 2D and 3D plots of the datasets, such as the defect size and density as
a function of radiation dose and temperature, obtained from the published literature in
Origin software 2023. The description of each TEM image obtained from published papers
was reviewed carefully and crucial TEM images were reported based on the temperature,
dose, and type of reactor used to showcase a comparative examination of the material,
reactor type, type of defects, and defect density. The article first reviews the microstructural
changes post-irradiation by showcasing classical TEM studies on the major types of defects.
This section is followed by the effects of transmutation in the W and W-Re alloys post
neutron irradiation characterized by the addition and generation of Re and Os precipitates
in tungsten. Further, a section is dedicated to explain the effects of neutron irradiation
hardening on W and W alloys depending upon the dose, temperature, and reactor type
and elaborate a detailed analysis of irradiation hardening. A comprehensive database is
unavailable but it is crucial to examine the relationship between damage accumulation,
damage mechanisms pertaining to fast and mixed spectrum reactors. This paper presents a
corelative response of such issues and provides a damage characterization review for W and
its alloys in the most widely employed reactors, namely, HFIR, JOYO, and JMTR. Moreover,
the article briefly summarizes the gaps in the ongoing experimental investigations on W
and its alloys.

W and W alloys are promising candidates for high-dose radiation environments, due
to their exceptional characteristics as described in this section. Their radiation response
directly influences their viability in environments where materials are subjected to high
neutron fluxes. This review helps in assessing the formation of irradiation-induced vacan-
cies, voids, dislocation loops, and transmutation products, and their impact on irradiation
hardening and embrittlement, which influence the long-term reliability of the irradiated
W and W alloys [22–25,31–33]. The subject reviewed in this study may benefit the nuclear
fusion reactor sector in understanding the ability of W and W alloys to withstand extreme
neutron fluxes, high heat loads, and material damage conditions critical to reactor per-
formance and longevity. While the use of W and its alloys involves an initial investment
of large capital, their longevity under neutron irradiation could offset replacement costs
for critical components when using other low-cost materials, such as high-temperature
ceramics, reducing lifecycle costs tied to maintenance and downtime costs in reactors. Due
to lower activation levels, W alloys also produce less long-lived radioactive waste than
some of the elements with high radioactivity, potentially reducing waste management
costs [34].

2. Microstructural Development

Microstructural modifications in the neutron irradiated W have been widely stud-
ied [35–37]. Typical developmental microstructures characterized via transmission electron
microscopy show the occurrence of voids, dislocation loops, and transmutation-induced
precipitates [38–44]. Radiation-induced defect migrations in W results in the grain growth
promoted by neutron flux exposure. For example, an elevation in grain sizes was ob-
served [45] when pure W is irradiated in HFIR at 850 ◦C. Grain size upsurges to more than
23 µm when compared with an unirradiated sample having a grain size of 5 µm. Prior
studies show that, at low dosage values (<1 dpa), voids are coupled with dislocation loops
in W irradiated in almost all the reactors, i.e., HFIR, JOYO, and JMTR. The dominance
of dislocation loops is observed during temperatures below 500 ◦C and less than 0.5 dpa.
The occurrence of voids at low dose and low temperature is due to the establishment of
vacancy clusters that endured the displacement cascade [46]. A comprehensive explanation
of defect generation and its mechanism, along with the observed gaps in the existing
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database of the neutron irradiation of W and W alloys, is presented in the forthcoming
subsections. The impacts of neutron exposure in W have been investigated by employing
both fast and mixed spectrum neutron reactors. Thermal neutrons result in the production
of solid transmutations through neutron capture reactions. Moreover, the outcomes of such
transmutations are illustrated in the following sections.

2.1. Voids

During neutron irradiation, W would experience volumetric swelling during the
occurrence and growth of voids. Neutron radiation induces abundant vacancy clusters in
W. These vacancy clusters evolve into voids, by a net increment in the number of vacancies
absorbed over interstitials. He et al. [47] performed the neutron and proton irradiation on
W and W-Re-Os alloys in JMTR. They observed more void formation in proton-irradiated
samples than in the neutron-irradiated specimens. With an increase in the Re content
in the W alloy, the void size is similar (i.e., ~1.2 nm) at 600 ◦C and 0.15 dpa, but the
void density decreases by half in W-3Re as compared to W. The TEM images in Figure 2
show voids in neutron-irradiated W at different doses and temperatures in HFIR and
JOYO reactors [20,29,46,48]. Hu et al. [46] performed neutron irradiation in single-crystal
W at low dose and high temperature in HFIR (in Figure 2a). A low void density was
observed along with the formation of dislocation loops and precipitates. These voids
formed before precipitate formation. Beyond 1 dpa, the void density decreases with the
appearance of acicular precipitates as seen in Figure 2b [29]. At this dose level, the density
of dislocation loops reduces, accompanied by the presence of transmutation precipitates
and cavity growth.
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Ref. [48]. 2016, Elsevierand (d) 1.5 dpa/750 ◦C. Reprinted from Ref. [35].
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In JOYO, the void density increases with an average void size of ~2 nm below 1 dpa
and temperature below 500 ◦C as shown in Figure 2c. Theses voids are accompanied by
large dislocation loops as inferred by Fukuda et al. [48]. The authors compared experimental
investigations in HFIR and found the void density for pure W is less in HFIR than in JOYO
at a similar radiation dose, and ascribed the suppression of voids to the large quantity of
transmutation product (precipitates) in HFIR. Tanno et al. [20] investigated the effect of
the neutron irradiation of W in JOYO in the temperature range of 400 to 750 ◦C and above
1 dpa. At low temperatures (<500 ◦C) and doses (<1 dpa), densely populated nanovoids
were seen along with dislocation loops, but the void size elevated as irradiation dose levels
were near 1 dpa. Samples irradiated at high dose (1.5 dpa) and high temperature (750 ◦C)
contained large voids with a diameter of 3–8 nm as shown in Figure 2d. The highest void
density was observed in samples irradiated at 0.98 dpa and 538 ◦C.

Tanno et al. [49] studied the transmutation effects on W-Re and W-Os alloys via
neutron irradiation and observed a void lattice in W irradiated at 1.54 dpa and 750 ◦C. The
void lattice spacing and void diameter are 20 nm and 5 nm, and the alignment of lattice is
along the [100] direction. Other features such as dislocation loops were found to be scarce.
In the case of W-10%Re, a lower void density was observed along with few dislocation
loops, and the radiation damage was dominated by needle-shaped precipitates. The voids
seem to be diminished in the W-3Os alloy, although some interstitial defects (black dots)
were assumed to be present.

2.2. Dislocation Loops

In irradiated BCC metals, self-interstitial atoms group to form 2D platelets enclosed
by edge dislocations referred to as dislocation loops. Most of these dislocation loops have
Burgers vectors of <100> and ½ <111>. <100> dislocation loops have little mobility; on the
other hand, ½ <111> loops are highly mobile [50–53] and they vanish rapidly at dislocation
networks and grain boundaries. The appearance of ½ <111> dislocation loops in TEM is
mainly due to their trapping in their glide cylinders. Furthermore, irradiation experiments
reveal the movement of these dislocation loops are often linked with solute particles [54,55].
Simulation studies show that, due to the solute–loop interactions, certain solutes offer
strong binding connections with loops, leading to mobility reduction in concentrated and
dilute alloys [56,57].

Fukuda et al. [58] performed the neutron irradiation in HFIR, at 500 ◦C and below
1 dpa in W and W-Re alloys. In W, dislocation loops were observed with a density of
3.3 × 1022 m−3 and size of 2.9 nm without the presence of voids, but accompanied by a high
density of precipitates (Figure 3a), while, in W-5Re, the dislocation loop density increases to
5.2 × 1022 m−3. The loop size remains similar to W and the precipitate density in W-5Re was
2.6 × 1023 m−3. On increasing the Re content, dislocation loops diminish along with voids.
At a higher dose, 2.88 dpa and 770 ◦C, as shown in Figure 3b, dislocation loops having
an average diameter of 3.6 nm were observed with small amounts of voids; precipitate
formation might have restricted the generation of voids in pure W. A dose range of more
than 1 dpa reveal the effect of the neutron fluence in microstructural modifications and
irradiation hardening. Fukuda et al. [59] investigated irradiation experiments with JOYO
to examine the Re influence on the microstructural modifications and irradiation hardening
in W. For W irradiated at 583 ◦C and 0.47 dpa, the void density is much higher as compared
to the dislocation loop density. The diameter of voids and dislocation loops are comparable
and is ~3 nm. On increasing the Re content from 3 to 5 at. % (Figure 3c), the dislocation
loop density doubled as compared to pure W and the void density dropped along with a
decrease in the void size and an increase in the size of dislocation loops. Void nucleation
and growth occurred in W at 583 ◦C but was suppressed in W-Re, and, quantitatively, the
void density in W-Re alloys was nearly 1/100 of that in W. Tanno et al. [49] also studied the
neutron irradiation of the W-Re alloy over 400–750 ◦C and 0.17–1.54 dpa. A void lattice
was observed at 1.54 dpa and 750 ◦C (Figure 3d), along with small voids and dislocation
loops in W-10%Re.
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Figure 3. TEM images of dislocation loops in Pure W in HFIR at (a) 0.90 dpa/500 ◦C. Reprinted
with permission from Ref. [58]. 2014, Elsevier and (b) 2.88 dpa/770 ◦C Reprinted with permission
from Ref. [58]. 2014, Elsevier and in W-Re alloys irradiated in JOYO reactor at (c) 0.47 dpa/583 ◦C.
Reprinted from Ref. [59] and (d) 1.54 dpa/750 ◦C. Reprinted from Ref. [49].

2.3. Transmutation-Induced Precipitates

There has been increasing studies on the transmutation-induced precipitates in W
by neutron irradiation [60]. Hu et al. [46] reported the effects of transmutation in the
generation of Re and Os containing precipitates in W and their dependance on the dose
rate and applied temperature in HFIR. Radiated samples at low dose, 0.02 to 0.44 dpa,
and at 450 ◦C–797 ◦C produce nanosized clusters rich in Os and Re; W irradiated at a
higher dose reveals needle-like precipitates [46]. Large-size intergranular precipitates are
visible in W [46]. Moreover, it was inferred that voids were linked with the needle-shaped
precipitates [46]. This trend was also observed by Hwang et al. [61] where W and W-10%Re
were neutron-irradiated below 1 dpa and at 500 ◦C in HFIR and JOYO. The formation of
Re dominating clusters was studied via atom probe tomography (APT) and TEM. For W
irradiated in a JOYO reactor, clusters enriched with Re were oriented in straight lines. The
layout of these Re-rich precipitates was in accordance with the void lattice, suggesting the
accumulation of Re around defect sinks, such as dislocation loops and voids [60,61].

Hasegawa et al. [62] explored the neutron irradiation on W and W-10%Re in HFIR.
Fine transmutation-induced precipitates along with dislocation loops were observed
(Figure 4a,b). The absence of voids was attributed to the formation of precipitates. In
W-10%Re, acicular precipitates oriented along the [110] direction and black dot structures
are present. Further diffraction analyses of the irradiated W and W-10% Re revealed the
formation of σ (W-Re)-phase and χ (W-Re3)-phase precipitates. When these W samples
were irradiated at a higher temperature, 800 ◦C, the dimensions of the precipitates (σ-
and χ-phase) increased further (Figure 4 c,d) as compared to samples irradiated at 500 ◦C.
The types of precipitates observed in the JOYO reactor [35] are similar to those observed
in HFIR. Tanno et al. [35] irradiated W-Re alloys in JOYO to infer the development of
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precipitates in these alloys. Plate-shaped precipitates oriented along the {110} planes
were observed and were characterized as the χ phase in W-Re alloys irradiated at 750 ◦C,
1.54 dpa. W-Re samples irradiated at 750 ◦C and 1.5 dpa reveal small black features
identified as σ-phase precipitates.
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In order to explore more deeply the precipitate formation, a study performed by
Hwang et al. [61] reveal the Re cluster size observed in the TEM micrograph was higher
than that experienced in APT studies for W and W-Re alloys irradiated at around 500 ◦C
and below 1 dpa. Moreover, the number density of precipitates was lower than that of
Re-rich clusters. The comparative study of APT and TEM reveal the conversion of Re
clusters into precipitates containing 0.5 to 0.4% Re.

Vesti et al. [63] studied the effect of Re in the coefficient of thermal expansion (CTE)
of σ and χ phases in the W-Re alloy using two approaches, the Debye–Grüneisen (DG)
model and quasi-harmonic approximation (QHA). Experimental results of W and W-
Re were compared with the σ and χ phases at steady Re concentrations. The authors
concluded a noteworthy incongruity in CTE of σ and χ phases which might influence the
thermal stress buildup at high temperatures. This incongruity increases with the increase in
temperature and Re concentration in both the σ and χ phases. Neutron-irradiation-induced
Re precipitates have its concentrations beyond solubility limit [64–66]. Former studies have
investigated the characteristics of σ and χ phases by opting for ab initio methodologies
like density functional theory for recording fracture-related characteristics and lattice site
habitation [67–70].

As shown in Figure 5, the σ-phase precipitate has a tetragonal crystal structure and
fits in the P42/mnm space group; on the other hand, the χ phase has a cubic structure [68].
Both W-Re phases are stable thermodynamically over a wide range of Re concentrations.
Harrison et al. [71] explored the intermetallic W-Re phases generated in the ion-irradiated
W-Re alloy. The authors experimented by inducing the σ and χ phases in W-26%Re
irradiated with Ne ions at 500 ◦C and 800 ◦C, at a dose level of 5 dpa. The precipitation
of these σ and χ phases is correlated with the impacts of cascade energy density and
ballistic mixing.
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Figure 5. The crystal structure of σ (W-Re) and χ (W-Re3) phases along with the measure of site
occupancy of each phase Reprinted from Refs. [63,68].

2.4. Defect Density Variation with Temperature and Dose

Researchers have been interested in studying the correlation of the temperature and
dose on the defect formation of neutron-irradiated W and W alloys. Figure 6 shows the
plot of dpa vs. temperature variation generated from the datasets obtained through the
existing literature on the neutron irradiation of W and W-Re alloys in HFIR, JOYO, and
JMTR reactors [27–29,46,49,58–60]. Most of the data points are aggregated below 1 dpa
and at ~800 ◦C for HFIR, although few points could be spotted beyond 1 dpa in HFIR,
which are mostly for irradiated W-Re alloys (Re concentrations of 3, 5, 10, and 26 at.%),
while JOYO stays put between 500–800 ◦C and also below 1 dpa. For the case of JMTR, the
data points are found to be below 0.5 dpa and between 600–800 ◦C. The evident lack of
data at higher dose rates, >3 dpa, discloses a gap for future studies concerning the neutron
irradiation in W and W-Re alloys. The variation also corresponds to the type of reactor
employed for radiation purposes. A higher dosage and temperature values are observed in
HFIR when compared to JOYO and JMTR. Caution shall also be applied when comparing
data among various types of reactors as the neutron spectrum can propose a significant
impact upon the transmuted elements, defect generation, and mechanical characteristics of
irradiated W.
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The dependence of defect densities on the temperature and dose is derived from TEM
studies [27–36,46,49,58–60,62], but a conclusion on the coherency of precipitates is not yet
perceptible based on the limited literature datasets on the neutron irradiation of W and W
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alloys. Figure 7 shows the variation of defect densities with the dose and temperature in W
and W-Re alloys. The void density data are clustered below 1 dpa and show a maximum
value of 1.2 × 1022/m3 for W in HFIR, whereas the void density for W in the JOYO reactor
can be much greater at similar dose and temperature (Figure 7a). Comparing to W, the
void density for irradiated W-Re alloys is much less for HFIR and JOYO reactors as shown
in Figure 7b. The dislocation loop density in W in HFIR is similar to the void density in
HFIR, and comparable to the loop density in W irradiated in the JOYO reactor (Figure 7c).
The data scarcity for the dislocation loop density is evident for the irradiated W-Re alloy
(Figure 7d). The density of irradiation-induced precipitates (containing Re and Os due to
transmutation) increases with the increase in dosage (Figure 7e) and is comparable to the
density of voids or loops in W. However, for the irradiated W-Re alloys, this precipitate
density is nearly an order of magnitude higher than that in W (Figure 7f), having reached
80 × 1022/m3 for HFIR and 60 × 1022/m3 for JOYO. The precipitate density also increases
with the greater Re concentration in the W-Re alloys. Table 1 also shows the tabulated
variation of defect densities in Pure W and W-Re alloys generated from the plots shown in
Figure 7. The qualitative comparison using “high” or “low” was made between irradiated
W and We-Re alloys.
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Dislocation loops dominate in W irradiated at temperatures below 500 ◦C and below
1 dpa. Cavities are also perceived above 500 ◦C and at a lower dose but not in abundance
as compared to that at elevated temperatures. Void formation at low values of dose and
temperature is a result of large cavity development [72,73]. These studies suggest that voids
harmonize with dislocation loops at low dose in W in all the reactors. In some cases of
W, nanoscale Re- and Os-rich precipitates were observed when irradiated in HFIR [74,75].
EDS examinations reveal that voids are arranged near precipitates [76], demonstrating
that the voids offer nucleation spots for the segregation of Re and Os precipitates. At
elevated levels of the irradiation dose, predominantly in W irradiated in reactors with
mixed energy spectra, abundant needle-like transmutation-induced precipitates are formed.
These precipitates have a high number density (>5 × 1021/m3) with a length of 20 nm or
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greater. For the case of polycrystalline W irradiated at 2.4 dpa, 800 ◦C in HFIR, notably, large
W-Re-Os precipitates, exceeding 100 nm in size, were detected along grain boundaries [76].
Interestingly, many voids appeared to be highly affiliated with these precipitates. Table 2
presents the summary of the defect size and density in irradiated W and W-Re alloys in the
HFIR, JOYO, and JMTR reactor along with the irradiation parameters.

Table 1. Defect densities in neutron-irradiated W and W-Re alloys [27–36,46,49,58–60,62].

Defect Density Pure W W-Re Alloy

Void density
1–5 × 1022/m3 0.2 × 1022/m3

High Low

Dislocation loop density
1–5 × 1022/m3 50 × 1022/m3

Low High

Precipitate density
3–10 × 1022/m3 10–80 × 1022/m3

Low High

Table 2. Irradiation parameters along with summary of microstructures of irradiated W and W-Re
alloys in three reactors.

S. No. Material Reactor Type Temp. (◦C) DPA

Dislocation Loop Void Precipitate

Ref.Size
(nm)

Density
(×1022/m3)

Size
(nm)

Density
(×1022/m3)

Size
(nm)

Density
(×1022/m3)

1 Pure W HFIR 500 0.9 2.9 3 - - 5.7 9

[58]

2 W-10 Re HFIR 500 0.9 - - - 2.2 90

3 W–5%Re HFIR 500 0.9 2.4 52 - - 1.9 26

4 W–3%Re HFIR 800 0.98 - - ~1 0.01 6.8 13

5 W–5%Re HFIR 800 0.98 - - ~1 0.01 6.6 32

6 Pure W HFIR 800 0.15 2 4.8 3.9 0.2 - -

[48]
7 Pure W HFIR 710 0.7 2.2 2.4 4.1 0.3 - -

8 Pure W HFIR 430 0.9 5.4 3.1 - - - -

9 Pure W HFIR 770 2.88 3.6 3.2 6.3 0.3 - -

10 Pure W HFIR 397 0.03 5.12 2.7 - - - -

[77]

11 Pure W HFIR 467 0.6 5.38 3.1 - - - -

12 Pure W HFIR 724 0.6 6.37 <0.01 3.03 1.22 - -

13 Pure W HFIR 742 2.2 - - 5.28 0.07 20 4.8

14 Pure W HFIR 764 0.15 6.56 <0.01 3.49 0.5

15 Pure W HFIR 500 1.62 2.9 3.3 - - 5.7 8.6

16 Pure W HFIR 800 1.77 - - 3.8 0.8 16.3 3.6

17 Pure W JOYO 538 0.96 4.7 5 2.1 49
[35]

18 W-10 Re JOYO 538 0.96 ~5 <2 - - 6.8 84

19 Pure W JOYO 531 0.44 7.5 1.3 1.1 19 - -

[59]

20 W–3%Re JOYO 531 0.44 3.7 4.6 1.4 0.03 - -

21 W–5%Re JOYO 531 0.44 2.9 1.4 1.7 0.2 - -

22 W-10 Re JOYO 531 0.44 7.1 0.3 3.4 0.1 - -

23 Pure W JOYO 583 0.47 ~3 <0.2 3.1 12.8 - -

24 W–3%Re JOYO 583 0.47 2.1 1.2 1.9 0.2 - -

25 W–5%Re JOYO 583 0.47 2.2 1.3 1.6 0.3 - -

26 W-10 Re JOYO 583 0.47 4.5 0.6 3.9 0.05 - -

27 W-26%
Re JOYO 583 0.47 - - - - 2.8 3.9
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Table 2. Cont.

S. No. Material Reactor Type Temp. (◦C) DPA

Dislocation Loop Void Precipitate

Ref.Size
(nm)

Density
(×1022/m3)

Size
(nm)

Density
(×1022/m3)

Size
(nm)

Density
(×1022/m3)

28 Pure W JOYO 400 0.17 - - - - - -

[35]29 Pure W JOYO 740 0.4 - - - - - -

30 Pure W JOYO 750 1.54 - - - - - -

31 Pure W JOYO 750 1.54 - - 4.7 12 - -

[78]

32 W-5%Re JOYO 750 1.54 - - 3.3 0.65 14 7.3

33 W-10 Re JOYO 750 1.54 - - 1.6 3.1 9.5 42

34 W-3Os JOYO 750 1.54 - - - - 7.3 22

35 W-5Re-
3Os JOYO 750 1.54 - - - - 6.8 67

36 Pure W JOYO 756 0.42 5.6 0.1 2.5 12.1 - -
[48]

37 Pure W JOYO 538 0.96 4.7 4.7 2.1 49 - -

38 Pure W JOYO 400 0.17 2.8 2.0 1.8 19.5 - -

[49,59]

39 Pure W JOYO 531 0.44 5.4 1.1 1.3 25.3 - -

40 Pure W JOYO 538 0.96 4.7 4.7 2.1 49 - -

41 Pure W JOYO 583 0.47 5.4 0.2 2.4 13.8 - -

42 Pure W JOYO 740 0.4 12.2 0.3 2.9 13.8 - -

43 Pure W JOYO 750 1.54 - - 4.7 12 - -

44 Pure W JOYO 756 0.42 5.6 0.1 2.5 12.1 - -

45 Pure W JMTR 600 0.15 7.9 (rad.) 0.46 1.3 (rad.) 6.4 - -

[47]46 W–3%Re JMTR 600 0.15 3.6 (rad.) 0.14 1.1 (rad.) 3.4 - -

47 W–5%Re JMTR 600 0.15 3.2 (rad.) 0.15 1.2 (rad.) 2.1 - -

48 Pure W JMTR 800 0.15 8.5 0.1 1.9 4.2 - - [48]

49 Pure W JMTR 600 0.15 7.9 4.6 1.3 6.4 - -
[36,79]

50 Pure W JMTR 800 0.15 8.5 1.1 1.9 4.2 - -

3. Transmutation

There has been a transmutation effect observed post-irradiation where a change
in the compositions of the W samples was detected. A study shows the relationship
of transmuted products with dislocation loops and cavity formation [29]. Dislocation
loops are suspected to be primarily of the interstitial type, having Burgers vectors of a/2
<111> [80–83]. Dislocation loops and cavity characteristics with respect to dose are shown
in Figure 8 [29]. As can be seen, the number density of dislocation loops has attained a
plateau below 2 dpa with the increase in the transmutation products.

There are substantial inconsistencies, such as scattered data corresponding to the dose
and temperature in the quantifiable data for dislocation loops, observed across numerous
studies inspecting W irradiated under the same or comparable circumstances. Alternatively,
microstructures of the cavity typically show a time evolution characterized by an increase
in size and a likely slow drop in number density with increasing dose [46].

Hasegawa et al. [62] performed the neutron irradiation studies on the W and W-
10%Re alloy in HFIR and JOYO. For the case of samples irradiated in JOYO as shown in
Figure 9a,b, when irradiated at 538 ◦C and 0.96 dpa, W converts to W-0.9Re, presenting
voids in a higher population accompanied by small dislocation loops, whereas W-10Re
changes to W-10.4Re-0.5Os showing precipitates oriented along the [110] direction. While,
for the case of HFIR shown in Figure 9c,d, irradiated at almost similar conditions, pure
W transmuted to W-9.2Re-5Os, having dislocation loops along with fine precipitates, and
W-10Re became W-11.7Re-11Os, showing a higher population of acicular precipitates [62].
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In comparison, for W irradiated at 1.54 dpa and a higher temperature, 750 ◦C, in the JOYO
reactor, the void density decreases substantially (Figure 9e). Similar phenomena were
observed for W and W-10Re irradiated in HFIR at a greater temperature (800 ◦C) and dose
(0.96 dpa). The size of χ- and σ-phase precipitates is larger than in the W-5Re alloy.
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Fukuda et al. [58] examined the W neutron irradiated at 1 dpa and at 800 ◦C in HFIR.
Diffraction patterns in Figure 10a confirm the formation of the σ and χ phases. Dark-field
TEM images in Figure 10c,d show that σ precipitates display an equiaxed-type structure,
whereas the χ phase shows a platelet-type geometrical feature. Large precipitates were
seen in pure W as compared to the irradiated W-Re alloy because of the generation of
transmutation elements such as Re and Os in the matrix. The composition of W converts to
W-9.22Re-5.02Os, and W-5%Re becomes W-10.46Re-8.02Os after irradiation to 0.98 dpa in
HFIR. The neutron energy spectrum plays a vital role in the determination of the number of
precipitates and the chemistry generated post-irradiation. For the JOYO reactor dominated
by fast neutrons, transmutation is much less pronounced than in HFIR or JMTR which
have much more thermal neutrons.

The segregation of transmutation elements has been performed using the STEM-EDX
spectrum for neutron-irradiated W. The STEM-HAADF image in Figure 11a shows that
the precipitates consist of atoms with a higher atomic number (Z) than the W matrix [84].
Bright precipitates shown in the HAADF image are identified as Os-rich features, as shown
in the Os map (Figure 11b–d). Additionally, rod-shaped and spherical-shaped precipitates
were also seen. The Re map further reveals an Re-enriched “cloud-like” phase surrounding
the Os-rich particles (Figure 11c). Re-rich “clouds” contain an Os-rich core with a rod shape.
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Additionally, few voids close to Os-rich precipitates were detected (Figure 11e–i) [84].
Transmutation-induced Os particles developed σ-WOs2 and χ-WOs3 precipitates with a
spherical and needle-like shape, correspondingly, whereas the χ-WOs3 phase is frequently
observed near voids.
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Figure 9. TEM images showing transmutation product and defect formation after neutron irradiation
of Pure W and W-10%Re alloys in HFIR and JOYO reactors. Reprinted with permission from Ref. [62].
2016, Elsevier. (a,b) W and W-10Re at 0.96 dpa/538 ◦C in JOYO showing voids and fine precipitates,
respectively. (c,d) W and W-10Re at 0.9 dpa/500 ◦C in HFIR showing loops and fine precipitates. (e,f)
At higher dose (1.54 dpa) and temperature (750 ◦C) in JOYO, void and precipitate density decrease
substantially. (g,h) At 0.98 dpa and 800 ◦C in HFIR, precipitate density also decreases prominently.
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Figure 10. TEM images of W after neutron irradiation to 0.98 dpa at 800 ◦C in HFIR. (a) Diffraction
pattern from [0 0 1] zone axis, (b) bright-field TEM image, and (c,d) dark-field TEM images of
precipitates. Reprinted with permission from Ref. [58]. 2014, Elsevier.

The neutron spectrum plays a crucial role in the formation of transmutation products.
It is observed that the formation of Re and Os in W is more pronounced in thermal neutron
environments, as slower neutrons increase the likelihood of neutron capture reactions
which convert the W to Re [85]. Fast neutron spectra reactors like JOYO may produce fewer
transmutation products but induce more atomic displacements affecting the microstructural
evolution [86]. HFIR allows for accelerated radiation damage, beneficial for studying the
rapid accumulation of irradiation defects [87]. However, JMTR has a lower neutron flux
compared to HFIR, leading to less radiation damage [88]. The intensity of neutron flux
affects the rate of defect accumulation and transmutation. The high-flux HFIR reactor
accelerates the formation of transmutation products and damage accumulation, which
is effective for simulating long-term exposure, but also results in the increment in void
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swelling and irradiation hardening [85,87,88]. This criterion is not pronounced in JMTR [88].
The JOYO reactor typically creates high energy cascades, leading to larger voids and higher
levels of dislocation density than those generated in HFIR and JMTR. Thermal neutrons
in HFIR and JMTR favor reactions that generate Re. A higher Re content influences the
mechanical characteristics, leading to embrittlement and altering the hardening rate [88].
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Figure 11. (a–d) STEM and EDX maps of W, Re, and Os near GB. (e–i) STEM-EDX maps of a void
and a precipitate. Reprinted from Ref. [84].

4. Irradiation Hardening

Neutron irradiation induced significant microstructure damage in W and W-Re alloys;
it is essential to understand the deformation mechanisms of irradiated material. This
section aims to create a brief overview of the observed irradiation hardening of W and its
alloys as functions of the applied dose, irradiation temperature, and reactor type.

Fukuda’s group has performed various studies on the neutron irradiation effects on
W and W-Re alloys [35,48,59,60,77,89,90]. One of their main findings is that the irradia-
tion of W and W-Re alloys can be split into two main regimes. As seen in Figure 12a,
regime 1 shows moderate irradiation hardening at low doses (<1 dpa), whereas regime 2
(>1 dpa) shows rapid irradiation hardening at a greater dose. Regime 1 is dominated by
the formation of voids and dislocation loops as described in previous sections [48,60,77].
Although dislocation loops continue to form, Regime 2 is dominated by the formation
of transmuted precipitates and is accelerated by the amount of Re present in the alloy
before irradiation [35,48,59,60,77]. These precipitates inhibit the local dislocation motion,
leading to the irradiation hardening as well as embrittlement. Figure 12a summarizes the
irradiation hardening for two main classes of reactor, mixed spectrum reactors (JMTR and
HFIR) and fast flux reactors (JOYO). Due to the differences in the neutron energy spectra
in these reactors, the irradiation hardening behavior will also vary, leading to delayed
precipitation in the JOYO as compared to the HFIR and JMTR [48]. In situ studies should
be conducted to fully understand the interplay between void formation and the transmu-
tation precipitation observed during the transition from Regime 1 to 2. Transmutation
precipitation in Regime 2 appears to be more detrimental to the mechanical properties than
the voids and loops observed in Regime 1. Figure 12b shows the relationship between the
irradiation hardening and dose for W and W-Re alloys in HFIR and JMTR reactors. This
comparison further acknowledges the two-regime understanding mentioned above. At
Regime 1, dominated by dislocation loop and void formation, the magnitude of irradiation
hardening is similar between W and W-Re alloys. At Regime 2 (>1 dpa), however, an
increase in Re leads to greater irradiation hardening than W (Figure 12b). Figure 13 further
emphasizes the interplay of Re in the irradiation hardening of W. At low doses (Regime 1),
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the irradiation hardening observed has little dependence on the Re content. In few cases,
such as at 583 ◦C and 0.47 dpa, irradiation softening takes place. At low doses (<1 dpa), a
slight improvement in ductility was observed in the W-Re alloy (than W); however, above
1 dpa, the irradiation hardening is accelerated due to the accelerated precipitation of W
into Re. Moreover, in Regime 2, Figure 13 suggests that a greater irradiation temperature
leads to reduced irradiation hardening in the JOYO reactor, whereas the opposite trend
was observed in HFIR-irradiated W-Re alloys. In the JOYO (fast neutron) reactor, there is
limited transmutation. Greater irradiation temperatures can promote the recombination
of opposite types of defects (dislocation loops and voids), and, thus, reduce irradiation
hardening. However, in the HFIR reactor, higher irradiation temperatures could elevate
the transmutation rate of W into Re due to excess energy, leading to a greater precipitate
density, and, thus, accelerate radiation hardening [29,91].
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Figure 12. (a) Irradiation hardening vs. dose for W in HFIR, JMTR, and JOYO split into two distinct
regimes. Reused with permission from Refs. [48,60,77,89,90]. 2016, Elsevier; 2014, Elsevier; 2016,
Elsevier; 2020, Elsevier; 2020, Elsevier. Reprinted from Ref. [35]. Dashed line shows the predicted
trend. (b) Irradiation hardening vs. dose for W and W- alloys in the HFIR and JMTR reactor with
regime division marker. Reused with permission from Refs. [36,60,89,90]. 2006, IAEA; 2014, Elsevier;
2020, Elsevier; 2020, Elsevier. Reprinted from Refs. [35,59].

Figure 14a shows the irradiation hardening data for various doses and irradiation
temperatures from the literature for W. Two knowledge gaps in terms of the lack of irra-
diation hardening data are identified: firstly, for high temperatures (800–1000 ◦C) at all
doses, and, secondly, for low temperatures (<400 ◦C) and nearly all doses. A previous
study [92,93] has focused on pure W concerning its ductile-to-brittle transition temperature,
which occurs between 300–650 ◦C depending upon the chemistry and processing method.
Significant progress has been made in characterizing the three primary types of defects,
namely, voids, dislocation loops, and transmutation-induced precipitates, as evidenced by
the continuous publications from major research groups around the globe [94–108]. There
are ample opportunities to improve our understanding of radiation hardening in W by
filling in the gaps.
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Figure 14b shows the irradiation hardening behavior for W-Re alloys at different 
doses and irradiation temperatures. At low doses, for all temperatures, no clear trend be-
tween the Re content and the irradiation hardening could be intercepted; however, at 
around 1 dpa, as the Re content increases, the measured hardness difference also shows a 
rise in its value. The maximum hardness increase observed in Regime 1, below 1 dpa, in 
Figure 14b is ~400 HV, whereas the maximum hardening in Regime 2 reaches 1348 HV for 
the same irradiation temperature, 800 °C. This behavior further supports the claim of a 
two-regime understanding of irradiation hardening in W-Re alloys. Figure 14b also high-
lights opportunities for furthering our understanding of radiation hardening at (1) high 
irradiation temperatures (800–1000 °C) and all doses and (2) low irradiation temperatures 
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Figure 13. The influence of Re concentration on irradiation hardening of W and W alloys in different
reactors. Red dashed line indicates boundary between Regimes 1 and 2. Color code corresponds to
sample irradiation conditions. Reused with permission from Refs. [36,60,89,90]. 2006, IAEA; 2014,
Elsevier; 2020, Elsevier; 2020, Elsevier. Reprinted from Refs. [35,59].
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and dose for W in the HFIR and JMTR reactors. Reused with permission from Refs. [48,60,77,89,90].
2016, Elsevier; 2014, Elsevier; 2016, Elsevier; 2020, Elsevier; 2020, Elsevier. Reprinted from Ref. [35].
The question marks indicate a lack of literature data in different portions of the plot. (b) Irradiation
hardening vs. irradiation temperature and dose for W-Re alloys in the HFIR, JMTR, and JOYO
reactors. Reused with permission from Refs. [36,60,89,90]. 2006, IAEA; 2014, Elsevier; 2020, Elsevier;
2020, Elsevier. Reprinted from Refs. [35,59].

Figure 14b shows the irradiation hardening behavior for W-Re alloys at different
doses and irradiation temperatures. At low doses, for all temperatures, no clear trend
between the Re content and the irradiation hardening could be intercepted; however, at
around 1 dpa, as the Re content increases, the measured hardness difference also shows
a rise in its value. The maximum hardness increase observed in Regime 1, below 1 dpa,
in Figure 14b is ~400 HV, whereas the maximum hardening in Regime 2 reaches 1348 HV
for the same irradiation temperature, 800 ◦C. This behavior further supports the claim
of a two-regime understanding of irradiation hardening in W-Re alloys. Figure 14b also
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highlights opportunities for furthering our understanding of radiation hardening at (1) high
irradiation temperatures (800–1000 ◦C) and all doses and (2) low irradiation temperatures
(<400 ◦C) and all doses. The irradiation hardening has clearly shown two regimes, low dose
(<1 dpa) and high dose (>1 dpa), where radiation hardening is controlled by dislocation
loops and voids at low dose, and precipitates induce significant hardening at high doses.
The temperature- and dose-dependent radiation hardening have been investigated and
gaps were identified at both high temperatures and low temperatures [109–127].

In order to better correlate the irradiation hardening with defect formation and the
microstructural changes occurring in W and W alloys, a dispersed barrier hardening
model [128,129] could be employed:

∆σ = Mαb√ρ (1)

∆σ is the increase in yield stress, which correlates with the hardness, M is the Taylor
factor, α is the obstacle strength factor, µ is the shear modulus of the material, b is the
magnitude of the Burgers vector, and ρ is the defect density.

This model suggests that irradiation hardening increases with an increase in the gener-
ation of defects due to the resistance in dislocation motion within the material lattice. The
model quantitatively related the irradiation hardening increment to the irradiation-induced
defect density. In W alloys, neutron irradiation induces the clustering of transmutation
products, such as Re- and Os-rich clusters [14]. These transmuted defect clusters act as
a dislocation barrier to the dislocation motion, contributing to hardening. A higher Re
content could increase the hardness due to the solid solution hardening and precipitation
hardening effects [14,15].

5. Summary and Future Outlook

This brief review highlights the current experimental surveys of W irradiated by neu-
trons in three nuclear reactors, focusing on the microstructure development and irradiation
hardening of W and W-Re alloys. From the limited data reported so far, it is difficult to
obtain a reliable prediction on the evolution of the chemistry, density, and size of Re- and
Os-rich precipitates with respect to the change in temperature and at high dpa levels. Fur-
thermore, the difference in the generation of defects (size and density of voids, dislocation
loops, and precipitates) from various reactors, and their correlation with void swelling and
radiation fluence remain elusive. In-depth studies on the loop nature, vacancy vs. intersti-
tial loops, their Burgers vector, etc. are necessary in order to improve our understanding
on the generation and evolution of defect clusters. Temperature- and dose-dependent
variations of the loop density, defect mobility, and activation energy are critical aspects to
be uncovered in order to have a comprehensive understanding of the neutron radiation
damage in W and W alloys. At low doses (<1 dpa), voids and dislocation loops are preva-
lent in irradiated W and W-Re alloys. However, beyond 1 dpa, transmutation-induced
precipitates dominate. Subsequently, the irradiation hardening varies prominently in the
two regimes (low dose vs. high dose). The interplay among dislocation loops, voids, and
precipitates requires further investigations. The chemical composition and crystal structure
of precipitates and the mechanism for the formation and evolution of precipitates with
the irradiation dose and temperature should be investigated further. Moreover, variations
of the neutron spectrum (for different reactors), temperature, and dose rate also have a
profound impact on defect evolutions.
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