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Abstract: Indoor positioning in a multi-floor environment by using a smartphone
is considered in this paper. The positioning accuracy and robustness of WiFi
fingerprinting-based positioning are limited due to the unexpected variation of WiFi
measurements between floors. On this basis, we propose a novel smartphone-based
integrated WiFi/MEMS positioning algorithm based on the robust extended Kalman filter
(EKF). The proposed algorithm first relies on the gait detection approach and quaternion
algorithm to estimate the velocity and heading angles of the target. Second, the velocity
and heading angles, together with the results of WiFi fingerprinting-based positioning, are
considered as the input of the robust EKF for the sake of conducting two-dimensional (2D)
positioning. Third, the proposed algorithm calculates the height of the target by using the
real-time recorded barometer and geographic data. Finally, the experimental results show
that the proposed algorithm achieves the positioning accuracy with root mean square errors
(RMSEs) less than 1 m in an actual multi-floor environment.

Keywords: multi-floor positioning; WiFi fingerprinting; MEMS; extended Kalman filter

1. Introduction

In the recent decade, next generation techniques, indoor positioning and navigation have gained
significant attention, since the signals from the widely-used global navigation satellite systems are often
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not hearable inside buildings. Furthermore, the indoor positioning and navigation approaches generally
require higher accuracy and better adaptation to the environment compared to outdoor ones. Under
such a circumstance, a number of positioning techniques have been studied and even used in many
special scenarios, like Bluetooth, ultra-wide band (UWB), radio frequency identification (RFID) and
WiFi fingerprinting-based positioning techniques [1–4].

As far as we know, the WiFi fingerprinting-based positioning technique has been much favored in
the indoor and underground environments, due to the low device cost, wide infrastructure deployment
and high positioning accuracy [5–9]. However, the signal refraction, reflection, scattering and
multi-path fading generally result in the low reliability of the received signal strength indicator (RSSI)
measurements and, thereby, deteriorate the accuracy of fingerprinting-based positioning. To solve this
problem, some previous positioning techniques by integrating WiFi fingerprinting and MEMS sensors
are proposed in [10–14].

Since most of the current mobile devices are integrated with various sensors, like the inertial sensors,
magnetometer and barometer, MEMS sensor-based positioning is becoming a popular relative and
self-contained positioning technique. In generally, the MEMS sensor-based positioning features the
advantages of low device cost, short-term accurate positioning results and independence of external
noise [15–19]. However, the associated accumulative error involved in MEMS sensor-based positioning
is always considered one of the significant problems.

The three main contributions of this paper are summarized as follows. First of all, we rely on the gait
detection approach instead of conducting acceleration integration to optimize the velocity calculation, as
well as using the quaternion algorithm to improve the precision of the heading angle calculation. Second,
we design a robust extended Kalman filer (EKF) by using the robust least squares estimation to reduce
the accumulated errors involved in MEMS sensor-based positioning, as well as the large errors of WiFi
fingerprinting-based positioning. Finally, to achieve three-dimensional (3D) positioning in a multi-floor
environment, the floor height calculation algorithm is proposed.

The rest of this paper is organized as follows. Section 2 gives some related work on WiFi
fingerprinting-based positioning systems, as well as the existing indoor WiFi/MEMS positioning
systems. Section 3 presents the proposed integrated WiFi/MEMS positioning algorithm, as well as the
height calculation approach. The experimental results by using the data from WiFi fingerprinting and
MEMS sensors in an actual multi-floor environment are provided in Section 4. Finally, we conclude this
paper in Section 5.

2. Related Works

As the most representative fingerprinting-based positioning systems, a RADAR system [4] relies
on the K nearest neighbor (KNN) algorithm to infer the 2D locations of a static target in a building.
However, the accuracy of motion tracking by using the RADAR system cannot be guaranteed, since
only a small number of RSSI measurements are recorded at each fixed location.

To solve this problem, the authors in [9] proposed to use the Kalman Filter (KF) to improve the
accuracy of motion tracking. One of the serious disadvantages of the approach in [9] is that the velocity
of the target is assumed to be a fixed value adding a small Gaussian random variable. Thus, the tracking
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errors could be significantly large when the actual velocity of the target varies significantly. Furthermore,
to estimate the velocity of the target in a real-time manner, the authors in [10] invented an integrated WiFi
fingerprinting and inertial sensing-based positioning system in which the acceleration data of the target
are record by a tri-axis accelerometer. However, the velocity of the target would not be accurate by using
the Newton uniformly accelerated linear kinematic equations, since the MEMS sensors of smartphones
are low precision and with a low output frequency. As a consequence, the accumulative error increases
rapidly in a short time.

By considering the variations of WiFi RSSI measurements with respect to the physical locations, the
authors in [11] proposed utilizing the signal propagation property to conduct localization. However, a
precise signal propagation model in the indoor environment is always difficult to obtain. By taking the
fluctuation of WiFi RSSI measurements and the output data of the accelerometer into consideration, a
WiFi/magnetic, angular rate and gravity (MARG)-based positioning algorithm by using particle filtering
(PF) is proposed in [12]; this algorithm can only be applied to 2D positioning, and the associated
precision is insufficient.

To achieve 3D positioning, the K-means-based algorithm in [20] is selected to identify the floor on
which the target is located. The performance of height estimation deteriorates seriously when the target
is inside a staircase. In this paper, we first rely on the gait detection approach to reduce the errors of
velocity estimation, as well as use the quaternion algorithm to improve the heading precision. Second,
we design a robust EKF filter by using the robust least squares estimation to resist the errors involved in
both MEMS-based sensing and WiFi fingerprinting-based positioning. Finally, we use the floor height
calculation algorithm to achieve 3D positioning in a multi-floor environment.

3. System Description

The flow chart of the proposed indoor integrated WiFi/MEMS positioning algorithm is shown in
Figure 1. There are four main modules contained in this system, namely WiFi fingerprinting-based
positioning, velocity and heading estimation, robust EKF and height calculation modules.

The velocity and heading data obtained from the MEMS sensors, v and ϕ, together with the results
of WiFi fingerprinting-based positioning are set as the input data of the robust EKF. The output data
of the robust EKF is the estimated 2D coordinates of the target. After that, we integrate this estimated
2D coordinates and the height, which is calculated from the height calculation module, to output the
estimated 3D coordinates of the target.

3.1. WiFi Fingerprinting-Based Positioning

In our system, the WiFi fingerprinting-based positioning involves two phases, the offline phase and
online phase, as described in Figure 2.

In the offline phase, the RSSI measurements from all of the hearable access points (APs) at each
reference point (RP) are recorded as the fingerprints, and the fingerprints and their corresponding
Cartesian coordinates are then used to construct the fingerprint database. In the online phase, the newly
recorded RSSI measurements are matched against the pre-constructed fingerprint database to obtain the
estimated locations of the target.
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Figure 1. Flow chart of the proposed system.

Figure 2. WiFi fingerprinting-based positioning.

In the indoor environment, there could be large positioning errors when RSSI measurements with
significant fluctuation are used for positioning. To solve this problem, we rely on the predicted EKF
state to smooth the WiFi RSSI fluctuation. Specifically, we select K (K > 1) RPs’ RSSI vectors
recorded in the database with the minimal physical distances from the predicted EKF state. Then, we
use these RPs’ RSSI vectors to calculate the predicted RSSI vector.

RSSIpredictn =
K∑
i=1

Dni∑K
j=1Dnj

RSSIi (1)

where RSSIpredictn is the predicted RSSI vector. Dni =
√

(x−n − xi)2 + (y−n − yi)2 is the i-th minimal
physical distance from the predicted EKF state. RSSIi is the i-th RSSI vector recorded in database at the
i-th RP. Then, the RSSI measurements can be smoothed as:

RSSIn = kwRSSIpredictn + (1− kw)RSSImeasurementn (2)
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where kw is the weighting coefficient. RSSImeasurementn is the measurement RSSI vector. After that, the
position results are obtained by using the weighted K nearest neighbor (WKNN) algorithm.

3.2. Velocity and Heading Estimation

We rely on the three-axis accelerometer, three-axis gyroscope and three-axis magnetometer in a
smartphone to estimate the velocity and heading angles of the target. As can be seen from Figure 3,
we first eliminate the device noise, as well as smooth the waveform with the help of a median filter and
a mean filter, respectively. After that, we estimate the velocity based on the triaxial accelerometer data
and, meanwhile, the heading angles by using the quaternion algorithm.

Figure 3. Flow chart of velocity and heading estimation.

3.2.1. Velocity Estimation

Based on the physiological characteristics of people, the waveform of the three-axis accelerometer
modulus values describes the cyclical changes. The cyclical changes can be then used to detect the steps
of people. In concrete terms, we calculate the three-axis accelerometer modulus values in Equation (3):

Accnorm =
√
a2x + a2y + a2z (3)

where ax, ay and az are the output values of the triaxial accelerometer after the mean filter in x, y and z
directions, respectively. To calculate the steps of people, we detect the peak points of the curve of the
accelerometer modulus by using the finite impulse response (FIR) low-pass filter [16]. In Figure 4, ∆N

is the number of sample points between every two consecutive steps.
Since the frequency of the output data from MEMS sensors is fs, the time interval during the k-th

step is calculated as:

tk =
∆N

fs
(4)

For simplicity, by assuming that the velocity of the target during each step is a constant, the velocity
for the k-th step is calculated by:

vk =
Pk
tk

=
Pkfs
∆N

(5)

where Pk is the length of each step. We set Pk = 0.68 m for the adults.
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Figure 4. Modulus values of the accelerometer.

3.2.2. Heading Estimation

In this paper, we use the quaternion algorithm to estimate the heading angles of the target. The
quaternion algorithm features the advantages of low computation cost and wide applications.

As shown in Figure 5, we define a local smartphone x-y-z frame with respect to the mobile platform,
as well as a reference coordinate frame in which the E-axis points east, the N-axis points north and
the U-axis points upwards with respect to the horizon ground. The attitude rotation matrix depicts the
relationship of the coordinates in the reference coordinate frame and in the local smartphone x-y-z frame,
such that:  xb

yb

zb

 = T bn(q)

 xn

yn

zn

 (6)

where T bn(q) is the attitude rotation matrix. q = q0+q1i+q2j+q3k is the quaternion.
[
xn yn zn

]T
is

the vector of coordinates in the reference coordinate frame.
[
xb yn zb

]T
is the vector of coordinates

in the local smartphone x-y-z frame. Based on the relationship between the attitude rotation matrix and
quaternion [16], the rotation matrix is calculated as:

T bn(q) =

 q20 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q20 − q21 + q22 − q23 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q20 − q21 − q22 + q23

 (7)

In Equation (7), the attitude rotation matrix is determined when the quaternion, q, is obtained. Based
on the vector differential equation in rigid body angular motion, we have:

dq

dt
=

1

2
q⊗w (8)
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where w = 0+wxi+wyj+wzk is the quaternion of the attitude angular velocity in the local smartphone
x-y-z frame. The notation “⊗” denotes the multiplication of quaternion [16]. Equation (8) can also be
represented in a matrix form, such that:

dq

dt
=

1

2


0 −wx −wy −wz
wx 0 wz −wy
wy −wz 0 wx

wz wy −wx 0



q0

q1

q2

q3

 =
1

2
Ω(w)~q (9)

where wx, wy and wz are the angular velocities in the x, y and z directions in the coordinates of

the smartphone. ~q =
[
q0 q1 q2 q3

]T
is the vector of the quaternion. The discrete-time model

corresponding to Equation (9) is described as:~qm+1 = (I +
1

2
Ω(wTs))~qm,m = 0, 1, 2, · · ·

~q0 = ~q(0)
(10)

where Ts is the sampling interval. I is a unit matrix. ~q(0) is the initial quaternion. The quaternion is a
standardized quaternion, which means ||~q || = 1. We normalize the quaternion by Equation (11).

~qm =
~qm
||~qm||

=
~qm√

q20 + q21 + q22 + q23
(11)

Figure 5. Local smartphone coordinate frame.

We use Equation (7) to update the attitude rotation matrix when the solutions of Equations (10)
and (11) have been obtained. In this case, the heading angles can be estimated by using the attitude
rotation matrix.

In practical applications, the low-cost gyroscope in a smartphone is not ideal. Thus, the heading angles
could involve accumulated errors due to the gyroscope drift. Therefore, the integration of the gyroscope,
accelerometer and magnetometer for the sake of calculating the attitude angles can effectively improve
the heading precision. To achieve this goal, the EKF model is considered in this paper to integrate all
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of the sensing information to obtain the accurate estimation of the heading angles. The EKF model is
described as: {

~qm+1 = Am~qm + Wm

Ym+1 = h(~q ,Vm+1)
(12)

where ~q =
[
q0 q1 q2 q3

]T
is the state vector. Am = (I + 1

2
Ω(wTs)) is the state transition

matrix. Wm is the vector of the processing of the white Gaussian noise. Ym+1 is the measurement
vector. Vm+1 is the vector of the observation the white Gaussian noise. The measurement model is
constructed by integrating the normalized accelerometer and magnetometer measurement vectors, as
shown in Equation (13).

Ym+1

[
am+1

cm+1

]
=

[
T b
n(~qm+1) 0

0 T b
n(~qm+1)

][
g

h

]
+ Vm+1 (13)

where am+1 =
[
ax ay az

]T
is the vector of the accelerometer measurement in the x, y and

z directions, respectively. cm+1 =
[
cx ay az

]T
is the vector of the three-axis magnetometer

measurement. g =
[

0 0 1
]T

is the vector of the normalized gravity in the reference coordinate

frame. h =
[

0 by bz

]T
is the vector of the normalized magnetic field intensity. by =

√
c2x + c2y.

bz = cz. From the observation equation, we can find that the relationship between the state vector and
the measurement vector is nonlinear. We linearize the first part on the right side of Equation (11) to
obtain the observation matrix Φm+1 in Equation (14).

Φm+1 =
∂h(~qm+1,Vm+1)

∂~qm+1

=



−2q2 2q3 −2q0 2q1

2q1 2q0 2q3 2q2

2q0 −2q1 −2q2 2q3

2(q3by − q2bz) 2(q2by + q3bz) 2(q1by − q0bz) 2(q0by + q1bz)

2(q0by + q1bz) −2(q1by − q0bz) 2(q2by + q3bz) −2(q3by − q2bz)
−2(q1by − q0bz) −2(q0by + q1bz) 2(q3by − q2bz) 2(q2by + q3bz)


(14)

Finally, by using the EKF model to update the quaternion, we calculate the heading angles in
Equation (15).

ϕ = arctan− 2(q1q2 + q0q3)

q20 + q21 − q22 − q23
(15)

3.3. Robust EKF

3.3.1. EKF Model

The locations of people depend on the walking velocity and heading. On this basis, we set the state

vector X =
[
x y v ϕ

]T
, which consists of the locations of the people (x, y), the velocity v and

the heading ϕ. The EKF model is shown in Equation (16).
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Xn = f(Xn−1,Wn−1) =


1 0 sinϕn−1 0

0 1 cosϕn−1 0

0 0 1 0

0 0 0 1



xn−1

yn−1

vn−1

ϕn−1

 +Wn−1 (16)

where Xn =
[
xn yn vn ϕn

]T
is the state vector. Wn−1 is the process noise vector obeying the

zero-mean Gaussian distribution.
The measurement vector Z =

[
xWiFi yWiFi vMEMS ϕMEMS

]T
consists of the locations

estimated by WiFi fingerprinting-based positioning (xWiFi, yWiFi) and the velocity and heading data
obtained from MEMS sensors, vMEMS and ϕMEMS .

Zn = HnXn + Vn =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



xn

yn

vn

ϕn

 + Vn (17)

where Zn =
[
xWiFi
n yWiFi

n vMEMS
n ϕMEMS

n

]T
is the measurement vector. Vn is the measurement

noise vector obeying the zero-mean Gaussian distribution.

3.3.2. Robust Least Squares Estimation

Based on the robust least squares estimation, we distribute smaller weights to the measurement vector,

Z =
[
xWiFi yWiFi vMEMS ϕMEMS

]T
, which correspond to the residuals larger than the standard

deviation of the measurements. By using the IGG3 weight function [22], the weights of measurements
are calculated by: 

b̄i = bi, |ui| ≤ k0

b̄i = bi
k0
|ui|

(
k1 − |ui|
k1 − k0

)2, k0 < |ui| ≤ k1

b̄i = 0, |ui| > k1

(18)

where b̄i and bi are the diagonal elements in the equivalent weight matrix and the weight matrix,
respectively. The standard residual vector ui is calculated by:

ui =
vi
σvi

(19)

where vi is the i-th residual vector. σvi = σ0√
qvi

is the mean square error. qvi is the reciprocal of bi.
σ0 = med{√qvi , vi}/0.6745, where the notation “med” stands for the median calculation. The values of
k0 and k1 are in the ranges of [1, 1.5] and [2.5, 3.0], respectively [22].

Finally, the prediction and updating process of the robust EKF is described as follows.

• Prediction process: {
X̂−n = f(X̂+

n−1,Wn−1)

P−n = Fn−1P
+
n−1F

T
n−1 + Qn−1

(20)
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• Updating process: 
K̄n = P̂−n H

T
n [HnP

−
n H

T
n + R̄n]−1

X̂+
n = X̂−n + K̄n(Zn − HnX̂

−
n )

P+
n = (I − K̄nHn)P−n

(21)

where Fn = ∂f
∂X
|X=X̂−

n
is the Jacobian matrix. K̄n is the gain of the robust EKF. Pn is the error covariance

matrix. Hn is the measurement sensitivity matrix. I is a unit matrix. B̄n is the equivalent weight matrix.
R̄n = B̄n

−.

3.4. Height Calculation

3.4.1. Altitude Estimation

The altitude is estimated based on the characteristic that the atmospheric pressure measured by the
barometer decreases as the altitude increases [23,24]. The process of altitude calculation is described
as follows.

When the force balance is preserved, the air is in a stationary condition, as shown in Figure 6.

Figure 6. Force balance in the air in the stationary condition.

In Figure 6, the static atmosphere equation in the vertical force condition is described by:

(P + dP )dS + gρdhdS = PdS (22)

where P is the atmospheric pressure. g is the acceleration of gravity. ρ is the gas density. h is the
geopotential height. S is is the cross-sectional area in the vertical direction. As discussed in [23], the
ideal gas equation is defined as:

ρ =
P

RT
(23)

where T is the absolute temperature. R = 287.05287 m2/Ks2 is the universal gas constant. Based on
Equations (22) and (23), we obtain:

dP

P
= − 1

RT
gdh (24)

By conducting the integration calculation on both sides of (23), one has:
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P = P0exp[− 1

R

∫ h

h0

g

T
dh′] (25)

where P0 is the initial atmospheric pressure. For simplicity, we assume that the gravity acceleration, g,
is a constant. Then, the temperature is calculated by:

T = T0 + β(h− h0) (26)

where β is the variation rate of the vertical temperature. h0 and T0 are the initial geopotential height and
the absolute temperature. The values of the three groups of parameters h0, T0, β and P0 that are used in
this paper are shown in Table 1 [24].

Based on Equations (25) and (26), the geopotential height, h, is calculated by:

h = 44330.76[1− (
Ps

101.325
)0.190255] (27)

where Ps is the atmospheric pressure measured by the barometer. We assume that the altitude is equal to
the geopotential height for the sake of simplicity.

Table 1. Parameters.

h0 (km) T0 (K) β (K/km) P0 (Pa)

−2 301.15 −6.5 127,774
0 288.15 −6.5 101,325
11 216.65 0 22,632

3.4.2. Multi-Floor Positioning

In the staircase scenario, the accuracy of the WiFi-based height calculation deteriorates seriously.
Furthermore, there is no significant impact on accuracy by adding the height into the state vector in the
condition that the target is on a floor. On this basis, the height is calculated separately in our system.

The motion behaviors of the people inside a building can be simply classified into two categories,
walking up or down stairs in staircases and walking on a floor. Figure 7 shows the flow chart of height
calculation. In our experiments, the step lengths of the people with respect to the motion behaviors in a
staircase and on a floor are set to be 0.4 m and 0.68 m, respectively.

When the target is located in a staircase, we first use Equation (25) to estimate the altitude of the
target, h1. Second, we calculate the height of the target based on the distance between h1 and the altitude
of the entrance of staircase h2, ∆h = h1 − h2, as shown in Figure 8.

In Figure 8, by setting a threshold λ, if |∆h| ≤ λ, we set the height of the target in the current step as
equal to the height of the target in the previous step. If |∆h| > λ and ∆h > 0, we set the height of the
target in the current step as the previous height, adding a stair height hstair. Otherwise, we set the height
of the target in the current step as the previous height, subtracting hstair.

When the target is located on a floor, we set the height of the target equal to the current floor height.
Furthermore, the steps of the judgment of whether the n-th location of the target is in a staircase or

on a floor are as follows.
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Figure 7. Flow chart of the height calculation.

Figure 8. Height calculation in a staircase.

(i) Calculate the distance between the n− 1-th locations of the target (x̂n−1, ŷn−1, ẑn−1), and and the
location of the entrance of the i-th staircase (xi, yi, zi), di,n−1.

(ii) Compare the values of di,n−1 and r, where r is a given threshold.
(iii) When di,n−1 ≥ r and the n-th locations of the target are in the same staircase or on the same floor.
(vi) When di,n−1 < r if the n− 1-th location of the target is in a staircase, the n location of the target

is on a floor. To the contrary, if the n − 1-th location of the target is on a floor, the n-th location of the
target is in a staircase.

4. Experimental Results

The testbed is selected on the first and second floors in a building at a university. These first and
second floors have different dimensions of 64.6 × 18.5 m2 and 81.2 × 18.5 m2, respectively, as shown
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in Figure 9. There are 10 D-Link DAP 2310 APs (marked in red) deployed in this environment, named
orange, pear, apple, banana, coco, blackberry, cherry, lemon, mango and grape, respectively. The RPs
are uniformly calibrated with an interval of 0.6 m.

Figure 9. Layout of the first and the second floors.

In our experiments, a Samsung Galaxy S3 smartphone, which is integrated with a WiFi module,
accelerometer, gyroscope, magnetometer and barometer, is selected as the receiver. We invented two
apps, WifiSensors and WifiLocation, to conduct MEMS sensors and WiFi RSSI recording. The recorded
data are saved in the security digital (SD) card with the frequency of recording equal to 50 Hz.

The real path of the target is shown in Figure 10. Specifically, the target starts the motion at the
starting point, A, on the first floor and goes straight to the entrance of a staircase, B. After that, the target
goes upstairs to Location C, which is the entrance of this staircase on the second floor, and then continues
to go to the entrance of another staircase, D. Finally, the target goes downstairs and back to the starting
point, A. During the testing, we always keep the smartphone in the direction of walking in the system.
In this case, the orientation of the smartphone is not fixed. The path distance is about 107 m, and the
walking time is 140 s.

Figure 11a shows the estimated paths by using the conventional MEMS sensor-based positioning
(MSBP) approach [16], the WiFi fingerprinting-based positioning (WFBP) approach [4] and the
proposed integrated WiFi/MEMS positioning (IWMP) approach. The results in Figure 11a prove that
the proposed approach effectively reduces the accumulated errors involved in MSBP and, thereby,
significantly improves the accuracy of 3D positioning in a multi-floor environment. In Figure 11b,
we observe that in some certain areas, the results of WFBP exhibit significant errors, which result in
a standard deviation of positioning errors larger than 16 m, while the proposed approach achieves a
standard deviation of positioning errors smaller than 1 m.

The cumulative distribution functions (CDFs) of the errors for height estimation by adopting
the proposed height calculation approach and the conventional barometer-based height calculation
approach [24] and K-means-based height calculation approach [20] in IWMP, MSBP and WFBP,
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Figure 10. Real path of the target.

(a) (b)

Figure 11. Results of positioning in the x-y-z plane and the x-y plane. (a) Results of
positioning in the x-y-z plane. (b) Results of positioning in the x-y plane.

respectively, are compared in Figure 12a. From Figures 11a and 12a, we can observe that the
results of the barometer-based height calculation approach are not stable, and the performance of the
K-means-based height calculation approach deteriorates seriously when the target is inside a staircase.

The CDFs of errors for 3D positioning by using the IWMP, MSBP and WFBP approaches are also
compared in Figure 12b. As shown in Table 2, we can find that the proposed approach achieves the root
mean square error (RMSE) of 0.8 m, and 90% of the errors are smaller than 1.7 m, which is much better
than the accuracy performance of the conventional MSBP and WFBP approaches.

In general, there are three main reasons that the proposed algorithm can achieve an accuracy of 1 m.
First of all, since the test bed is selected in long and straight corridors, we can easily detect most of the
large errors by WiFi positioning when the initial locations of the target are obtained. Second, we only
use the results of WiFi positioning with errors smaller than 5 m to integrate with MEMS sensor-based
positioning for the sake of avoiding the influence of large errors from WiFi positioning. As can be seen
from Figure 12b, we observe that about 33% of the errors from WiFi positioning in our system is smaller
than 5 m. Third, the robust EKF is an adaptive filtering approach, which is able to adaptively adjust the
weights of the measurement vector.
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(a) (b)

Figure 12. The cumulative distribution functions (CDFs) of errors for height calculation
and 3D positioning. (a) CDFs of errors for height calculation. (b) CDFs of errors for
3D positioning.

Table 2. Comparison of positioning accuracy. IWMP, integrated WiFi/MEMS positioning;
MSBP, MEMS sensor-based positioning; WFBP, WiFi fingerprinting-based positioning.

Error performance IWMP MSBP WFBP

RMSEs 0.8 m 6.1 m 21.8 m
50% errors 0.5 m 6.1 m 9.2 m
70% errors 0.8 m 6.5 m 16.0 m
90% errors 1.7 m 8.0 m 44 m

5. Conclusions

In this paper, we proposed a novel smartphone-based indoor integrated WiFi/MEMS multi-floor
positioning algorithm to conduct 3D positioning in a multi-floor environment. The experimental results
show that our approach can reduce the accumulated error involved in MEMS sensor-based positioning,
as well as the significant errors of WiFi fingerprinting-based positioning. Compared to the conventional
MEMS sensor-based positioning and WiFi fingerprinting-based positioning approaches, our approach
achieves higher accuracy performance with an RMSE of 0.8 m and 90% of the errors smaller than 1.7 m
for 3D positioning. However, a better way to modify the step lengths to adapt to different people forms
interesting work for the future.
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