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Abstract: A structure of micro-electro-mechanical system (MEMS) linear phased array based on
“multi-cell” element is designed to increase radiation sound pressure of transducer working in
bending vibration mode at high frequency. In order to more accurately predict the resonant frequency
of an element, the theoretical analysis of the dynamic equation of a fixed rectangular composite plate
and finite element method simulation are adopted. The effects of the parameters both in the lateral
and elevation direction on the three-dimensional beam directivity characteristics are comprehensively
analyzed. The key parameters in the analysis include the “cell” number of element, “cell” size,
“inter-cell” spacing and the number of elements, element width. The simulation results show that
optimizing the linear array parameters both in the lateral and elevation direction can greatly improve
the three-dimensional beam focusing for MEMS linear phased array, which is obviously different
from the traditional linear array.
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1. Introduction

Ultrasonic transducers and their array have an important application on non-destructive testing
and medical acoustic imaging. Compared with current transducers, based on lead zirconate
titanate (PbZrxTi1´xO3, PZT) bulk materials, piezoelectric micro-machined ultrasonic transducer
(pMUT) fabricated by piezoelectric film deposition and micro-electro-mechanical system (MEMS)
technology has great advantages in integration, which can structure system-in-package (SIP) and even
system-on-chip (SOC) technologies. Moreover, the technical challenge of three-dimensional acoustic
imaging is the fabrication of two-dimensional array transducers with many elements, high element
density and small element size. Lapping and dicing bulk materials will become more difficult with
traditional technologies of transducer fabrication. Furthermore, the high frequency MEMS transducers
with good resolution are easier to achieve than those prepared by traditional fabrication technologies,
and the vibration of MEMS piezoelectric transducer is mostly a bending vibration with the advantages
of high sensitivity, wide bandwidth, flexible design, etc. [1]. As an important pMUT array, a MEMS
linear phased array has been developed [2–5].

The pMUT mostly works in the bending vibration mode [1,6,7], and the area of vibration film
decreases as the resonant frequency increases. As a result, the sound pressure of the radiation becomes
weak when the array works at high frequency. For a transducer, the working frequency is an important
parameter and should be predicted. There are several analysis methods to predict the resonant
frequency of an element [8–10], and the results are obviously different. Thus, the right way to more
accurately predict the resonant frequency needs to be found.

The structure optimization of a transducer array has been carried out to improve the radiated
sound field directivity [11–17]. Steinberg studied the focusing properties of uniform linear array
composed of many point sources, ignoring the array size [11]. Wooh et al. studied the linear array
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focusing effect, which the element length is infinite or the element length is much larger than the
element width [14,15]. Actually, the element of phased array has certain size, and the array could have
good effect of the spatial focusing when the main lobe of its beam has the three-dimensional structure
of the slender spindle type in steering angle direction. Wooh et al. studied the influence of the elevation
dimension on the steering performance of the traditional ultrasonic linear phased array [18]. They
found sideleaking energy exists for array with short element length and increases when the ratio of
length to width decreases. In fact, the energy leakage caused by the non-azimuthal plane can decrease
the ratio of signal to noise in the azimuthal plane. Compared with traditional one-dimensional linear
array, the sideleaking energy is more serious in the MEMS transducer array for smaller ratio of length
to width. Therefore, the study on the influence of the MEMS phased array parameters in the elevation
direction on the three dimensional directivity of the acoustic beam is very necessary. However, the
theory and experiment on above study have never been carried out.

In our paper, the MEMS linear phased array working in bending vibration mode at high frequency
is designed, which is based on the “multi-cell” elements, and each element is made of many “cells” by
parallel connection. The dynamic equation of theoretical analysis and ANSYS software simulation
(the finite element analysis) are used to more accurately predict the array resonant frequency. Through
analyzing the three-dimensional focusing characteristics, the effects of the structure parameters both in
the lateral and elevation direction on the directivity are studied and the parameters include the “cell”
number of element, the “cell” size, the “inter-cell” spacing and number of elements and element width.
Finally, the optimization results are simulated using MATLAB tools.

2. MEMS Linear Phased Array Element Structure

Determination of the array resonant frequency has a significant influence on the array optimization.
It depends on the structure of composite plate, the thickness of each film, the properties of material, etc.
The vibration film of MEMS piezoelectric transducer is composed of the piezoelectric layer and the
supporting layer. In order to reduce the complexity of the fabrication process, the square vibration
film of transducer is adopted. In this paper, ZnO film is used as the piezoelectric material, SiO2/Si film
as the supporting layer, and Al film as the upper and lower electrode. Thus, the vibration membrane is
Al/ZnO/Al/SiO2/Si composite structure (see Figure 1). Composite membrane can be considered as a
square diaphragm that is fixed on all edge sides.
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Figure 1. Structure of MEMS piezoelectric transducer.

The transducer’s transmit and receive performance are best when it works at the resonant
frequency. There are several methods to predict the resonant frequency of the vibration films. Using
the method of the theoretical analysis of the dynamic equation of a fixed rectangular composite plate,
the resonant frequency of the transducer is calculated as [8]:
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D
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where D is bending rigidity, ρ is average density, and a and h are length and thickness of the diaphragm,
respectively. The physical parameters and material properties of the transducer used in theory analysis
are summarized in Tables 1 and 2 respectively. The resonant frequency of transducer is calculated as
f 11 = 3 MHz.

Yamashita et al. used the following expression to calculate the resonant frequency [9]:

fr “
35.99

2π

d

K
p1´ ν2qρta4 (2)

where K is bending rigidity, ν is Poisson’s ratio, ρ is average density, and a and t are length and thickness
of the diaphragm, respectively. Using the parameters in Tables 1 and 2 the resonant frequency of
transducer is calculated as f r = 3.23 MHz.

Dausch et al. used the following expression to calculate the resonant frequency [10]:

f0 “ 1.028
t
l2

d

E
ρ

(3)

where E is average Young’s modulus, ρ is average density, and l and t are length and thickness of the
diaphragm, respectively. Using the parameters in Tables 1 and 2 the resonant frequency of transducer
is calculated as f 0 = 1.75 MHz.

Table 1. Structure parameters of the multi-membrane.

Thickness of Si Thickness of SiO2 Thickness of ZnO Length of Membrane

8 µm 0.2 µm 6 µm 228 µm

Table 2. Materials properties of transducer.

Material Young’s Modulus (GPa) Density (103 kg/m3) Poisson Ratio

Si 167 2.33 0.28
SiO2 72 2.30 0.16
ZnO 120 5.68 0.446

The resonant frequency of the transducer with the same structure parameters is also analyzed by
finite element method and the result is compared with Equations (1)–(3). It is the piston type vibration
mode of the first order mode. The displacement of each point on the vibrating plate is same in the
Z-direction. The first order mode is shown in Figure 2. The result of ANSYS software simulation is
consistent with the theoretical analysis of the dynamic equation (Equation (1)) of a fixed rectangular
composite plate. The simulated resonant frequency is 3.04 MHZ which is very close to the result of
Equation (1) 3 MHz and is obviously different from the result of Equation (2) 3.23 MHz and the result
of Equation (3) 1.75 MHz. In our work, the theoretical analysis of the dynamic equation (Equation (1))
of a fixed rectangular composite plate and ANSYS software simulation are adopted to more accurately
predict the array resonant frequency.

It can be seen that array elements can cause a lower resonant frequency whose vibration films
design is too long. In order to increase radiation sound pressure of the MEMS linear phased array
working in bending vibration mode at high working frequency, we designed an array structure based
on “multi-cell” elements. The single “cell” is a piezoelectric transducer whose vibration membrane is
square. Many “cells” form the element of linear phased array by parallel connection. h, a and b (a is
equal to b when it is a square “cell”) are the “inter-cell” spacing, the “cell” width, and “cell” length,
respectively (see Figure 3). The N elements are uniformly arranged in x-y plane. When it works, each
array element is individually activated. The array is shown in Figure 4.
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3. MEMS Linear Phased Array Beam Directivity

The directivity function of the complex array is generally simplified as a combination of the
directivity function of some simple structure ones, which is commonly carried out using product
theorems. Using product theorems, the complex array directivity function can be obtained by taking
the product of the directivity function of the sub-array.

For the MEMS linear array shown in Figure 4, the radiated sound field directivity function is
equal to the product of a single element directivity function and a linear array directivity function
composed of N point source in each element center.
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1. The directivity of a single element

For a single rectangular plunger (see Figure 5), the sound pressure P in the sound field is given by:

p “ j
kcuaρ0

2rπ
ab

sin
ˆ

kbsinθsinα
2

˙

kbsinθsinα
2

¨

sin
ˆ

kasinθcosα
2

˙

kasinθcosα
2

¨ exp rj pωt´ krqs (4)

where k is the wavenumber, ρ0 is the medium density, ua is the array element vibration velocity, r is
the distance from the rectangular plunger to point P pθ,αq, and a and b are rectangular plunger length
and width, respectively.
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The single array element is considered as M rectangular plungers in the y-axis (see Figure 3), and
the distance from the ith “cell” unit to point P pθ,αq can be expressed as:
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b
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By transformation of Taylor’s first order expansion, Equation (5) becomes:

ri “ r` ih ¨ sinθsinα (6)

Because the “cells” of single array element are activated at the same time, the sound waves are
emitted by the same amplitude and phase. According to Huygens principle and Equations (4) and (6),
the total sound pressure of the array elements is given by:

p pr,α, θ, tq “
M´1
ř

i“0
pi pr,α, θ, tq

“
M´1
ř

i“0
j
kcuaρ0

2rπ
ab

sin
ˆ

kbsinθsinα
2

˙

kbsinθsinα
2

¨

sin
ˆ

kasinθcosα
2

˙

kasinθcosα
2

¨ exp rj pωt´ kriqs

“ A ¨
sin

ˆ

kbsinθsinα
2

˙

kbsinθsinα
2

¨

sin
ˆ

kasinθcosα
2

˙

kasinθcosα
2

¨

sin
ˆ

khsinθsinα
2

M
˙

Msin
ˆ

khsinθsinα
2

˙

(7)

where

A “ j
kcuaρ0

2rπ
abM ¨ exp

„

´j pM´ 1q
khsinθsinα

2



¨ exp rj pωt´ krqs (8)
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According to the radiation principle of the acoustic field and the definition of the directivity
function, the directivity function of the array element is given by:

Dpα, θ,ωq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sin
´πa
λ

cosαsinθ
¯

πa
λ

cosαsinθ
¨

sin
ˆ

πb
λ

sinαsinθ
˙

πb
λ

sinαsinθ
¨

sin
ˆ

M
πh
λ

sinαsinθ
˙

Msin
ˆ

πh
λ

sinαsinθ
˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(9)

2. The uniform linear array directivity

Considering the uniform linear array composed of N point sources, each array element have the
same resonant frequency and vibration amplitude, but have the different phase. The sound pressure
normalized directivity function is given by:

D pα, θ,ωq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sin
„

N
πd
λ
pcosαsinθ´ cosα0sinθ0q



Nsin
„

πd
λ
pcosαsinθ´ cosα0sinθ0q



ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(10)

Multiplication manipulation using Equations (9) and (10) leads to the following expression for
the sound pressure directivity function of the array D pα, θ,ωq:

D pα, θ,ωq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sin
„

N
πd
λ
pcosαsinθ´ cosα0sinθ0q



Nsin
„

πd
λ
pcosαsinθ´ cosα0sinθ0q

 ¨

sin
´πa
λ

cosαsinθ
¯

πa
λ

cosαsinθ
¨

sin
ˆ

πb
λ

sinαsinθ
˙

πb
λ

sinαsinθ
¨

sin
ˆ

M
πh
λ

sinαsinθ
˙

Msin
ˆ

πh
λ

sinαsinθ
˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(11)

4. Optimization and Simulation

The sound beam that the phased array radiated to the three-dimensional space will produce
a relative maximum amplitude of the sound pressure in a steering angle direction. If the designed
parameters of the phased array are not optimized, the radiation of the sound beam will tend to produce
the grating lobes and side lobes around the main lobe. The existence of the grating lobes and the
side lobes means the sound waves propagate in other directions, which causes the “leakage” of the
beam energy and affects the signal to noise ratio of the system. Thus, the array parameters should be
optimized by minimizing the main lobe width, eliminating grating lobes, and suppressing side lobes
as much as possible.

For the MEMS linear array, we designed “cells” of a single array element that will activate
simultaneously, and each element is activated by different time series delay. This kind of array
structure is generally produce grating lobes and side lobes in the two main directions, the elevation
direction and the lateral direction. Thus, the goal of optimization can be achieved by determining the
array parameters in these two directions.

4.1. Optimization in the Elevation Direction (y-z Plane, α = α0 = 90˝)

4.1.1. Main Lobe

Main lobe width is the distance between the intersection points of the main lobe and the θ axis in
the plane pattern, so the width can be obtained by letting the directivity function D(θ) = 0.

Considering α = α0 = 90˝, the beam directivity function of Equation (11) can be simplified to:

D
´π

2
, θ,ω

¯

“ D1 pθq ¨D2 pθq (12)
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where D1(θ) is given by:

D1 pθq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sin
ˆ

πb
λ

sinθ
˙

πb
λ

sinθ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(13)

and D2 pθq is given by:

D2 pθq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sin
ˆ

M
πh
λ

sinθ
˙

Msin
ˆ

πh
λ

sinθ
˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(14)

In this case, the directivity function D pθq can be seen as two parts: D1 pθq is a single “cell”
directivity function, only relating to the length of “cells” b; another part D2 pθq is a single array element
directivity function, and is related to the “inter-cell” spacing h.

Figure 6 shows the acoustic beam directivity in y-z plane. Array parameters are selected such that
M “ 16, b “ λ, h “ 1.5λ, f = 3 MHz, c = 1500 m/s (under water).

Analyzing D1 pθq, we know D1 pθq has no effect on the intersection of the main lobe and the θ
axis; that is, the beam main lobe width only depends on the width of the main lobe of D2 pθq.

For D2 pθq “ 0, we have the following simultaneous equations:

sin
ˆ

M
πh
λ

sinθ
˙

“ 0 (15)

sin
ˆ

πh
λ

sinθ
˙

‰ 0 (16)

Thus, the zeros position is given by:

θ “ sin´1
ˆ

kλ
Mh

˙

(17)

where
ˇ

ˇ

ˇ

ˇ

kλ
Mh

ˇ

ˇ

ˇ

ˇ

ď 1, pk ‰ mM, m P Zq (18)

The main lobe width can be obtained through taking k “ 1 and k “ ´1, and the result normalized
by Θ can be expressed as:

Θ “

sin´1
ˆ

λ

Mh

˙

´ sin´1
ˆ

´
λ

Mh

˙

π
(19)

where
ˇ

ˇ

ˇ

ˇ

˘
λ

Mh

ˇ

ˇ

ˇ

ˇ

ď 1 (20)

From Equation (19), it can be seen that the main lobes have a relationship with the “cell” number
of element and the “inter-cell” spacing.

Figure 7 shows the relationship between the width of main lobe Θ and the “cell” number of
element M. It can be observed that the width of main lobe decreases as the “cell” number of the
element increases, but the trend becomes weaker. When the “cell” number of element increases from 0
to 16, the width of main lobe decreases rapidly, and when the “cell” number of element is 16 upwards,
the main lobe width decreases slowly. Therefore, it is considered that, when the “cell” number of
element is 16, it can obtain good sound beam directivity in the general case.
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Figure 8 shows the relationship between the “inter-cell” spacing h and the width of the main
lobe Θ. It can be seen that the main lobe width decreases as the ratios of h{λ increases. Under certain
wavelength circumstances, the “inter-cell” spacing needs to increase to get a sharpness main lobe.
However, according to later analysis, this will introduce grating lobes when the “inter-cell” spacing
increase exceeds a certain range. In practical design, a consideration in compromise is needed to
determine the value of the “inter-cell” spacing.

Micromachines 2016, 7, x 8 of 14 

   
(a) (b) (c) 

Figure 6. Directivity pattern of function (a) ( )1D θ , (b) ( )2D θ ; and (c) ( )D θ  in y-z plane. 

 
Figure 7. Influence of the “cell” number of element M  on the width of main lobe Θ. 

Figure 8 shows the relationship between the “inter-cell” spacing h  and the width of the main 
lobe Θ. It can be seen that the main lobe width decreases as the ratios of /h λ  increases. Under 
certain wavelength circumstances, the “inter-cell” spacing needs to increase to get a sharpness main 
lobe. However, according to later analysis, this will introduce grating lobes when the “inter-cell” 
spacing increase exceeds a certain range. In practical design, a consideration in compromise is 
needed to determine the value of the “inter-cell” spacing. 

 
Figure 8. Influence of “inter-cell” spacing h  on the width of main lobe Θ. 

4.1.2. Grating Lobe and Side Lobe 

If we have the right zeros of the first grating lobe on the left side of the main lobe –90° away 
(considering the symmetry of the beam directivity function, it is equivalent to have the first grating 
lobe on the right side of the main lobe out of 90°), all the grating lobes are eliminated. 

In the expression ( )2D θ , the grating lobe and the main lobe have the same amplitude, 1. Thus, 

we can find the peak position of the grating lobe by letting ( )2 1D θ = . The peak position of the 
grating lobe is given by: 

Figure 8. Influence of “inter-cell” spacing h on the width of main lobe Θ.

4.1.2. Grating Lobe and Side Lobe

If we have the right zeros of the first grating lobe on the left side of the main lobe –90˝ away
(considering the symmetry of the beam directivity function, it is equivalent to have the first grating
lobe on the right side of the main lobe out of 90˝), all the grating lobes are eliminated.

In the expression D2 pθq, the grating lobe and the main lobe have the same amplitude, 1. Thus, we
can find the peak position of the grating lobe by letting D2 pθq “ 1. The peak position of the grating
lobe is given by:
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πh
λ

sinθ “ nπ (21)

where n P Z.
Thus, the expression of θ can be expressed as follows:

θ “ sin´1
ˆ

nλ
h

˙

(22)

The grating lobe is symmetric about the main lobe, so we consider the left first grating lobe only.
Then the peak position of the grating lobe θ becomes:

θ “ sin´1
ˆ

´
λ

h

˙

(23)

In consideration of the zeros expression (Equation (17)) of the directional function in y-z plane
previously obtained and the peak position of the grating lobe (Equation (23)), we know that θ is the
right intersection (right zeros) of the first grating lobes on the left side of the main lobe and the θ axis
when k is ´pM´ 1q, that is:

θ “ sin´1
ˆ

´
pM´ 1q λ

Mh

˙

(24)

Thus, the condition of the “inter-cell” spacing h can be obtained by:

´
pM´ 1q λ

Mh
ď ´1 (25)

that is:

h ď hmax “
pM´ 1q λ

M
(26)

Considering Equation (20), the “inter-cell” spacing h ranges:

λ

M
ď h ď

pM´ 1q λ
M

(27)

From the above analysis, it can be obtained that the greater the “inter-cell” spacing h is, the better

the directivity will be, but the “inter-cell” spacing h should not exceed the upper limit of
pM´ 1q λ

M
.

The position θ of the first side lobe peak on the left side of the main lobe can be approximately

regarded as the center of the left and the right zeros of the side lobe (the k of Equation (17) is ´
3
2

),
that is:

θpmax “ sin´1
ˆ

´
3λ

2Mh

˙

(28)

Because the directivity function has been normalized, the ratio of amplitude of the maximum side
lobe and main lobe can be obtained by bringing Equation (28) into Equation (12).

ξ “ D
`

θpmax

˘

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

sin
ˆ

3π
2M

¨
b
λ
¨
λ

h

˙

3
2
π ¨

b
λ
¨
λ

h
¨ sin

ˆ

3π
2M

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(29)

The effects of the “cell” number of element M, the “cell” length b and the “inter-cell” spacing h of
single array element on the amplitude ratio ξ of the maximum side lobe and main lobe, respectively,
are discussed below.

Figure 9 shows the relationship between the ratio ξ and the “cell” number of element M. The linear
array parameters are selected such that b “ 0.4λ, h “ 0.5λ, and f = 3 MHz. It reveals that when the
“cell” number of element M is greater than 8, the ratio ξ changes slowly. For the practical MEMS linear
array, in order to increase the sound radiation pressure, the “cell” number of element M meets this



Micromachines 2016, 7, 8 10 of 14

condition in general. Thus, we may argue that the “cell” number of element M has little effect on the
ratio of the amplitude of the maximum side lobe and the main lobe.

Figure 10 shows the relationship between the ratio ξ and the “cell” length b. The linear array
parameters are selected such that M “ 16 and h “ λ. As can be seen from the plot, ξ is negatively
correlated with the ratio of b{λ in the range p0, λq, but it decreases very slowly. Taking into account
that the “cell” length b is less than the “inter-cell” spacing h, the “cell” length b has some effect on the
side lobe, but it is not obvious.

Figure 11 shows the relationship between the ratio ξ and the “inter-cell” spacing h. The linear
array parameters are selected such that M “ 16 and b “ 0.4λ. We should consider that the “inter-cell”
spacing h is greater than the “cell” length b. It could be concluded from this figure that ξ is positively
correlated with the ratio of h{λ in the range p0.4λ, λq, but it increases very slowly. We can believe that
the “inter-cell” spacing h has little effect on the side lobes.
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4.2. Optimization in the Lateral Direction (x-z Plane, α = α0 = 0˝)

The discussion of the parameters in the lateral direction is similar to that in the elevation direction,
thus we do not repeat it here. The results of discussing parameters in the lateral direction are
summarized as follows.

Elements number N: With the increasing of the number of array elements, the main lobe becomes
narrower, and the side lobe becomes smaller. Taking into account the practical production process,
it can meet good sound beam directivity when N is 16.

Steering angle θ0: The larger the steering angle is, the wider the main lobe will be. Without
introducing the grating lobes, the smaller the steering angle is, the bigger the upper bound of the array
element spacing will be. We can be appropriate to select 30˝ as the steering angle.

Inter-element spacing d: With the increasing of the array inter-element spacing, the main lobe
becomes narrower. However, if the inter-element spacing is too large, it will introduce grating lobes.
The range is:

λ

N p1´ sinθ0q
ď d ď

pN ´ 1q λ
N p1` sinθ0q

(30)

Elements (“cell”) width a: It has little influence on the beam directivity, which is similar to the
length of “cell”. Increasing the value can increase the sound radiation pressure and obtain a better
signal to noise ratio.

4.3. Simulation Results

For linear array in Figure 4, if it is not optimized, it cannot achieve good sound directivity in
general. In addition to a wide main lobe in the steering angle direction, it will be accompanied by a
large grating lobes and high side lobes. Taking an example of no optimization array, the linear array
directivity is shown as Figure 12. The linear array parameters are selected such that N “ 16, a “ 0.9λ,
d “ λ, M “ 16, b “ λ, h “ 1.5λ, θ0 “ 30˝, and f = 3 MHz. From Figure 12c, it is obvious that a great
grating lobe exists outside the direction of steering angle. The main lobe has serious energy “leakage”
in the elevation direction, as shown in Figure 12d. Figure 12a,b also confirms the above point.

If the optimization of the linear array is not considered in the elevation direction (that is, only
optimizing the lateral direction parameters), the following array parameters are selected such that
N “ 16, a “ 0.5λ, d “ 0.6λ, M “ 16, b “ λ, h “ 1.5λ, θ0 “ 30˝, and f = 3 MHz. Optimized beam
directivity is shown below (see Figure 13).



Micromachines 2016, 7, 8 12 of 14

From Figure 13c,e, we can find out that after optimizing the lateral direction parameters,
the grating lobes have been eliminated in this direction. However, in Figure 13d, there are still
serious grating lobes in the elevation direction, and the side lobes also need to be optimized.Micromachines 2016, 7, x 12 of 14 
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the array: (a) three-dimensional directivity; (b) directivity pattern in x-y plane; (c) directivity pattern 
in x-z plane; (d) directivity pattern in y-z plane; (e) directivity pattern when 0 0α = α = ° ; and (f) 
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are used in simulation: 16N = , 0.5a = λ , 0.6d = λ , 16M = , 0.5b = λ , 0.6h = λ , 0 30θ = ° , and  
f = 3 MHz. Optimized beam directivity is shown below (see Figure 14). 

In Figure 14, the beam focusing only exists as a maximum value in the direction of the steering 
angle, 30°, and it can be considered that the optimized array obtained a good beam directivity, 
whose beam focusing has a narrow main lobe, low side lobes, and no grating lobes. 

It is worth pointing out that compared with Figures 13 and 14, we can strongly find out that the 
grating lobes around the main lobe in the elevation direction is eliminated. In other words, it can 
suppress the energy leaking into non-azimuthal directions if the elevation dimension is taken into 
account. The results are consistent with the Wooh’s work [18] and show sideleaking energy is 
mainly resulted from grating lobes in non-azimuthal plane.  
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pattern when α “ α0 “ 90˝.

At the same time, the elevation direction is considered, and the following optimized parameters
are used in simulation: N “ 16, a “ 0.5λ, d “ 0.6λ, M “ 16, b “ 0.5λ, h “ 0.6λ, θ0 “ 30˝, and
f = 3 MHz. Optimized beam directivity is shown below (see Figure 14).

In Figure 14, the beam focusing only exists as a maximum value in the direction of the steering
angle, 30˝, and it can be considered that the optimized array obtained a good beam directivity, whose
beam focusing has a narrow main lobe, low side lobes, and no grating lobes.
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It is worth pointing out that compared with Figures 13 and 14 we can strongly find out that the
grating lobes around the main lobe in the elevation direction is eliminated. In other words, it can
suppress the energy leaking into non-azimuthal directions if the elevation dimension is taken into
account. The results are consistent with the Wooh’s work [18] and show sideleaking energy is mainly
resulted from grating lobes in non-azimuthal plane.Micromachines 2016, 7, x 13 of 14 
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5. Conclusions 

In order to increase radiation sound pressure of the MEMS linear phased array working in 
bending vibration mode at high frequency, the structure based on “multi-cell” element is designed. 
The theoretical analyses of the dynamic equation of a fixed rectangular composite plate and ANSYS 
simulation are used to more accurately predict the array resonant frequency. According to the 
Huygens principle and product theorem, the linear array directivity function is obtained. The effects 
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narrower. However, both of them have an upper limit in order to eliminate grating lobes. The 
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simultaneously. The simulation results show that optimizing the linear array parameters, both in 
the lateral and elevation directions, can greatly improve the three-dimensional beam focusing for 
MEMS linear phased array, which is obviously different from the traditional linear array. 
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5. Conclusions

In order to increase radiation sound pressure of the MEMS linear phased array working in
bending vibration mode at high frequency, the structure based on “multi-cell” element is designed.
The theoretical analyses of the dynamic equation of a fixed rectangular composite plate and ANSYS
simulation are used to more accurately predict the array resonant frequency. According to the Huygens
principle and product theorem, the linear array directivity function is obtained. The effects of the
correlation parameters of the array on the three-dimensional sound beam directivity are discussed
in two directions, the lateral and elevation direction. The results show that the width of the array
element (the width of “cell”) has no effect on the main lobe, and has little effect on the side lobes.
The increasing of inter-element spacing and the “inter-cell” spacing can make the main lobe narrower.
However, both of them have an upper limit in order to eliminate grating lobes. The increasing of the
number of elements and the “cell” number of element can also make the main lobe narrower. Thus, the
beam directivity of linear array is determined by several parameters simultaneously. The simulation
results show that optimizing the linear array parameters, both in the lateral and elevation directions,
can greatly improve the three-dimensional beam focusing for MEMS linear phased array, which is
obviously different from the traditional linear array.
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