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Abstract: The article is devoted to the development and creation of a multiphysics simulator that can,
on the one hand, simulate the most significant physical processes in the IPMC actuator, and on the
other hand, unlike commercial products such as COMSOL, can use computing resources economically.
The developed mathematical model is an adjoint differential equation describing the transport of
charged particles and water molecules in the ion-exchange membrane, the electrostatic field inside,
and the mechanical deformation of the actuator. The distribution of the electrostatic potential in the
interelectrode space is located by means of the solution of the Poisson equation with the Dirichlet
boundary conditions, where the charge density is a function of the concentration of cations inside
the membrane. The cation distribution was obtained by means of the solution of the equation
system, in which the fluxes of ions and water molecules are described by the modified Nernst-Planck
equations with boundary conditions of the third kind (the Robin problem). The cantilever beam forced
oscillation equation in the presence of resistance (allowing for dissipative processes) with assumptions
of elasticity theory was used to describe the actuator motion. A combination of the following
computational methods was used as a numerical algorithm for the solution: the Poisson equation was
solved by a direct method, the modified Nernst-Planck equations were solved by the Newton-Raphson
method, and the mechanical oscillation equation was solved using an explicit scheme. For this
model, a difference scheme has been created and an algorithm has been described, which can be
implemented in any programming language and allows for fast computational experiments. On the
basis of the created algorithm and with the help of the obtained experimental data, a program has
been created and the verification of the difference scheme and the algorithm has been performed.
Model parameters have been determined, and recommendations on the ranges of applicability of the
algorithm and the program have been given.

Keywords: IPMC actuator; cantilever beam; tip displacement; mechanical oscillations; finite difference
scheme; algorithm for numerical simulation

1. Introduction

The development of propulsors for industrial and medical microrobots is an urgent task. Due to
the requirements for such propulsors (workability, energy efficiency, the possibility of creating large
forces and displacements in space), ionic polymer-metal composites (IPMCs) attract special attention.
IPMCs are a sandwich structure consisting of a porous ion-exchange membrane impregnated with
electrolyte and coated on both sides with metal electrodes [1,2].
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The main inherent properties of IPMCs are flexibility, light weight, ease of manufacture,
and processing. In addition, IPMCs are capable of large deformation in response to a voltage
applied to the metallization of several volts. Due to this, they can be used as soft robotic actuators,
artificial muscles, and dynamic sensors in the field of bionic engineering [3].

The operating principle of an IPMC actuator is based on transport processes in a polymer
membrane. During water saturation, the dry polymer is structured in such a way that the hydrophilic
ends of the polymer chains are oriented towards the water-filled membrane pores. Under the action of
an electric field caused by the voltage applied to the electrodes, the charged liquid component in the
membrane moves along the through pore system. The resulting electroosmotic water flow causes an
increase in the liquid pressure at one electrode and a decrease in the vicinity of the other electrode.
The pressure difference leads to bending of the IPMC actuator [1,4].

There are numerous attempts to describe the actuation mechanism of IPMCs. Since the middle of
the last century, many researchers have been trying to simulate actuators and sensors based on IPMC.
To study the behavior and predict the motion of an IPMC actuator, it is necessary to have reliable
models. Currently, in order to describe the physical processes in the IPMC actuator, a large number
of models have been developed, which are conventionally divided into three groups: multiphysics
models (white box models), which describe the behavior of the problem parameter fields—such as
ion concentration, potential, and deformation [5,6]—models based on the method of analogies or
models with lumped parameters (grey box models) [7,8], and empirical models (black box models),
which are approximation curves of experimental data [9]. In [6], a continuum electromechanical
model is proposed to improve the production process and the composition of the IPMC. In [10],
the authors presented the IPMC electromechanical reaction model, based on the electrostatic forces
of attraction/repulsion in the IPMC, to predict the behavior of actuators, in particular, to explain the
relaxation of the IPMC. These models can predict the bending behavior of the IPMC with a sufficient
degree of accuracy, but they require many predetermined physicochemical properties that are measured
in experiments. Black box models, also called empirical and phenomenological models—presented
in [11]—are applicable only to specific shapes and boundary conditions. A more reasonable black box
model was introduced in [12]. The new model was validated using the experimental results from
some materials [13]. Grey box models proposed at [7,8] are based on physical laws and parameters
determined by experiments.

Despite the long research time and a large number of different approaches, none of the models
has proven its applicability to IPMCs with different thicknesses and different compositions of the ionic
polymer membrane [14].

Further development led to the creation of a model that explicitly took into account the solvent
(water) dynamics [15]. This model has a significant advantage of being able to describe the dynamic
response that is highly dependent on the IPMC moisture saturation. However, it is difficult to perform
analysis and simulation [16], since the mathematical model presented in [15] consists of complex
nonlinear partial differential equations. We have made an attempt to solve this problem by creating
a calculation scheme and a program code. A combination of the following computational methods
was used as a numerical algorithm for the solution: the Poisson equation was solved by a direct
method, the modified Nernst-Planck equations were solved by the Newton-Raphson method, and the
mechanical oscillation equation was solved using an explicit scheme.

2. Mathematical Model

Taking into account the complex nature of non-stationary processes in the considered IPMC
actuator, the developed mathematical model of the actuator is based on the thermodynamic theory of
irreversible processes and includes the modified Nernst-Planck equations [15], the Poisson equation [17]
and the mechanical oscillation equation of a cantilever beam with a fixed end [18,19].

The modified Nernst-Planck equations considered in [15] describe the transfer processes of ions
and water molecules in the IPMC membrane with the following assumptions:
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1. Ionic polymer–metal composite is considered to be two-phase and includes the solid phase,
which is a polymer porous structure, fixed negative charge and metal electrodes, and the liquid
phase, which includes cations and water molecules, redistributed under an electric field and/or a
mechanical load.

2. The liquid phase flux consists of two components: diffusion (including electromigration) and
convective. The diffusion fluxes of ions and water molecules are determined by the potential
gradient, the concentration gradients of ions and water molecules, and the hydrostatic pressure
gradient created by redistribution of ions and water molecules in polymer nanopores. The solid
phase influences the diffusion fluxes through the nanopore structure and the electric field of fixed
negative ions in the membrane. The convective fluxes are determined by the elastic force of the
solid phase.

3. In a short time interval, the hydraulic pressure and the inherent mechanical stress are balanced
with the elastic stress of the composite solid phase.

As applied to the problem under consideration, the modified Nernst-Planck equations can be
written as [15]

JI = −DII
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CI
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where JI is the flux density of cations in the polymer volume; JW is the flux density of water molecules in
the polymer volume; CI is the concentration of cations in the polymer volume; CW is the concentration
of water molecules in the polymer volume; p is the hydraulic pressure in the polymer; VI is the molar
volume of ions; VW is the molar volume of water; ndW is the number of water molecules associated
with one cation; DII is the self-diffusion coefficient of cations; DWW is the self-diffusion coefficient of
water; K is the filtration coefficient (Darcy’s law); ϕ is the electrostatic potential; ZI is the relative charge
of ion; T is the absolute temperature; F is the Faraday constant; R is the gas constant; y is the coordinate.
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in Equations (1),

(2) represent the self-diffusion components of the flux density, initiated by the potential gradient,
the concentration gradients of cations and water molecules, and the hydrostatic pressure gradient.

The summands −DIIndW

(
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interaction of the diffusion fluxes of cations and water molecules in the IPMC. Since a cation carries ndW
water molecules by hydration, the diffusion coefficients of the interaction between the fluxes of cations
and water DWI and, accordingly, DIW are expressed in these summands through the self-diffusion
coefficient of ions as

DWI = DIIndW ; (3)

DIW = DIIndW
CI

CW
. (4)

The summands −CIK
∂p
∂y and −CWK ∂p

∂y describe, using Darcy’s law [15], the convective components
of the flux density, which determine the relationship between the hydraulic pressure of the liquid
phase and the elastic mechanical stress of the solid phase of IPMC.

In order to study the dynamics of changes in the spatial distributions of the concentrations of
cations and water molecules in time, taking into account that the rates of changes in the concentrations of
ions and water molecules in time are determined by the divergence of the corresponding flux densities

∂CI

∂t
=
∂JI

∂y
; (5)
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∂CW

∂t
=
∂JW

∂y
, (6)

where t is time, the Nernst-Planck Equations (1) and (2) can be written as
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The concentration of cations at the initial time CI(y, tmin) (the initial condition for Equation (7)) is
determined by the initial concentration of ions in the polymer C+ in accordance with the expression

CI(y, tmin) = C+
ρSPN(1− PWN)

(1 + α)3h
, (9)

where ρSPN is the layer density of the dry membrane at normal ambient humidity; h is the thickness
of the dry membrane (excluding metal electrodes) at normal ambient humidity; α is the expansion
coefficient of the membrane at maximum humidification; PWN is the mass fraction of water in the dry
polymer at normal ambient humidity.

The boundary conditions for Equation (7) determine the ion flux densities through the outer
boundaries of the polymer, caused by the evaporation processes{
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where ymin, ymax are the coordinates of the polymer membrane boundaries; H is the thickness of metal
electrodes; γI is the dimensionless empirical coefficient determining the evaporation rate of cations
into the external environment.

The concentration of water molecules at the initial time CW(y, tmin) (the initial condition for
Equation (8)) is determined by the degree of membrane humidification Kw (the ratio of the concentration
of water molecules in the polymer to the maximum possible concentration) in accordance with
the expression

CW(y, tmin) = Kw
ρSPN(1− PWN)PWS

MW(1 + α)3h
, (12)

where MW is the molar mass of water; PWS is the mass fraction of water in the maximum
humidified polymer.

The boundary conditions for Equation (8) determine the fluxes of water molecules evaporated
through the outer boundaries of the polymer{
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where γW the dimensionless empirical coefficient determining the evaporation rate of water molecules
into the external environment.

The introduction of the empirical coefficients γI, γW into boundary conditions (10), (11), (13),
(14) is due to the complexity of theoretical evaluation of the evaporation rates of water molecules and
ions. This is due, in particular, to the considerable variation in the parameters of the granular structure
of metal electrodes.

The Poisson equation connects the spatial distributions of the potential and the electric field in the
IPMC membrane with the voltage at the electrodes and the spatial distribution of ions [17]

∂2ϕ

∂y2 = −
qZIF
εε0

(CI −C−), (15)

where C− is the concentration of anions; q is the elementary charge; ε is the relative permittivity of
water; ε0 is the permittivity of vacuum.

A uniform stationary spatial distribution of the concentration of anions is assumed

C− = C+
ρSPN(1− PWN)

(1 + α)3h
. (16)

The boundary conditions for the Poisson Equation (15) are determined by the potentials at
the electrodes

ϕ(ymin, t) = 0; (17)

ϕ(ymax, t) = U(t), (18)

where U(t) is the time dependence of the voltage applied to the electrodes.
The mechanical oscillation equation of a cantilever beam with a distributed mass, taking into

account attenuation, describes the tip displacement of the beam relative to the equilibrium position
under the action of an exciting force created by the transport of ions and water molecules and their
interaction with the composite solid phase [18,19]

∂2s(t)
∂t2 + β

∂s(t)
∂t

+ω2
0s(t) =

FL(t)
mL

, (19)

where s(t) is the tip displacement of the beam relative to the equilibrium position; mL is the linear
density of the cantilever beam; FL(t) is the exciting force per unit of beam length; ω0 is the natural
oscillation frequency of the cantilever beam; β is the coefficient characterizing dissipative processes.

For the cantilever beam stationary bending, corresponding to the tip displacement s0 of the beam
relative to the equilibrium position, the right-hand side of Equation (19) can be expressed through the
natural oscillation frequency ω0 of the cantilever beam as follows

FL

mL
=

k
mLLS

s0 = ω2
0s0, (20)

where LS = L(1 + α) is the length of the humidified beam; k is the stiffness coefficient of the
cantilever beam.

Taking into account that the bending moment is created by the transport of ions and water
molecules and their interaction with the composite solid phase is approximately uniform along the
beam length, the tip displacement of the beam relative to the equilibrium position can be expressed
through the bending moment as [19]

s0 =
LS

2

2Eeq Jy
M, (21)
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where M is the bending moment; Eeq is the equivalent Young’s modulus of a three-layer cantilever
beam (polymer membrane with electrodes); Jy is the moment of inertia of the beam section.

Then, substituting (20) and (21) into the right-hand side of Equation (19), we obtain

∂2s(t)
∂t2 + β

∂s(t)
∂t

+ω2
0s(t) =

ω2
0LS

2

2Eeq Jy
M(t). (22)

The bending moment M(t) is determined by the spatial distribution of the hydraulic pressure
p(y, t) in accordance with the expression

M(t) = wS

hS/2∫
−hS/2

p(y, t) −
1
h

hS/2∫
−hS/2

p(y, t)dy

ydy, (23)

where wS = w(1 + α) is the width of the humidified beam; hS = h(1 + α) is the thickness of the

humidified polymer. The integral 1
h

hS/2∫
−hS/2

p(y, t)dy in expression (23) determines the average value of

the hydraulic pressure in the beam at the current time.
The spatial distribution of the hydraulic pressure at the current time can be expressed through the

spatial distributions of the concentrations of water molecules and ions using the linear relation [1,20] as

p(y, t) = ηIVI(CI(y, t) −CI(tmin)) + ηWVW(CW(y, t) −CW(tmin)), (24)

where tmin is the initial time; ηI, ηW is the empirical coefficients having pressure units.
The product of the equivalent Young’s modulus of the cantilever beam and the moment of inertia

of the section for the problem under consideration is expressed by the integral

Eeq Jy = wS

hS
2 +H∫

−
hS
2 −H

E(y, t)y2dy. (25)

In expression (25), the dependence of the Young’s modulus on the coordinate E(y, t) at the current
time is considered not only in the polymer, but also in metal electrodes, as evidenced by the integration
limits ±

( hS
2 + H

)
. In this case, the dependence of the Young’s modulus on the concentration of water

molecules in the polymer is taken into account, which is determined experimentally in accordance
with the procedure described in [21].

After substituting (23), (24), and (25) into (22), we obtain the cantilever beam mechanical oscillation
equation in the form

∂2s(t)
∂t2 + β

∂s(t)
∂t +ω2

0s(t) =

=
ω2

0LS
2

2
∫ hS

2 +H

−
hS
2 −H

E(CW(y,t))y2dy

ηIVI

hS
2∫

−
hS
2

CI(y, t) − 1
hS

hS
2∫

−
hS
2

CI(y, t)dy

ydy+

+ηWVW

hS/2∫
−hS/2

CW(y, t) − 1
hS

hS/2∫
−hS/2

CW(y, t)dy

ydy

.
(26)

The initial conditions for Equation (26) determine zero values of the tip displacement and the tip
velocity of the beam at the initial time

s(tmin) = 0; (27)
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∂s
∂t

∣∣∣∣∣
tmin

= 0. (28)

The resonant frequency ω0 of mechanical oscillations of the beam with a distributed mass in
Equation (26) is determined as [19]

ω0(t) =
λ

LS2

√
Eeq Jy

mL(t)
, (29)

where λ is the coefficient depending on the mode of beam bending oscillations.
The linear density of the beam mL(t) is determined as the sum of the linear densities of the

polymer, electrodes and water in the polymer and, taking into account the water evaporation process,
is a function of time

mL(t) =
mD

LS
+ 2ρMwSH + MWwS

hS
2 +H∫

−
hS
2 −H

CW(y, t)dy, (30)

where mD is the mass of the beam dry polymer; ρM is the density of the electrode material.
Substituting expressions (25) and (30) into (29), we obtain

ω0(t) =
λ

LS2

√√√√√√√√√√√√√√ wS
∫ hS

2 +H

−
hS
2 −H

E(y, t)y2dy

mD
LS

+ 2ρMwSH + MWwS
∫ hS

2 +H

−
hS
2 −H

CW(y, t)dy
. (31)

In this study, the system of Equations (7), (8), (15), and (26) with initial conditions (9), (12), (27),
(28); boundary conditions (10), (11), (13), (14), (17) and (18); and parameters (16) and (31) was solved
numerically using the finite difference method without additional simplifications.

3. Discretization of the Mathematical Model, Numerical Simulation Technique

The discretization of the model described above was carried out within the framework of the
finite difference method on uniform time Gt and coordinate Gy grids

Gt =
{
tm = (m− 1)∆t|m = 1, . . . , M

}
; (32)

Gy =
{
y j = ( j− 1)∆y

∣∣∣ j = 1, . . . , J
}
, (33)

where ∆t is the grid step in time; ∆y is the coordinate grid step; m is the point index tm of the time
grid; j is the point index y j of the coordinate grid; M is the number of points in the time grid; J is the
number of points in the coordinate grid. Moreover, the coordinate grid (33) covers only the polymer
part of the three-layer beam between the boundaries with metal electrodes.

In order to optimize the simulation time on a personal computer with insignificant RAM resources
(8 GB), a self-consistent numerical solution of three subsystems of the proposed model at each time
slice was carried out sequentially using a combination of the following methods:

• Subsystem 1, which includes Poisson Equation (15) with boundary conditions (17), (18), was solved
by a direct method

• Subsystem 2, which includes modified Nernst-Planck Equations (7) and (8) with initial
conditions (9) and (12) and boundary conditions (10), (11), (13), and (14), was solved using
the Newton-Raphson method

• Subsystem 3, which includes cantilever beam mechanical oscillation Equation (26) with initial
conditions (27) and (28), was solved using an explicit scheme
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Taking into account the listed methods for the numerical solution of the proposed model equations,
discretization schemes for subsystems 1–3 on time and coordinate grids (32) and (33) are obtained in
the following form:

• Subsystem 1 (15), (17), (18)

ϕm
j+1 − 2ϕm

j + ϕm
j−1

∆y2 = −
qZIF
εε0

(
CI

m
j −C−

)
; (34)

ϕm
1 = 0; (35)

ϕm
J = Um, (36)

where ϕm
j is the grid function of the potential; CI

m
j is the grid function of the concentration of

cations; Um is the voltage applied to the electrodes at the time point tm.
• Subsystem 2 (7)–(14)
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m+1
j−1

))
+

+ηWndW
DII
2

VIVW
RT

((
CI

m+1
j+1 + CI

m+1
j

)(
CW

m+1
j+1 −CW

m+1
j

)
−

(
CI

m+1
j + CI

m+1
j−1

)(
CW

m+1
j −CW

m+1
j−1

))
+

+
ηIVI

2

(
DWW

VW
RT + K

)((
CW

m+1
j+1 + CW

m+1
j

)(
CI

m+1
j+1 −CI

m+1
j

)
−

(
CW

m+1
j + CW

m+1
j−1

)(
CI

m+1
j −CI

m+1
j−1

))
+

+ndW
DII
2

ZIF
RT

((
CI

m+1
j+1 + CI

m+1
j

)(
ϕm+1

j+1 −ϕ
m+1
j

)
−

(
CI

m+1
j + CI

m+1
j−1

)(
ϕm+1

j −ϕm+1
j−1

))]
−CW

m
j = 0;

(38)

CI
1
j = C+

ρSPN(1− PWN)

(1 + α)3h
; (39)

CW
1
j = Kw

ρSPN(1− PWN)PWS

MW(1 + α)3h
; (40)

CI
m+1
2 −CI

m+1
1 + ZIF

RT CI
m+1
1

(
ϕm+1

2 −ϕm+1
1

)
+ ndWCI

m+1
1

(
ln CW

m+1
2 − ln CW

m+1
1

)
+

+ηIVI
(VI+ndWVW

RT + K
DII

)
CI

m+1
1

(
CI

m+1
2 −CI

m+1
1

)
+

+ηWVW
(VI+ndWVW

RT + K
DII

)
CI

m+1
1

(
CW

m+1
2 −CW

m+1
1

)
− ∆yγI

H CI
m+1
1 = 0;

(41)

CI
m+1
J −CI

m+1
J−1 + ZIF

RT CI
m+1
J

(
ϕm+1

J −ϕm+1
J−1

)
+ ndWCI

m+1
J

(
ln CW

m+1
J − ln CW

m+1
J−1

)
+

+ηIVI
(VI+ndWVW

RT + K
DII

)
CI

m+1
J

(
CI

m+1
J −CI

m+1
J−1

)
+

+ηWVW
(VI+ndWVW

RT + K
DII

)
CI

m+1
J

(
CW

m+1
J −CW

m+1
J−1

)
+ ∆yγI

H CI
m+1
J = 0;

(42)
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DWW
(
CW

m+1
2 −CW

m+1
1

)
+ ηWVW

(
DWW

VW
RT + K

)
CW

m+1
1

(
CW

m+1
2 −CW

m+1
1

)
+

+ηIVI
(
DWW

VW
RT + K

)
CW

m+1
1

(
CI

m+1
2 −CI

m+1
1

)
+ DIIndW

(
CI

m+1
2 −CI

m+1
1

)
+

+ηWndWDII
VIVW

RT CI
m+1
1

(
CW

m+1
2 −CW

m+1
1

)
+ ηIndWDII

VI
2

RT CI
m+1
1

(
CI

m+1
2 −CI

m+1
1

)
+

+ndWDII
ZIF
RT CI

m+1
1

(
ϕm+1

2 −ϕm+1
1

)
− ∆yγW

DWW
H CW

m+1
1 = 0;

(43)

DWW
(
CW

m+1
J −CW

m+1
J−1

)
+ ηWVW

(
DWW

VW
RT + K

)
CW

m+1
J

(
CW

m+1
J −CW

m+1
J−1

)
+

+ηIVI
(
DWW

VW
RT + K

)
CW

m+1
J

(
CI

m+1
J −CI

m+1
J−1

)
+ DIIndW

(
CI

m+1
J −CI

m+1
J−1

)
+

+ηWndWDII
VIVW

RT CI
m+1
J

(
CW

m+1
J −CW

m+1
J−1

)
+ ηIndWDII

VI
2

RT CI
m+1
J

(
CI

m+1
J −CI

m+1
J−1

)
+

+ndWDII
ZIF
RT CI

m+1
J

(
ϕm+1

J −ϕm+1
J−1

)
+ ∆yγW

DWW
H CW

m+1
J = 0,

(44)

where CW
m+1
j is the grid function of the concentration of water molecules.

• Subsystem 3 (26)–(28) was discretized on the time grid (32) and the extended non-uniform
coordinate grid GyH

GyH =
{
y j

∣∣∣ j = 1, . . . , J + 2
}
, (45)

including the coordinate grid Gy (33), supplemented by the first and last nodes, the coordinates of
which correspond to the outer boundaries of metal electrodes

s1 = 0; (46)

s2 − s1

∆t
= 0; (47)

sm+1 = 2
(

2−∆t2ω2
0m

β∆t+2

)
sm +

( β∆t−2
β∆t+2

)
sm−1 +

ω2
0m∆t2L2

4(β∆t+2)×

×


ηIVI

J∑
j=2



CI
m
j+1 −

1
2h

J∑
j=2

(
CI

1
j+1 + CI

1
j

)
∆y j

(y j+1 − y J
2

)
+

+

CI
m
j −

1
2h

J∑
j=2

(
CI

1
j+1 + CI

1
j

)
∆y j

(y j − y J
2

)

∆y j +

+ηWVW
J∑

j=2



CW
m
j+1 −

1
2h

J∑
j=2

(
CW

1
j+1 + CW

1
j

)
∆y j

(y j+1 − y J
2

)
+

+

CW
m
j −

1
2h

J∑
j=2

(
CW

1
j+1 + CW

1
j

)
∆y j

(y j − y J
2

)

∆y j


:

: 1
2

J+1∑
j=2

(
Em

j+1

(
y j+1 − y J

2

)2
+ Em

j

(
y j − y J

2

)2
)
∆y j;

(48)

ω0m =
λ

LS2

√√√√√√
wS

∑J+1
j=1

(
Em

j+1

(
y j+1 − y J

2

)2
+ Em

j

(
y j − y J

2

)2
)
· ∆y j

2mLm
; (49)

mLm =
mD

LS
+ 2ρMwSH +

MWwS
2

J∑
j=2

(
CW

m
j+1 + CW

m
j

)
· ∆y j, (50)

where sm is the grid function of the tip displacement of the cantilever beam; Em
j is the grid function

of the Young’s modulus; ω0m is the grid function of the resonant frequency; mLm is the grid
function of the linear density of the beam.

The developed technique for the numerical solution of the system of equations (34)–(50) is
presented as a block diagram in Figure 1. To solve subsystem 2 by the Newton-Raphson method,
including the Nernst-Planck equations for ions and water molecules, the technique provides for the
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combination of the grid functions of the concentrations of ions CI
m
j and water molecules CW

m
j into a

single column vector Cm
j =

 CI
m
j

CW
m
j

, j = 1, . . . , J. The grid function Um = f (tm) specifies the voltage

change at the beam electrodes with time.

Figure 1. Technique for the numerical solution of system (35)–(51).
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Due to the nonlinearity of the system of equations (34)–(50), the problem is solved iteratively.
The variable k in the block diagram in Figure 1 reflects the iteration index, σ(k) is the residual at
k-th iteration determined by the values of the concentration vector at k-th and (k + 1)-th iterations

Cm(k)
j =

 CI
m(k)
j

CW
m(k)
j

; Cm(k+1)
j =

 CI
m(k+1)
j

CW
m(k+1)
j

, j = 1, . . . , J.

This technique is implemented as a specialized software created in the MATLAB
programming environment.

4. Model Verification, Results, and Discussion

The proposed technique and software tools for the numerical implementation of model (34)–(50)
allow for a detailed analysis of transients in the IPMC actuator polymer for an arbitrary mode of
the control voltage oscillations on time, calculation the amplitude-frequency characteristics and
dependences of the oscillation amplitude of the cantilever beam on the applied voltage amplitude
at different degree of the polymer membrane humidification, taking into account the dependence of
the dimensions and mass of the membrane on its humidification, and also taking into account the
evaporation rates of ions and water molecules from the surface of metal electrodes.

In order to verify the considered model and the proposed technique for the numerical simulation
of the IPMC actuator, a number of experimental studies have been performed.

4.1. Experimental Setup

The bench block diagram for the IPMC actuator investigation is presented in Figure 2.
The investigated IPMC actuator was fixed with probes, through which the voltage was supplied from
an Agilent 33500B Series waveform generator. The tip displacements of the IPMC actuator were
recorded by an L-GAGE LG5A65PUQ laser displacement controller, from which information was
transmitted to an Agilent DSO-X 3014A oscilloscope and then to a PC.

Figure 2. Bench block diagram for the IPMC actuator investigation.

4.2. Numerical Simulation Results and Their Discussion—Comparison with Experimental Data

In order to verify the developed model (34)–(50), technique and software tools, the numerical
simulation results of the IPMC actuator in a fairly wide range of amplitudes (peak-to-peak value
UA = 0–5 V) and frequencies (f = 0.5–50 Hz) of the control voltage were obtained. The values of the
physical constants and parameters of the IPMC actuator model used in the calculations are given in
Table 1.
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Table 1. Parameters of the IPMC actuator model.

Parameter Symbol Value Unit

Polymer trademark – Nafion N117 –
Length of the dry beam 1 L 15 mm
Width of the dry beam 1 w 5 mm

Thickness of the dry beam 1 H 183 µm
Thickness of metal electrodes H 5 µm

Temperature T 293 K
Diffusion coefficient of cations DII 5.3 × 10−6 cm2

·s−1

Diffusion coefficient of water molecules DWW 3.87 × 10−6 cm2
·s−1

Concentration of ions in the polymer C + 0.9 mol·kg−1

Molar volume of ions VI −5.4 cm3
·mol−1

Molar volume of water VW 18 cm3
·mol−1

Filtration coefficient K 3.4 × 10−14 cm2
·Pa−1

·s−1

Elementary charge q 1.6 × 10−19 C
Faraday constant F 96,485 C·mol−1

Gas constant R 8.31 J·K−1
·mol−1

Permittivity of vacuum ε0 8.85 × 10−14 F·cm−1

Relative permittivity of water ε 81 –
Expansion coefficient of the membrane at

maximum humidification α 0.1 –

Relative charge of ion ZI 1 –
Number of water molecules associated with one cation ndW 1 –

Mass fraction of water in the dry polymer 1 PWN 0.05 –
Mass fraction of water in the humidified polymer PWS 0.38 –

Young’s modulus of the dry polymer 1 EN 249 MPa
Young’s modulus of the humidified polymer ES 114 MPa

Young’s modulus of metal electrodes EM 23 GPa
Empirical coefficient ηI 200 MPa
Empirical coefficient ηW 200 MPa

Coefficient depending on the mode of beam
bending oscillations λ 3.52 –

Coefficient characterizing dissipative processes β 19 s−1

Empirical coefficient determining the evaporation rate of
cations into the external environment γI 0 –

Empirical coefficient determining the evaporation rate of
water molecules into the external environment γW 0 –

Layer density of the dry membrane 1 ρSPN 3.6 × 10−2 g·cm−2

Density of the electrode material ρM 21.5 g·cm−3

Molar mass of water MW 18.01528 g·mol−1

1 At normal air humidity.

The numerical simulation results of transients in the polymer membrane of the IPMC actuator,
obtained using the developed software tools for implementation the model (34)–(50), are presented in
Figures 3–20. These results were obtained on a coordinate grid containing 300 steps at a time grid step
∆t = 3 ms for a peak-to-peak control voltage UA = 5 V, harmonically changing in time with a frequency
f = 1 Hz (Figures 3–11) and f = 10 Hz (Figures 12–20).
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Figure 3. Spatial distributions of the concentrations of ions CI(y) and water molecules CW(y) in the
IPMC polymer membrane at UA = 5 V and f = 1 Hz at a time point tm = 3 ms.

Figure 4. Spatial distributions of the concentrations of ions CI(y) and water molecules CW(y) in the
IPMC polymer membrane at UA = 5 V and f = 1 Hz at a time point tm = 27 ms.

Figure 5. Spatial distributions of the concentrations of ions CI(y) and water molecules CW(y) in the
IPMC polymer membrane at UA = 5 V and f = 1 Hz at a time point tm = 42 ms.

Figure 6. Spatial distributions of the concentrations of ions CI(y) and water molecules CW(y) in the
IPMC polymer membrane at UA = 5 V and f = 1 Hz at a time point tm = 57 ms.
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Figure 7. Spatial distributions of the concentrations of ions CI(y) and water molecules CW(y) in the
IPMC polymer membrane at UA = 5 V and f = 1 Hz at a time point tm = 72 ms.

Figure 8. Spatial distributions of the concentrations of ions CI(y) and water molecules CW(y) in the
IPMC polymer membrane at UA = 5 V and f = 1 Hz at a time point tm = 87 ms.

Figure 9. Spatial distributions of the concentrations of ions CI(y) and water molecules CW(y) in the
IPMC polymer membrane at UA = 5 V and f = 1 Hz at a time point tm = 102 ms.

Figure 10. Spatial distributions of the concentrations of ions CI(y) and water molecules CW(y) in the
IPMC polymer membrane at UA = 5 V and f = 1 Hz at a time point tm = 117 ms.
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Figure 11. Spatial distributions of the concentrations of ions CI(y) and water molecules CW(y) in the
IPMC polymer membrane at UA = 5 V and f = 1 Hz at a time point tm = 132 ms.

Figure 12. Spatial distributions of the concentrations of ions CI(y) and water molecules CW(y) in the
IPMC polymer membrane at UA = 5 V and f = 10 Hz at a time point tm = 3 ms.

Figure 13. Spatial distributions of the concentrations of ions CI(y) and water molecules CW(y) in the
IPMC polymer membrane at UA = 5 V and f = 10 Hz at a time point tm = 6 ms.

Figure 14. Spatial distributions of the concentrations of ions CI(y) and water molecules CW(y) in the
IPMC polymer membrane at UA = 5 V and f = 10 Hz at a time point tm = 9 ms.
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Figure 15. Spatial distributions of the concentrations of ions CI(y) and water molecules CW(y) in the
IPMC polymer membrane at UA = 5 V and f = 10 Hz at a time point tm = 12 ms.

Figure 16. Spatial distributions of the concentrations of ions CI(y) and water molecules CW(y) in the
IPMC polymer membrane at UA = 5 V and f = 10 Hz at a time point tm = 15 ms.

Figure 17. Spatial distributions of the concentrations of ions CI(y) and water molecules CW(y) in the
IPMC polymer membrane at UA = 5 V and f = 10 Hz at a time point tm = 18 ms.

Figure 18. Spatial distributions of the concentrations of ions CI(y) and water molecules CW(y) in the
IPMC polymer membrane at UA = 5 V and f = 10 Hz at a time point tm = 21 ms.
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Figure 19. Spatial distributions of the concentrations of ions CI(y) and water molecules CW(y) in the
IPMC polymer membrane at UA = 5 V and f = 10 Hz at a time point tm = 24 ms.

Figure 20. Spatial distributions of the concentrations of ions CI(y) and water molecules CW(y) in the
IPMC polymer membrane at UA = 5 V and f = 10 Hz at a time point tm = 27 ms.

The numerical simulation results presented in Figures 3–20 demonstrate the possibility of a
detailed analysis of the dynamics of changes in time in the spatial distributions of the concentrations of
ions and water molecules in the polymer membrane volume of the IPMC actuator.

The numerical simulation results of the time dependences of the control voltage U(t), the beam tip
displacement s(t), and the acting force F(t) for control voltage frequencies of 0.5–40 Hz are presented in
Figures 21–25.

Figure 21. Transients in the IPMC actuator at UA = 5 V and f = 0.5 Hz: green lines are the control
voltage U(t); pink lines are the beam tip displacement s(t); blue lines are the force F(t).
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Figure 22. Transients in the IPMC actuator at UA = 5 V and f = 1 Hz: green lines are the control voltage
U(t); pink lines are the beam tip displacement s(t); blue lines are the force F(t).

Figure 23. Transients in the IPMC actuator at UA = 5 V and f = 10 Hz at intervals t = 0–10 s (a) and
t = 7–8 s (b): green lines are the control voltage U(t); pink lines are the beam tip displacement s(t);
blue lines are the force F(t).
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1 

 

 

Figure 24. Transients in the IPMC actuator at UA = 5 V and f = 36 Hz: green lines are the control
voltage U(t); pink lines are the beam tip displacement s(t); blue lines are the force F(t).

Figure 25. Transients in the IPMC actuator at UA = 5 V and f = 40 Hz: green lines are the control
voltage U(t); pink lines are the beam tip displacement s(t); blue lines are the force F(t).

The analysis of the developed model (34)–(50) and the presented graphs show that the time
behavior in the spatial distributions of the concentrations of ions and water molecules in the polymer
membrane volume of the IPMC actuator depends in a complicated way on a sufficiently large number
of parameters given in Table 1, but it is most determined by the ratio between the diffusion coefficients
of ions and water molecules in the polymer and the control voltage frequency. It can be seen from
Figures 3–11 that at low control voltage frequencies f ≤ 1 Hz, wavelike changes in the concentrations
have a significant amplitude throughout the entire volume of the polymer membrane, determining
the noticeable on Figures 21 and 22 deviations in the form of changes in the acting force F(t) and,
accordingly, the form of the beam tip mechanical oscillations s(t) from the harmonic form.

According to Figures 12–20, when the control voltage frequency increases, the amplitude of
changes in the concentrations of ions and water molecules in the polymer membrane volume decreases
markedly, which is mainly due to the inertia of diffusion processes. Moreover, a particularly strong
decrease in the amplitude of concentration changes is observed in the central area of the membrane,
where the spatial distributions of the concentrations during the entire transient remain almost uniform
and even at a control voltage frequency f = 10 Hz change relative to equilibrium values by no more
than 0.7% for water molecules and not more than 11% for cations (Figures 12–20).
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As a result, in accordance with Figures 23–25, the change of the acting force in time F(t) with
an increase in the control voltage frequency is more and more harmonic, and significant harmonic
distortions of the form of the beam tip mechanical oscillations s(t) (see Figure 23b) reflect the interaction
of the liquid and solid phases of the humidified actuator, taking into account the parameters that
determine their inertia (diffusion coefficients DII, DWW for the liquid phase; elastic moduli ES, EM,
densities and geometric dimensions of the beam layers for the solid phase; filtration coefficient K).

The result of the above-mentioned interaction of the liquid and solid phases of the humidified
actuator is also a change in the phase shift between the control voltage oscillations and the beam
tip mechanical oscillations, observed when increasing frequency in Figures 23–25. If at a frequency
f = 10 Hz and at lower frequencies the phase shift between the control voltage and the mechanical
oscillations is approximately π/2 (Figures 21–23), then at a frequency f = 36 Hz, which is close to the
resonant frequency, the phase shift, in accordance with Figure 24, increases to π, and with a further
increase in frequency to f = 40 Hz, in accordance with Figure 25, it reaches a value of 3π/5. It is
important to note that the phase shift between the oscillations of the control voltage U(t) and the acting
force F(t) remains unchanged and equal to approximately π/2 at any frequencies (Figures 21–25).

To obtain experimental dependences of the displacement amplitude on the peak-to-peak control
voltage, IPMC actuators with dimensions of 20 × 5 mm based on the Nafion 117 ion-exchange
membrane with a thickness of 175 µm were used. The deposition of Pt electrodes on the membrane
surface was carried out according to the technology described in [22,23]. The manufactured IPMC
actuators were kept in deionized water for a day, after which they were investigated on the bench
described in Section 4.1.

Figures 26–28 show the calculated and experimental dependences of the beam tip displacement
amplitude on the peak-to-peak control voltage with a frequency of 1 Hz (Figure 26), the beam tip
displacement from the DC control voltage (Figure 27), as well as the calculated and experimental
amplitude-frequency characteristics (AFC) of the IPMC actuator (Figure 28).

Figure 26. The calculated and experimental dependences of the beam tip displacement amplitude on
the peak-to-peak control voltage at a frequency f = 1 Hz.
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Figure 27. The calculated and experimental dependences of the beam tip displacement amplitude on
the DC control voltage.

Figure 28. The calculated and experimental amplitude-frequency characteristics (AFC) of the
IPMC actuator.

The analysis of the graphs presented in Figures 26–28 indicates a good agreement between the
calculated and experimental dependences of the beam tip displacement amplitude on the peak-to-peak
control voltage (Figure 26) and the calculated and experimental AFC of the investigated IPMC actuator
both in the beam mechanical oscillation amplitude and in the resonant frequency (fR ≈ 36 Hz),
which corresponds to the characteristic maximum in Figure 28. In this case, the calculated dependence
of the beam tip displacement on the DC control voltage level (Figure 27) gives a good agreement with
the experiment only at control voltage UA ≤ 1.5 V, which is probably due to the influence of factors not
considered in the model (34)–(50).

5. Conclusions

This article focuses on the development and numerical implementation of a mathematical model
of an actuator based on ionic polymer–metal composite (IPMC). To simulate the most significant
physical processes in the IPMC actuator such as transients of the spatial distributions of the ion and
water molecule concentrations under the changing in time the electric field and the process of cantilever
beam mechanical oscillations using comparatively small computing resources, multiphysics model,
corresponding technique, and software tools for numerical simulation were developed. The developed
IPMC actuator model is based on the thermodynamic theory of irreversible processes and includes the
modified Nernst-Planck equations for both ions and water molecules, the Poisson equation, and the
mechanical oscillation equation of a cantilever beam with a fixed end.
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Using the developed numerical simulation software, the spatial distributions of the concentrations
of ions and water molecules in the IPMC polymer membrane, transients of the force and the beam
tip displacement at different values of amplitude and frequency of the control voltage, as well as
amplitude-frequency characteristics of the actuator were calculated and investigated.

For verification of the developed numerical model and software, experimental characteristics of
the IPMC actuator were measured. According to the comparative analysis, the numerical simulation
results demonstrate good agreement with the experimental data.

The proposed numerical model of the IPMC actuator can be implemented in any programming
language and allows for fast computational experiments.
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