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Abstract: Lipid-bilayer devices have been studied for on-site sensors in the fields of diagnosis,
food and environmental monitoring, and safety/security inspection. In this paper, we propose a
lipid-bilayer-on-a-cup device for serial sample measurements using a pumpless solution exchange
procedure. The device consists of a millimeter-scale cylindrical cup with vertical slits which is
designed to steadily hold an aqueous solution and exchange the sample by simply fusing and
splitting the solution with an external solution. The slit design was experimentally determined by the
capabilities of both the retention and exchange of the solution. Using the optimized slit, a planar
lipid bilayer was reconstituted with a nanopore protein at a microaperture allocated to the bottom
of the cup, and the device was connected to a portable amplifier. The solution exchangeability was
demonstrated by observing the dilution process of a blocker molecule of the nanopore dissolved in
the cup. The pumpless solution exchange by the proposed cup-like device presents potential as a
lipid-bilayer system for portable sensing applications.

Keywords: lipid-bilayer membrane; sample exchange; nanopore sensor; portable sensor

1. Introduction

Recently, biological membranes have been proposed for various sensing applications and have
attracted considerable attention [1–3]. A representative example is a biological nanopore, which is a
transmembrane protein that forms a nanometer-sized pore by reconstitution in a lipid-bilayer membrane.
The principle of nanopore-based sensors is based on the interaction between the nanopore and analyte
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molecules, wherein the output signal is an ionic current through the nanopore that varies because of
the presence of the analytes, such that the analyte is detected at the single-molecule level with a high
sensitivity and specificity. The target analytes are mainly organic compounds and biomolecules—for
example, biomarkers for diagnosis [4–8], toxic substances in food production, cosmetics, environmental
monitoring [9,10], and illegal drugs and explosives for safety and security [11–14]. Because the core of
the nanopore sensors is a single protein reconstituted in a lipid bilayer, the on-site sensing applications
cited are expected using a miniaturized, portable device [15–20].

Solution exchangeability is an important characteristic for such a portable device to exchange
the samples for series examination on the scene. Because a lipid bilayer formed in a device usually
presents a poor physical stability [21–23], microfluidic channel components have been studied to gently
exchange the solution facing the bilayer. However, the channel components including a pumping
system may impede the simplicity of the sensor device, and the previous pumpless system took a
relatively long time for solution exchange [24–27].

In this study, we developed a device that integrates a lipid bilayer with a nanopore into a cup-like
device, named mini-cup, which can steadily hold an aqueous solution to preserve the nanopore
activity and rapidly exchange the analytes in the solution without additional equipment (e.g., a pump).
Figure 1 illustrates the concept of the mini-cup device. The millimeter-sized cylindrical cup with slits is
designed to hold an aqueous solution, at the bottom of which a lipid bilayer is formed with nanopore
protein. The solution exchange can be conducted by simply fusing and splitting the solution in the cup
with the solution of interest filled in a reservoir, as shown in Figure 2. Because of the small scale of the
cup, the surface tension of the solution will be dominant over the gravity force. The use of an open well
ensures that the solution in the cup is accessible to external solutions. Based on the aforementioned
concept, we developed the mini-cup device. First, various slits were designed to simultaneously satisfy
the capabilities of both the retention and exchange of the solution. The characteristics of the slit designs
were examined using the mass or fluorescence intensity of the solution before and after the solution
exchange. The exchangeability was further demonstrated by the translocation of single-stranded DNA
(ssDNA) through a nanopore formed in the developed device.
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Figure 1. (a) Schematic of a lipid-bilayer-on-a-cup device named the mini-cup. The mini-cup device,
mounted on a patch-clamp amplifier, consists of a 3 mm diameter well with a perforated polymer
thin film at its bottom. The reverse side of the film is connected to the amplifier via a glass capillary.
(b) Cross-sectional view of the mini-cup device. The well and the capillary are filled with aqueous
solutions. At the aperture of the film, a lipid bilayer is formed and a nanopore protein is reconstituted.
A pair of electrodes are used to monitor the ionic current through the nanopore.
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Figure 2. (a) Solution exchange procedure. A small reservoir, shown at the bottom, contacts the
mini-cup device in a horizontal direction for 30 s, before moving apart. (b) Schematic diagram of
a time course of an ionic current signal with solution exchange. Blocking events of a nanopore are
observed with the existence of single-stranded DNA (ssDNA) (i), while the event frequency decreases
with washing by solution exchange (ii).

2. Materials and Methods

2.1. Materials

A poly(methyl methacrylate) (PMMA) plate with a thickness of 4 mm was obtained from Mitsubishi
Chemical Corporation (Kyoto, Japan). The dimeric precursor of the poly(chloro-p-xylylene) (parylene)
film was purchased from Specialty Coating Systems Inc. (Indianapolis, IN, USA). Parylene film of 5 µm
was obtained by chemical vapor deposition using a coater (PDS 2010, Specialty Coating Systems Inc.,
IN, USA). A glass capillary (G-1) was obtained from the NARISIGE Group (Tokyo, Japan). Silver wires
for electrodes with diameters of 0.2 mm and 0.5 mm were purchased from The Nilaco Co. (Tokyo, Japan).
Amphiphobic coating reagent (SFCOAT, SFE-B002H) was obtained from AGC SEIMI Chemical Co.,
Ltd. (Kanagawa, Japan). A UV-reactive glue (NOA 81) was purchased from Norland Products Inc.
(Cranbury, NJ, USA). A phospholipid synthesized from 1,2-diphytanoyl-sn-glycero-3-phosphocholine
(DPhPC) was obtained from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). Nanopore-forming
proteins (α-hemolysin) and n-decane were obtained from Sigma-Aldrich Co. (St. Louis, MO, USA).
DNA oligonucleotides (polyT50) were purchased from Sigma Genosys (Tokyo, Japan). Other chemicals
were obtained from Wako Pure Chemical Industries, Ltd. (Osaka, Japan) and Sigma-Aldrich Co.
(St. Louis, MO, USA). All the reagents were used without further purification.

2.2. Mini-Cup Design

The mini-cup device consists of a well, a perforated parylene film, a glass capillary, and a pair of
Ag/AgCl electrodes, as shown in Figure 1. A lipid bilayer was formed at a microaperture on the thin
parylene film, and a nanopore was reconstituted in the bilayer. The parylene film divided two aqueous
solutions, in which a pair of electrodes was placed, for monitoring the ionic current passing through
the nanopore (Figure 1b).

The inner diameter and depth of the cup were 3.0 mm and 2.2 mm, respectively, to steadily
hold the solution. Note that the Bond number of the water was below 1 at this scale (Bo = 0.3) [28].
Slits were additionally designed to enhance the solution exchangeability. For optimization, the slit
design was varied and evaluated based on the capabilities of retention and exchange of a solution in the
cup. Different central angles and number of slits were attempted for the mini-cup designs (Figure 3);
for three angles of 20◦, 40◦, and 80◦, four different mini-cups were fabricated with 1, 2, 3, and 4 slits,
respectively (Figure 3b). A mini-cup without a slit was also used as a control. In Figure 3a, a 3-slit
mini-cup with a central angle of 40◦ is shown as a representative. The well was 0.2 mm deeper than
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Figure 3. Mini-cup designs for optimization. (a) Description of the well dimensions. Note that the
0.6 mm diameter pocket was created to fix the ground electrode at the front side of the well (1 mm in
depth). (b) Table of central angle and number of the slits of a mini-cup designed for the experiment.

To evaluate the retention ability of respective mini-cup designs, the change in the volume of
an aqueous solution was measured before and after the solution exchange. First, a mini-cup well
was filled with 13 µL of a buffer solution (1 M KCl with 10 mM phosphate buffer, pH 7.0) and the
mass was measured using an electronic balance (AP225W, Shimadzu Corporation, Kyoto, Japan).
Next, the mini-cup well was contacted with the reservoir shown in Figure 2a, and the solution was
fused with the external buffer solution (1 M KCl, pH 7.0) for 10 s. Then, the mini-cup well was gently
separated from the reservoir, and the mass was measured again. The ratio of the mass of a solution
was estimated from the measurements. The experiments were performed three times.

To estimate the exchangeability of a solution at respective mini-cup designs, the change in the
sample concentration was observed before and after the solution exchange. First, a mini-cup well
was filled with 13 µL of a buffer solution (300 nM calcein, 1 M KCl with 10 mM phosphate buffer,
pH 7.0). Next, the solution in the mini-cup well was fused and rinsed with the external buffer solution
(1 M KCl, pH 7.0) in the reservoir for 10 s. After the mini-cup well was gently separated from the
reservoir, the exchanged solution in the mini-cup well was collected using a pipette and the fluorescence
intensity of calcein was measured using a microscope (IX71, Olympus Corporation, Tokyo, Japan).
The concentration was evaluated using the calibration curve shown in the Supplementary Materials
(Figure S1). The experiments were performed three times.

2.3. Device Fabricatioin

An exploded diagram of the device is shown in Figure 4a. A 150 µm aperture was formed on
the thin parylene film (2 mm in diameter, 5 µm in thickness) using standard photolithography [29].
The well was fabricated from a PMMA plate by using an automated computer-aided design and
computer-aided manufacturing modeling machine (MM-100; Modia Systems Co., Inc., Saitama, Japan).
The inner surface of the well was then modified with an amphiphobic coating reagent, SFCOAT,
to reduce the surface energy. Note that we previously confirmed that the stability of a solution in a
small well was substantially enhanced by minimizing the size and decreasing the surface energy [28].
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Figure 4. (a) Exploded diagram of the mini-cup device. (b) Photos of the developed device connected
to a portable patch-clamp amplifier.

The mini-cup device was assembled as follows (Figure 4b): first, the perforated parylene film was
fixed to the bottom of the well using UV-reactive glue (NOA 81). Then, a glass capillary was inserted
and glued to the reverse side of the well. The Ag/AgCl ground electrode was affixed to the front side
of the well. The Ag/AgCl working electrode was connected between the reverse side of the parylene
film and a portable patch-clamp amplifier.

2.4. Lipid-Bilayer Formation and Nanopore Reconstitution

We applied a painting method for lipid-bilayer formation at the microaperture of the parylene
film [30]. As shown in Figure 5, first, the glass capillary was filled with a buffer solution (1 M KCl with
10 mM phosphate buffer, pH 7.0). Note that a thin pipette was inserted close to the parylene film to avoid
air bubbles. The mini-cup device was then attached to the amplifier via an Ag/AgCl electrode inserted
into the glass capillary. Second, a 13 µL aliquot of the buffer solution containing a nanopore-forming
protein (α-hemolysin; 10 nM) was applied to the mini-cup well. Third, lipid-dispersed oil (10 mg/mL
DPhPC/n-decane, approximately 0.5 µL) was infused close to the aperture. The lipid solution was
gently swept across the aperture using a plastic needle, resulting in lipid-bilayer formation. Following
bilayer formation, a nanopore was spontaneously reconstituted in the bilayer membrane (Figure 1b).
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Figure 5. Procedure of a lipid-bilayer membrane formation on the microaperture in the mini-cup device.
A painting method was used with 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) in n-decane
(10 mg/mL) and a buffer solution (1 M KCl, pH 7.0).
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2.5. Ionic Current Recording with Solution Exchange

The ionic current between the Ag/AgCl electrodes was monitored using an in-house developed
portable amplifier while applying direct current voltage [31]. The sampling frequency of the current
trace was set to 5 kHz, and the obtained data were filtered by a Bessel low-pass filter at 1 kHz.
We confirmed the nanopore reconstitution by observing the current trace. Note that the single nanopore
presents a steady current with approximately 1 nS in 1 M KCl at neutral pH [32]. The current through
the nanopore was partially blocked by the presence of ssDNA (polyT50) that obstructs or translocates
the nanopore (Figure 2b) [33,34]. A more than 70% reduction in the nanopore current was defined as
the blocking event.

Time-course monitoring of the ionic current signals through nanopore proteins was conducted
using the mini-cup device to further demonstrate the solution exchangeability. A lipid bilayer was
first formed at the aforedescribed microaperture. A 13 µL aliquot of the buffer solution containing
a nanopore-forming protein (α-hemolysin; 10 nM) and ssDNA (approximately 10 µM) was added
to the mini-cup well. The solution in the mini-cup was then exchanged with a buffer solution (1 M
KCl with 10 mM phosphate buffer, pH 7.0) using a small reservoir (180 µL) that was horizontally in
contact with the mini-cup well for approximately 30 s and separated from the mini-cup (Figure 2a).
The current signals of the nanopore exhibited frequent blockades caused by ssDNA in the mini-cup
well, as aforementioned. Because these blockades, which appear as temporal/partial current blocking,
are proportional to the concentration of ssDNA, the blocking frequency should decrease as the
solution is exchanged (Figure 2b). The blocking frequencies were estimated before and after the solution
exchanges. All the data were analyzed using Clampfit software (Molecular Devices, SAN Jose, CA, USA).

3. Results and Discussion

3.1. Optimization of Mini-Cup Design

To optimize the slit design, both the retention ability and exchangeability of a solution in the
mini-cup device were investigated. The retention ability was measured by the change in the solution
volume held in the mini-cup well over the solution exchange; the volume should be constant before
and after the exchange to specify the sample volume. The exchangeability of a solution is determined
by the change in the analyte concentration over the solution exchange. Ideally, the concentration
in the mini-cup well should be equal to the concentration in the external solution of interest by the
exchange procedure.

First, the retention ability was evaluated from the mass change of the mini-cup well before and
after the solution exchange. As described in Section 2.2, 12 slit designs and a control of no slit were
compared. Figure 6a shows the mass ratios of the solution in the mini-cup well with different slit
designs. Values larger than 1 indicate that the solution volume in the mini-cup well increased by
the solution exchange procedure, and vice versa. The results indicated that the retention ability
decreased with an increase in the central angle and the number of slits. In the four slits with an angle
of 80◦, less than 40% of the solution remained after the single solution exchange. Without the slit,
the solution increased approximately 20% from the well volume (13 µL) by the exchange. These results
can be explained by the capillary rise between pillars or plates, in which the liquid height is inversely
proportional to the spacing of the pillars or plates [35]. In the case of the mini-cup well, the capillary
force became weaker with the increasing ratio of slit to perimeter, and the mini-cup lost the solution
well by the exchange.

According to the results, the mini-cup wells of two or three slits with a 40◦ angle were the most
appropriate designs regarding the retention ability because the ratio was close to 1. Figure 6b represents
the repetitive exchange of a solution at the mini-cup of three slits with a 40◦ central angle. As the ratio
remained close to one for four cycles of solution exchange, the well design guaranteed reproducible
solution exchange with a constant sample volume.
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Figure 6. (a) Mass ratio of the solution held in mini-cup wells with different central angle and number
of slits. The ratios were estimated from the mass change of the solution before and after the solution
exchange (N = 3, mean ± standard deviation (SD)), respectively. (b) Retention ability over repetitive
solution exchanges with the mini-cup well with 3 slits and 40◦ angle (N = 3, error bar: SD). For both
(a,b), the solution exchange was performed by fusing the solution to the external solution for 10 s and
in sequence separating them.

Next, the exchangeability of a solution in the mini-cup was examined using a fluorescent molecule,
calcein, dissolved in the solution; a decrease in the fluorescence intensity was observed after the 10 s
rinsing procedure by exchange with a buffer solution (see Section 2.2). The exchange ratio was calculated
as (C0-C)/C0, where C0 and C are the concentrations of calcein before and after rinsing, respectively.
The concentration C was evaluated from the calibration curve obtained from the fluorescence intensity
(see Supplementary Materials Figure S1). Figure 7 shows the exchange ratio of the solution in the
mini-cup well with different slit designs. Values close to 1 indicate that the fluorescent molecule was
thoroughly rinsed by a single solution exchange. The results indicate that the larger the slit ratio,
the better the exchangeability. Without the slits, approximately 80% of the calcein remained after rinsing.
With the slits, the solution exchange heavily relied on the mixing of the solutions between the mini-cup
well and the reservoir, rather than diffusion accompanied by a concentration gradient. Note that the
diffusion takes more than 100 min according to a one-dimensional model, as shown in Supplementary
Materials Figure S2. We consider that the driving force behind the mixing is mainly attributed to forced
convection arising from the impact of the fusion of the two solutions. This hypothesis is supported
by the results in Figure 7a. The presence of the slits produces inlets and outlets of a convection flow
triggered by the fusion of the solutions between the mini-cup and reservoir. Figure 7b shows the
exchange ratios depending on the exchange duration, with the mini-cup well of three slits with a 40◦

central angle. The results indicate that the exchange ratio reaches a plateau in 10 s. It should be noted
that the exchange time is faster than that of the previous pumpless system [25]. We consider that the
mixing attributed to the convection flow ceases by 10 s after the fusion of solutions.

According to the before-described results regarding the retention ability and exchangeability
for the slit designs, these two properties contradict each other. To determine the optimal slit design,
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we explored the minimum condition of the formula |1 − R| + |1 − E|, where R is the solution retention
ratio and E is the solution exchange ratio obtained in Figures 6 and 7. The slit condition of three slits
with a 40◦ central angle appeared to be the best among the designs examined. Note that we weighed
the two properties equally. In the following experiments, we applied the mini-cup device under this
condition (three slits with a 40◦ angle).
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and numbers of slits. The ratios and red colors in the table indicate the calcein concentration that
remained in the well after the exchange (N = 3, mean ± SD). Concentration of calcein after the exchange
was calculated from the fluorescence intensity using a calibration curve. (b) Exchange ratio vs. duration
of the exchange procedure with the mini-cup well with 3 slits and a 40◦ angle (N = 3, error bar: SD).
Each plot represents the single rinsing procedure with a defined duration.

3.2. Nanopore Formation Using the Mini-Cup Device

We verified nanopore formation at a lipid bilayer in the mini-cup device using the slit design
described in Section 3.1 and the ionic current traces shown in Figure 8. First, a lipid bilayer was formed
by the painting method at the microaperture on the parylene film in the device using the procedure
described in Figure 5. As a lipid bilayer generally prevents ion transport, a large resistance was observed
with bilayer formation (Figure 8a). Next, the reconstitution of the nanopore protein α-hemolysin
was monitored. As previously reported, α-hemolysin monomers dissolved in the buffer solution
spontaneously reconstitute into a lipid-bilayer membrane and form a heptameric transmembrane pore
with a 1.5 nm diameter at the constriction [36]. The conductance of the open pore is determined by
the pore dimensions, ionic species in the solution, and pH. Figure 8b shows the time course of the
ionic current accompanied by nanopore formation. The stepwise current was observed with a 1 nS
conductance, which corresponds to nanopore formation at a lipid bilayer under the experimental
conditions. These experiments were conducted using the mini-cup device that was held perpendicularly
to the ground to further demonstrate the retention ability of the device by keeping the solution over the
experiments. The results support the feasibility of the mini-cup design as a portable lipid-bilayer device.
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Figure 8. Ionic current traces with the mini-cup device. (a) Lipid-bilayer formation. (b) Reconstitution
of nanopore proteins in a formed lipid bilayer. The reconstitution resulted in a stepwise increment of
approximately 50 pA. (c) Blockades of ionic current by ssDNA. The interaction between the nanopore
and ssDNA partially and temporarily blocked the open-pore current. Applied voltage: 50 mV.

A model sample of ssDNA (polyT50) was applied to the nanopore reconstituted in the mini-cup
device to further confirm the relevance of the mini-cup as a portable bilayer device. The final
concentration of 10 µM ssDNA was added to the mini-cup well. At the nanopore, ssDNA translocates
or obstructs owing to the similarity of the pore size and the diameter of the ssDNA. These interactions
of ssDNA with the nanopore hinder the ionic current passing through the pore, and produce spike-like
current reductions of various durations and depths [34]. As shown in Figure 8c, we confirmed that
the application of ssDNA to the mini-cup device partially and temporarily caused blockades of
the open-pore current, indicating the interaction of the analyte with the nanopore sensor within
the device. This result further demonstrated the applicability of the mini-cup device as a portable
lipid-bilayer system.

3.3. Demonstration of Solution Exchange with Mini-Cup Device

We performed time-course monitoring of the ionic current and a solution exchange procedure
to demonstrate the exchangeability of a solution in the mini-cup device. A nanopore protein was
reconstituted in a lipid bilayer and ssDNA was also added in the mini-cup well in the beginning,
as shown in Figure 8c. By the exchange procedure with a reservoir, the ssDNA and nanopore protein
were rinsed away from the well (Figure 2b).

Figure 9 shows a representative current trace over the exchange procedures. More than 14 min
of monitoring was possible without rupture of a lipid bilayer in this case. At the far left of the trace
(close to time zero), a lipid bilayer was formed and nanopore proteins were serially reconstituted
into the bilayer on the mini-cup device (Figure 9b). The initial concentration of 10 µM ssDNA in
the mini-cup well was exchanged twice with a 1 M KCl buffer solution for 30 s using the reservoir.
The exchanges are indicated with light blue areas. Note that the sharp peaks appearing during the
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exchange procedures in Figure 9a do not indicate the bilayer rupture but current noise due to external
disturbance; however, because the survival rate of the bilayer was still low (18/32), the stabilization
of the bilayer has to be improved [21,37]. Each stepwise increase in the current trace shows the
reconstitution of single nanopores. The averaged time of the first nanopore insertion after a bilayer
formation was 48 s (N = 3). We found that nanopore reconstitution rapidly and continuously occurs
unless the α-hemolysin monomers are cleared from the solution in the well and the continuous
nanopore formation generally causes a bilayer rupture within a few tens of seconds at a protein
concentration of 10 nM [38]. The exchange of the solution, which removed the α-hemolysin monomers
from the well, prevents unnecessary nanopore formation and preserves the device feasibility for
sample detection with nanopores [24,25]. Solution exchange was also confirmed from the blockades
by ssDNA. As shown in Figure 9c, a large number of blockades were observed before the rinsing
(exchange procedure), whereas the number of blocking signals was significantly reduced by the first
exchange. The frequency of the blocking signal is indicated in Figure 9d. After the second exchange,
the blockades hardly occurred. These results indicate that the mini-cup device was able to maintain a
nanopore in a lipid bilayer after the solution exchanges, demonstrating the possibility of a sample
exchangeable device for the portable sensing applications of a lipid bilayer.
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Figure 9. (a) Time-course monitoring of ionic current through the nanopore reconstituted in the
mini-cup device. The solution exchange was conducted while maintaining the lipid bilayer. The light
blue areas indicate the 1st and 2nd solution exchanges. Applied voltage: 100 mV. (b) Enlarged view
of the current trace of serial nanopore formations in a lipid bilayer. (c) Typical blocking signals by
ssDNA before and after the first exchange. (d) Frequencies of the blocking signals by ssDNA. In three
individual experiments, the blocking signals were respectively collected for 30 s, and the frequencies
were calculated. (N = 3, error bar: SD). The significance was assessed by t-test.
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4. Conclusions

We developed a lipid bilayer-on-a-cup device for pumpless solution exchange. The device is
composed of a millimeter-scale cup with vertical slits, and a lipid bilayer is reconstituted at the
microaperture located at the bottom of the cup. The slit design was optimized to reproducibly hold a
solution and efficiently exchange the solution with an external solution by a fusing-splitting procedure.
Finally, we demonstrated the solution exchangeability of our device by replacing a blocker molecule of
a nanopore with a blocker-free solution. Pumpless solution exchange with the mini-cup design would
facilitate serial sample measurements using a nanopore sensor based on a portable lipid-bilayer system
for on-site sensing applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/11/12/1123/s1:
Figure S1: Correlation between fluorescence intensity and concentration of calcein; Figure S2: One-dimensional
diffusion model.
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