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Abstract: Nanofluidics is supposed to take advantage of a variety of new physical phenomena and
unusual effects at nanoscales typically below 100 nm. However, the current chip-based nanofluidic
applications are mostly based on the use of nanochannels with linewidths above 100 nm, due to
the restricted ability of the efficient fabrication of nanochannels with narrow linewidths in glass
substrates. In this study, we established the fabrication of nanofluidic structures in glass substrates
with narrow linewidths of several tens of nanometers by optimizing a nanofabrication process
composed of electron-beam lithography and plasma dry etching. Using the optimized process, we
achieved the efficient fabrication of fine glass nanochannels with sub-40 nm linewidths, uniform
lateral features, and smooth morphologies, in an accurate and precise way. Furthermore, the use of the
process allowed the integration of similar or dissimilar material-based ultrasmall nanocomponents
in the ultranarrow nanochannels, including arrays of pockets with volumes as less as 42 zeptoliters
(zL, 10−21 L) and well-defined gold nanogaps as narrow as 19 nm. We believe that the established
nanofabrication process will be very useful for expanding fundamental research and in further
improving the applications of nanofluidic devices.

Keywords: nanofluidics; narrow nanochannels; nano-in-nano integration; nanogap; zeptoliter

1. Introduction

Nanofluidics involves the study of fluids at nanometer dimensions [1–6]. Histori-
cally, nanofluidics has been a niche and dormant field. Although the term “nanofluidics”
has rarely been used for decades, issues pertaining to nanofluidics have been addressed
by researchers under the umbrella of colloid science, membrane science, and chemical
engineering. With the advent of chip-based nanofluidic devices (hereafter referred to as
“nanofluidic devices”), which belong to the class of planar solid-state transparent devices
containing in-plane nanochannel structures, nanofluidics has been garnering significant at-
tention recently in a wide range of disciplines, such as physics, chemistry, biology, medicine,
pharmaceuticals, energy, process engineering, material science, and information sciences.
This is because nanofluidic devices offer available experimental platforms that enable the
research of nanofluidics with various backgrounds, and new devices and approaches are
being developed gradually. Further, the use of novel nanofluidic devices has led to the
observation of novel physical phenomena and unusual effects caused by fluids confined in
nanoscale spaces, including non-linear transport phenomena such as ion current rectifica-
tion [3,7–10] and concentration polarization [11–14], and changes in the liquid properties
of water such as lower electric permittivity [15,16], higher proton mobility [17–19], and
higher viscosity [15,16,20], than those observed in the bulk scales. These phenomena and
effects, possibly stemming from ultra-high surface-to-volume ratios and electric double
layer overlap featured in confined nanoscale spaces, have recently received widespread
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attention, but in most cases have remained unexplored. Therefore, while the discipline of
nanofluids is not new, it is still in its infancy. Understanding and utilizing these phenom-
ena and effects offers novel mechanisms, powerful tools, and impactful applications that
could revolutionize chemistry, biology, material sciences and other related fields. However,
several attempts toward such purposes have been severely hampered by the limited choice
of available substrate materials, which restricts the fabrication of novel nanofluidic devices.

Nanochannels are the core components of most nanofluidic devices. The methods
for fabrication of nanochannels vary depending on the substrate material. While several
kinds of substrate materials such as glass, polydimethylsiloxane (PDMS), and plastics
are used in the fabrication of microfluidic devices, the widely successful congener of the
nanofluidic devices, glass, and particularly fused-silica (amorphous form of silica), is
currently the sole substrate material that is ideal for the fabrication of nanofluidic chips.
While silicon was initially used for fabrication of nanochannels by the direct use of well-
established nanofabrication technologies for microelectronics [21], its optically-opaque
nature greatly hindered widespread applications of nanofluidics. The recent years have
witnessed the development of methods for the successful fabrication of nanochannels in
glass substrates. Driven by such successes and the excellent properties of glass that are
favorable for chemical and biological studies and applications, glass has recently become
the key substrate material for the fabrication of nanofluidic devices. These excellent
properties include superior optical transparency, thermal stability, chemical/biological
inertness, mechanical robustness, and hydrophilic nature, all of which are favorable for
studies and applications in a wide range of disciplines and interdisciplinary fields.

Several tools have enabled the fabrication of nanochannels in glass substrates. Stan-
dard photolithography incorporated with short-time wet or dry etching allows the fabrica-
tion of fused silica nanochannels with micrometer-scale widths and nanometer-scale depths,
which are, respectively, defined by the practical resolution limits of photolithography and
etching duration. Such nanochannels with large widths are also called planar nanochannels
or one-dimensional (1D) nanochannels and have been employed in early studies for DNA
extension [22]. In contrast, both electron beam lithography (EBL) coupled with dry etch-
ing [3,23–26] and focused ion beam (FIB) milling [27–29] are the two major nanofabrication
technologies used currently for the fabrication of glass nanochannels in glass substrates.
The prominence of these technologies is ascribed to their ability to fabricate the width and
depth of glass nanochannels at nanoscales to generate square or two-dimensional (2D)
nanochannels. Notably, FIB milling allows the fabrication of narrow square nanochannels
with width and depth dimensions as low as tens of nanometers [28,29]. However, FIB
milling has several drawbacks, including the low efficiency originating from the direct
milling principle [30], charging effect caused by ion irradiation on the insulating substrate,
coarse channel wall surfaces resulting from the simultaneous deposition effect, and the
difficulty in maintaining stable processing conditions, particularly during milling over a
long duration and/or a large area. Unfortunately, these drawbacks render the controllable,
reproducible, and predictable high-throughput fabrication of glass nanochannels using
FIB milling highly challenging, thus hindering the wider application of the technology for
the fabrication of nanofluidic devices. In contrast, EBL coupled with dry etching exhibits
overwhelming advantages over FIB milling, owing to its well-defined principle based on
fine electronic, chemical, and physical mechanisms. Such advantages are beneficial in
the efficient fabrication of square nanochannel structures with high controllability, repro-
ducibility, and predictability, as reported in several studies [3,31,32]. Despite its theoretical
potential to create nanopatterns with linewidths as narrow as tens of nanometers [33], in
practice, achieving this on glass by using EBL coupled with dry etching remains highly
challenging due to its non-crystalline property (which is unfavorable for top-down fabrica-
tion of ultasmall nanostructures) and the need to control several complicated processes.
As a result, most current studies on nanofluidic devices are based on the use of glass
nanochannels with linewidths above 100 nm. Nanofluidics can potentially exploit the
aforementioned new phenomena and unusual effects at nanoscales, and in most cases,
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below 100 nm [2,5,6]. Therefore, the fabrication of nanochannel structures with narrow
linewidths of several tens of nanometers in glass substrates using EBL coupled with dry
etching is critical for the advancement of the field of nanofluidics.

In this study, we achieved efficient, accurate, and precise-fabrication of fine ultranar-
row nanochannels with feature sizes of several tens of nanometers by focusing on two key
processing parameters, the EB resist thickness and development time, among the various
complicated nanofabrication processing parameters of the EBL coupled with dry etching
processes. The use of an optimized nanofabrication process makes it possible to fabricate
fine ultranarrow nanochannels and nanochannels with similar or dissimilar material-based
ultrasmall nanocomponents. The fabrication process established in this study will aid
the advancement of fundamental research and the further improvement of nanofluidic
device-based applications.

2. Experimental
2.1. Basic Processes of Nanofabrication

Nanofabrication was performed by combining nanopattern transfer with subtractive
techniques (such as EBL and plasma dry etching) and/or processes of nanopattern transfer with
additive techniques (such as physical vapor deposition and lift-off). These individual processes
are briefly described herein, and further details are available in the literature [15,34–36].

2.1.1. EBL

An EBL process was used for transferring nanopatterns, generated via computer-
aided-design (CAD), onto a substrate. First, an EB resist (ZEP520A; ZEON, Tokyo, Japan)
was spin-coated on a perfectly cleaned fused-silica glass substrate (30 mm × 40 mm ×
0.7 mm; Sendai Quartz, Sendai, Japan) using a spin coater (MA-A100; MIKASA, Tokyo,
Japan). To investigate the effect of the thickness of the EB resist on nanofabrication,
different spin-coating speeds of 2500, 3000, 4000, 4300, and 4500 rpm were applied to
obtain EB resist layers with different thicknesses, which were further measured using a
stylus surface profiler (Dektak 150; Bruker, MA, USA). Next, an electron beam under a
standard beam condition was irradiated onto the EB resist-coated glass substrate using an
electron beam lithography system (ELS-7500EX; ELIONIX, Tokyo, Japan). Finally, the EB
irradiated-substrate was developed in xylene (Wako Special Grade; Wako, Osaka, Japan) in
a thermostatic bath (TR-2AR; AS ONE, Osaka, Japan) at 25.0 ± 0.1 ◦C, and the resulting
designed nanopattern was transferred to the EB resist layer.

2.1.2. Plasma Dry Etching

To transfer the EB resist nanopattern onto the glass substrate, a plasma dry etching
process was applied using a reactive ion etching (RIE) system (RIE-10NR; SAMCO, Kyoto,
Japan). In the etching process, fluorine gas (Kanto Denka Kogyo, Tokyo, Japan) was used as
the working gas to achieve an etching rate of 22–26 nm/min. After etching, the remaining
resist was removed using a mixture (3/1, v/v) of dimethyl sulfoxide (99.0%; Wako, Osaka,
Japan) and xylene.

2.1.3. Physical Vapor Deposition and Lift-Off

Physical vapor deposition processes and lift-off were used to fabricate the gold
nanopatterns. After transferring the computer-aided nanopattern designs to the resist
layer on the substrate using the standard EBL process, 5 nm-thick chromium (Cr, 99.9%;
Nilaco, Tokyo, Japan) and 30 nm-thick Au (99.99%; Tanaka Kikinzoku Kogyo, Tokyo, Japan)
films were sequentially deposited on the substrate using vacuum evaporation equipment
(A9858; Seinan Industries, Osaka, Japan) at 10−5 Pa. Here, the thin Cr layer played a
role in increasing the adhesion between the gold layer and the glass substrate. After the
process for removing the Au/Cr on the resist using a mixture of dimethyl sulfoxide and
xylene (3/1, v/v), the remaining Au/Cr parts formed gold nanopatterns on the substrate
(i.e., lift-off).
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2.2. Fabrication and Characterization of Nanochannel Structures

Two types of 50 parallel 2D nanochannel structures (40 nm wide, 30 nm deep, and
300 µm long, as targeting values) with and without pockets (30 nm × 30 nm and 60 nm
× 30 nm, 30 nm deep, as targeting values) were fabricated using the above-mentioned
processes of EBL and plasma dry etching. This is illustrated in Figure S1 in Electronic
Supplementary Information (ESI). The obtained nanochannel structures were characterized
using a field-emission scanning electron microscope (FE-SEM; SU800, Hitachi High-Tech,
Tokyo, Japan), and the channel widths of 13 locations in each of the 20 nanochannels were
measured at equal intervals. The depth of the nanochannel structures was measured using
a stylus surface profiler, and the surface roughness was measured using an atomic force
microscope (AFM; AFM5200S, Hitachi High-Tech, Tokyo, Japan).

2.3. Fabrication and Characterization of Gold Nanogaps

Gold nanogap structures (100 × 100 nm squares, spaced by gaps of 30 nm, as targeting
values) were fabricated using the above-mentioned processes of EBL, physical vapor
deposition, and lift-off, and this is illustrated in Figure S2 in ESI. The obtained gold
nanogaps were characterized by FE-SEM.

2.4. Fabrication and Characterization of Nano-In-Nano Structures

The nano-in-nano structures were fabricated using a multiple-step EBL process
(Figure S3 in ESI) sustained by a high-precision placement control technique previously
developed by us [15,34]. A brief description of the fabrication process is as follows. First,
a pair of cross-shaped marks comprising gold/chromium (Au/Cr, 30 nm/5 nm thick)
was fabricated on a glass substrate using EBL (i.e., 1st EBL), physical vapor deposition,
and lift-off. The cross-shaped marks were several tens of nanometers wide and several
hundreds of nanometers long, and were used as reference marks for detecting the location
of the glass substrate during the following two EBL steps. This is because the placements
of the cross-shaped marks can be precisely detected by scanning with an electron beam
(EB). Then, nanochannels were fabricated on the glass by a second EBL with accurate
placement using the reference marks, dry etching, and EB resist removal. Finally, using
the reference marks again, gold nanogaps (Au/Cr, 30 nm/5 nm thick) were fabricated in
the nanochannels using a third EBL, deposition, and lift-off. The fabricated nano-in-nano
structures were characterized using FE-SEM.

2.5. Fabrication and Characterization of Nanofluidic Devices

Microchannels were dry-etched on a fused-silica glass substrate after photolithography
and the resulting inlet and outlet holes were penetrated using a diamond-coated drill [36].
The nanofluidic chip was obtained by bonding the two substrates comprising micro- and
nanochannels with ultrasmall gold nanogaps (i.e., nano-in-nano components) according to
a gold-pattern-friendly bonding process previously reported by us [15,23,34].

3. Results and Discussion
3.1. Parameter Investigation for Optimization of Chip-Based Nanofabrication Process

EBL and the ensuing plasma dry etching processes involve several intricate parameters,
such as the resist layer thickness, dose time, voltage and beam current of the electron beam,
field size and number of dots, development time, plasma density, etching rate, etching
selectivity, etching time, etc. All of these parameters are involved in the nanofabrication
process; however, in this study, we focused on the resist layer thickness and development
time, considering the required multiple processes in chip-based nanofabrication, which
is different from the general processes for each individual nanopattern transfer steps, as
described below (Figure 1).
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Figure 1. Schematic of the difference in structures of nanochannels fabricated under different
conditions of varying EB resist thickness and development time.

The chip-based nanofabrication process involves two transfer steps (Figure 1). The
first is EBL transfer, which refers to the transfer of the CAD data onto the EB resist surface,
and the second is the plasma dry etching transfer, which involves moving the EB resist
pattern onto the glass surface. In general, for the fabrication of EB resist patterns with
features of the size of tens of nanometers, extremely thin EB resist layer thicknesses are
needed because when the EB resist layer thickness is high, the irradiating electron beam (EB)
scatters on the EB resist layer and the resist pattern-spreads during the first EBL transfer
(Figure 1). However, chip-based nanostructures must be considered for the negative effect
of the second transfer. In the second transfer, the EB resist uses as a glass protection
from plasma dry etching and is etched along with the glass. Therefore, when the resist
layer is too thin, there is a risk that the non-nanochannel glass area is also etched which
results in the ruggedness of the surface (Figure 1). Rugged glass surfaces are not favorable
because they cause failures in chip bonding, which is the final step of nanofluidic device
fabrication [32,36]. Therefore, the EB resist layer should not be too thin. For these reasons,
investigation for determining the appropriate EB resist thickness that is neither thin nor
thick is needed for fabricating chip-based structures with feature sizes of tens of nanometers
(Figure 1).

To determine the optimal resist thickness, the selection ratio of the resist to glass
during plasma dry etching (second transfer) needs to be examined. In this study, the
EB resist solution was diluted three-fold to achieve a sufficiently thin EB resist layer
thickness. As revealed by preliminary experiments, the resist-to-glass selection ratio of
etching (defined as the ratio between the etching rate of resist and the etching rate of glass)
was approximately 1/1 for the case using three-fold diluted resist. Considering that our
target depth of nanochannels was 35–40 nm and the thickness of the resist layer may not be
uniform in the range of tens of nanometers, we determined the target EB resist thickness to
be 70–80 nm to sufficiently prevent the glass area without nanochannels from being etched,
according to our experience.

Figure 2 shows the thicknesses of the EB resist layers fabricated using a spin coater
with varying spin-coating speeds (2500, 3000, 4000, 4300, or 4500 rpm). The EB resist
thicknesses indicated different heights between the glass surface areas coated and uncoated
with the EB resist when measured using the stylus surface profiler. As a result, a negative
linearity was observed between the spin-coating speed and EB resist layer thickness,
indicating that a thinner EB resist layer thickness could be obtained by increasing the
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spin-coating speed (Figure 2). The minimum EB resist layer thickness was 69 nm (rotation
speed of 4500 rpm), but as mentioned above, this condition presents a high risk for the
etching of the glass area without nanochannels (Figure 1). On the other hand, a thickness
of 78 nm (rotation speed of 4300 rpm) presented a reduced risk and matched the target
value (70–80 nm). Therefore, the optimal rotation speed was determined to be 4300 rpm,
which delivered a 78 nm EB resist layer thickness.
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Figure 2. Relationship of the thickness of EB resist layer vs. spin-coating speed.

However, to fabricate chip-based structures with feature sizes of tens of nanometers,
investigation of the EB resist thickness is not sufficient. The development time, which is the
time required to remove the EB-irradiated parts of the resist by dissolving in xylene, must
also be investigated. The development time significantly affects the size of the EB resist
patterns that form the nanochannels in the next transfer, and the optimal time depending on
the EB resist thickness should be considered (Figure 1). Significantly shorter development
times prevent the removal of the EB-irradiated resist from the substrate (Figure 1). On
the other hand, longer development times broaden the developing range than that of
the desired pattern (Figure 1). This is because of the widening of the irradiated portion
due to electron scattering, even if the resist layer thickness is thin. Therefore, adequate
development time and the appropriate EB resist layer thickness are critical parameters for
the successful fabrication of nanostructures with sizes in the order of tens of nanometers.

To investigate the influence of development time, the fabrication of small gold nanogaps
at different conditions of different development times were studied (Figure 3 and Figure S2).
The gold nanogaps were used instead of glass nanochannels because of the features of the
nanostructures can be fabricated easily, efficiently, and accurately, and can be observed
and characterized by FE-SEM, thereby being favorable for numerous experimental stud-
ies required in parameter investigation. FE-SEM has been extensively used to observe
and characterize small nanostructures; however, in principle, the samples (at least at the
surface) must be electrically conductive. When scanned by an electron beam, nonconduc-
tive samples such as glass substrates used in this study accumulate electrostatic charge,
which interferes with the scanning and causes various image artifacts. Hence, it is hard
to directly observe the ultrasmall nanostructures in glass substrates by using FE-SEM.
Coating of electrically-conductive materials by deposition or sputtering is an effective
method to improve the electrical conductivity of surfaces of non-conducting materials
for FE-SEM imaging. The method, however, is not favorable for this study. Although
the additional conductive layer is thin, its thickness is sufficient for hiding the details of
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the ultranarrow nanochannels with linewidths in order of tens of nanometers, making it
difficult to accurately characterize them. In contrast, the gold nanogaps can be used as
ideal samples in parameter investigation for efficient and arcuate FE-SEM observation and
characterization, owing to their excellent electrical conductivity. While the fabrication of
gold nanogaps employs different mechanisms and processes for the second pattern transfer
(additive transfer based on physical vapor deposition) compared to those for nanochannels,
the ability to define an EB resist nanopattern does not change; therefore, the optimized
parameter conditions obtained by using the gold nanogap investigation can be applied to
the fabrication of nanochannels in the glass substrates. In this study, we used the distance
of the gold nanogap as a parameter to investigate the influence of development time.
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The results of the optimization of the development time on the gold nanogap fabri-
cation are shown in Figure 3. The representative gold nanogaps (design value: 100 nm ×
100 nm squares, gap distance 30 nm) fabricated at each development time (15, 23, 30, and
40 s) were observed and characterized using FE-SEM (Figure 3a–c). The results revealed
that the gap distance became smaller with longer development time and disappeared be-
yond a certain time point. At 40 s, which is beyond the optimal development time, several
places were observed where the gold gap were not well formed (Figure 3c). In Figure 3d,
the actual gap distance/design gap distance represents the ratio between the actual gold
nanogap distance and the designed gold nanogap distance (30 nm). The gold nanogaps
with target sizes are considered fabricated in the case where the ratio is close to 1.0. At
30 s, the ratio was closest to 1.0, which indicates that 30 s was the optimal development
time (Figure 3b,d). On the other hand, at 40 s, the ratio was well below 1.0 and its standard
deviation (SD) was quite large (Figure 3d), due to the fact that gold nanogaps were not
well formed at many places in this case as shown in Figure 3c. These results revealed that a
development time of 30 s was optimal for fabricating gold nanogaps and nanochannels
with feature sizes of several tens of nanometers on the glass substrate.

3.2. Fabrication and Characterization of Ultranarrow Nanochannels

The fabrication of ultranarrow nanochannels with tens of nanometer linewidths were
achieved by using the optimized conditions, with a resist layer thickness of 78 nm and a
development time of 30 s. As a demonstration, the fabrication of ultranarrow nanochannels
with a channel width of 40 nm as a target value was performed. Figure 4a,b show repre-
sentative SEM images randomly extracted from the fabricated ultranarrow nanochannels
(depth of 32 nm, measured by a stylus surface profiler). It should be noted that the substrate
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after nanofabrication was spin-coated with a conductive polymer aqueous solution of poly
(isothianaphthenediyl sulfonate) and additives, i.e., ESPACER® (Showa Denko, Tokyo,
Japan), to improve electrical conductivity to some extent for FE-SEM imaging.
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To characterize the lateral line uniformity of the fabricated nanochannel, the width of
each representative nanochannel (Figure 4a,b) was measured for every 40 nm at 13 locations
(Figure 4c,d). In Figure 4c,d, the horizontal axis shows a distance x [nm] from the left end
of the measurement and the vertical axis shows the nanochannel widths at that distance
x [nm]. Also, the yellow dotted line represents the target value of 40 nm, and the blue
line represents the average widths of the fabricated nanochannels shown in Figure 4a,b
measured at 13 locations in the 0–480 nm range (hereafter called “the average widths of
nanochannel a” and “the average widths of nanochannel b”). The results showed that
the average widths of nanochannel a and b were 38.4 ± 1.7 nm and 36.8 nm ± 1.8 nm,
respectively, which were very close to the 40 nm target value. In addition, for both cases
the SD values of the width are less than 2.0 nm, indicating that the fabricated ultranarrow
nanochannels had quite high uniformity of the lateral line. Furthermore, the widths of
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the 20 representative nanochannels were measured at 13 points every 40 nm for each. In
Figure 4e, the horizontal axis shows the nanochannel number of the measured 20 nanochan-
nels (each of 20 nanochannels is numbered 1 to 20 in series, and are referred as nanochannel
1, 2, 3, and so on) and the vertical axis shows the average widths of each numbered
nanochannel. Also, the yellow dotted line represents the target value of 40 nm, and the blue
line represents the average widths of the 20 nanochannels. As a result, the average widths
of the 20 nanochannels was 41.2 nm ± 3.5 nm, which was also very close to the target
value and thus reveals that the accuracy of the fabrication was quite high. In addition, the
small standard deviation (3.5 nm) suggests that there is no significant difference in the
average width among those nanochannels, implying that the precision of the fabrication
was also high.

Due to the ultrahigh surface-to-volume ratios of nanochannels, surface morphology of
the nanochannels dominate a variety of nanofluidic phenomena. Smooth nanochannel wall
is usually favorable and desired for a variety of applications of nanofluidic devices. Hence,
characterization of surface morphology of the fabricated nanochannels is important. Due
to the ultra-narrowness of the fabricated nanochannels in this study, it is difficult to directly
characterize the wall surface of the nanochannels by using AFM, which is a powerful
tool to characterize surface morphology. This is because the micrometer sized cantilever
of AFM is significantly larger than the width of the fabricated narrow nanochannels,
making it difficult to measure the inner walls of the nanochannels. Thus, in this study,
together with the narrow nanochannels, a wide microchannel (145 µm wide, 32 nm deep)
was simultaneously fabricated in the same glass substrate under the same conditions
and was used for indirectly obtaining the morphological information of the fabricated
nanochannels by using AFM. The results (Figure 4f,g) revealed that both the morphologies
of glass surfaces before and after the nanofabrication were homogeneous and exhibited no
significant difference, suggesting that the fabrication process did not cause adverse effects
in the morphology of the glass surface. The root-mean-square roughness (RMS) values
before and after etching were less than 0.3 nm (Figure 4f,g), indicating both surfaces were
very smooth.

Therefore, the optimized fabrication process allows the fabrication of fine nanochan-
nels with ultranarrow linewidths of several tens of nanometers, uniform lateral features,
and smooth morphologies, in an accurate and precise way. In addition, considering the
significantly shorter processing time of EBL coupled with dry etching used in this study
(e.g., EB irritation time was 7.6 min and etching time was 1.3 min for 50 ultranarrow
nanochannels) than that of the FIB milling process (requires several hours even when
fabricating one nanochannel [30]), the optimized fabrication process would be an efficient
way for the ultranarrow nanochannel fabrication.

3.3. Fabrication and Characterization of Ultranarrow Nanochannels with
Ultrasmall Nanocomponents

While standard straight nanochannels are widely used in fundamental studies of
nanofluidics, nanochannels with nanocomponents are strongly desired especially in the
development of potential nanofluidic applications. The optimized fabrication process also
allows the fabrication of ultranarrow nanochannels with ultrasmall nanocomponents. As a
demonstration, we fabricated arrayed ultranarrow nanochannels (40 nm-wide) with square
(30 nm × 30 nm, as targeting values) and rectangular (60 nm × 30 nm, as targeting values)
pockets with zeptoliter volumes (zL, 10−21 L) (Figure 5a).

The substrate after nanofabrication was also spin-coated with ESPACER® to improve
electrical conductivity for FE-SEM imaging (Figure 5b). The details of the two types of
pockets were further characterized using FE-SEM at a large magnification of 200,000×, as
shown in Figure 5c,d. While both types of pockets exhibited broadened openings with
the side connected to the nanochannel being 71.1 nm wide for the square pocket and
78.6 nm wide for the rectangular pocket, and narrowed ends with the side opposite to the
nanochannel being 19.8 nm wide for the square pocket and 18.5 nm wide for the rectangular
pockets in comparison with those of the targeted value (30 nm), the lengths which indicate
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the distance between the opening and the end were 34.5 nm for the square pocket and
66.3 nm for the rectangular pocket. The full width at half maximum (FWHM), which is the
width at the half length between the opening and the end on the Y-axis, was 37.8 nm for
the square pocket and 34.1 nm for the rectangular pocket, and the values for both types
of pockets were quite close to the targeted value. In addition, the volumes were 42 zL
and 77 zL for the square pocket and the rectangular pocket, respectively, according to a
calculation based on the actual contours and the depth (32 nm) of both types of pockets.
Considering that the current studies using nanofluidic structures operate mainly with
volumes at the femtoliter (fL, 10−15 L) to attoliter (aL, 10−18 L) levels, the use of such
ultrasmall pockets hold potential for further extension of nanofluidics to the zL regimes in
the future.
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Figure 5. (a) Schematic and (b) SEM images of ultranarrow nanochannels with zeptoliter (zL, 10−21 L)
pockets. SEM images of nanochannels with ultrasmall (c) square pocket and (d) rectangular pocket
at a large magnification of 200,000×.

3.4. Fabrication and Characterization of Nanochannels Integrated with Ultrasmall Gold Nanogaps

The integration of functional (e.g., chemical, biological, optical, electrical, magnetic,
thermal, etc.) components of dissimilar materials in nanochannels would open new av-
enues in the fusion of nanofluidics with a variety of other fields. The fabrication of
nanochannels integrated with ultrasmall dissimilar material-based nanocomponents was
further demonstrated by incorporating the optimized fabrication process with the nano-in-
nano integration technology previously developed by us [15,34]. The use of nano-in-nano
integration technology enables the fabrication of arbitrary patterns of dissimilar materials
in a closed, small nanochannel. As a demonstration, we fabricated a nanofluidic device
with narrow gold nanogap arrays (20 pairs per nanochannel) in 30 parallel nanochannels
(Figure 6a) by taking advantage of the optimized nanofabrication process. Owing to its
excellent chemical and physical properties, gold is a universal material which has been
employed for fabricating chemical, biological, optical, electrical, and thermal components
in a variety of devices at different scales. In addition, gold nanogaps have exhibited a
wide range of applications in chemistry, physics, nanotechnology, biology, biotechnology,
diagnostics, medicine, photonics, electronics, energy, materials science, and information
science. Therefore, we chose the fabrication of gold nanogap arrays in nanochannels as
the demonstration.
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scopic image of nanochannels with ultrasmall gold nanogaps after the introduction of rhodamine B
solution (9.8 µM).

The fabrication of nanochannels integrated with gold nanogaps of desired distance was
achieved (Figure 6b–e). Among them, the minimum distance between the gold nanogaps
with well-defined straight gap structures was 19.0 nm, as shown in Figure 6d. We also
observed some nanogaps with much smaller gap distances than 19.0 nm (e.g., Figure 6e).
However, such nanogaps were mostly formed by round-shaped gold nanopatterns as shown
in Figure 6e, probably resulting from local imperfect lift-off of gold which usually takes
place in the fabrication of extremely small nanopatterns. In this study, the targets for the
gold nanogap distance were 60 and 30 nm. Figure 6f shows the relationship between the
target value and the average of the experimental value of the gold nanogap distance. The
distances of these nanogaps (n = 11) were measured using FE-SEM. The results show that
the average distances of the fabricated gold nanogaps agreed well with the target values,
revealing that the optimized nanofabrication processes are also applicable to the fabrication
of ultrasmall gold nanogaps in nanochannels.

The substrate comprising the nanochannels integrated with ultrasmall nanogap arrays
was further bonded with another glass substrate comprising two microchannels to form
the nanofluidic device (Figure 6g,h). In addition, introduction of the liquid into the
nanochannels with ultrasmall gold nanogaps was demonstrated by filling a solution
of a fluorescent dye (rhodamine B, 9.8 µM) through an inlet of the nanofluidic device.
The liquid in the nanochannels were observed using a fluorescence microscope (BX53,
Olympus, Tokyo, Japan) with an electron multiplying charge-coupled device (EM-CCD)
camera (iXon Ultra 888, Andor, Oxford Instruments, Belfast, UK). Strong fluorescence
ascribed to rhodamine B was detected in the arrayed nanochannels, indicating that the
liquid was successfully introduced into the nanochannels having ultrasmall gold nanogaps
(Figure 6i). This result suggests that the use of the process established in this study allows
the fabrication of nanofluidic devices with ultrasmall components.

4. Conclusions

In this study, we established a process for the fabrication of ultranarrow nanochannels
and nanochannels with ultrasmall nanocomponents in glass substrates by optimizing the
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nanofabrication process of the EBL coupled with dry etching. The thickness of the EB resist
layer and development time were investigated in detail. The use of the optimized process
allowed the efficient fabrication of fine glass nanochannels with sub-40-nm linewidths,
uniform lateral features, and smooth morphologies in an accurate and precise way. The
established process also enabled the integration of similar or dissimilar material-based
ultrasmall nanocomponents in the ultranarrow nanochannels. The fabrication of such
nanochannel structures is highly desirable for fundamental- and application-oriented
studies in nanofluidics; however, this has remained a challenge. Therefore, we believe
that the established fabrication process would prove exceedingly useful for expanding
fundamental research and initiate further remarkable applications of nanofluidic devices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/mi12070775/s1, Figure S1: Schematic of process for fabricating the nanochannel in the glass
substrate, Figure S2: Schematic of process for fabricating gold nanogaps on the glass substrate,
Figure S3: Schematic of process for nano-in-nano integration guided by the high-precision placement
control technique.
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