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Abstract: MEMS resonators have become core devices in a large number of fields; however, due to
their complex structures, the finite element analysis (FEA) method is still the main method for their
theoretical analysis. The traditional finite element analysis method faces the disadvantages of large
calculation amount and long simulation time, which limits the development of high-performance
MEMS resonators. This paper demonstrates a high-speed and high-accuracy simulation tool based
on the artificial neural network, where a multilayer perceptron (MLP) neural network model is
constructed. The typical structural parameters of MEMS resonator are used as the input layer, and
its performance indicators produced by the finite element analysis method are the output layer.
After iteratively trained with 4000 samples, the cumulative error of the neural network decreases
to 0.0017 and a prediction network model is obtained. Compared with the finite element analysis
results, the structural accuracy error predicted by the neural network model can be controlled within
6%, but its runtime is shortened by 15,000 times. This high-speed and high-accuracy mathematical
modeling method can effectively improve the analyzing efficiency and provide a promising tool
for the design and optimization of different complex MEMS resonators, which exhibit remarkable
accuracy and speed.

Keywords: mathematical modeling; finite element analysis; artificial neural network; multilayer
perceptron neural network; structural optimization design

1. Introduction

With the development of the modern technology, micro-electro-mechanical system
(MEMS) devices have become an important branch of the core sensor field [1–9]. Due to
its advantages of small size, low cost and mass production, MEMS devices have attracted
the attention of many research teams and commercial companies, dramatically increasing
their demands [10,11]. Among these devices, the structure of MEMS resonators is the core,
which determines their performance. Therefore, analyzing and evaluating the performance
of MEMS resonator structures is a key step to promote the application and development
of MEMS devices, which is also the direction that many research teams are committed to
study and has been reported in many literatures [12]. However, the complex topological
structure and numerous parameters make this research particularly difficult.

According to previous research, the performance of the MEMS resonators is usually
obtained by finite element analysis method with related simulation software. The finite
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element analysis is a numerical solution method that uses mathematical approximations
to simulate real physical systems [13,14]. However, as for a complex MEMS resonator
structure, under the combined influence of topological structure and mesh density, the
finite element analysis method will take a long time to do the simulation, which severely
limits the progress rate of structural design. As a result, the development of a novel high-
speed and high-accuracy mathematical modeling method for complex MEMS resonator
structures is urgent.

The artificial neural network (ANN) is an algorithmic mathematical model that imi-
tates the behavioral characteristics of animal neural networks and performs distributed
and parallel information processing [15–17]. It has preliminary self-adaptation and self-
organization capabilities. In the learning or training process, by changing synaptic weight
values, this model can be adapted to the requirements of the environment. As a result, the
artificial neural network and the finite element analysis method can be combined flexibly.
The artificial neural network model is trained on the basis of an appropriate amount of
finite element analysis result dataset, so that it can accurately predict the finite element
analysis process and provide an efficient and convenient simulation tool. In this case, it
can effectively replace the long-term finite element simulation process and improve the
efficiency of the analysis.

In this paper, a high-speed and high-accuracy method based on the multilayer percep-
tron neural network is put forward to mathematically simulate complex MEMS resonator
structures. The disk MEMS resonator is taken as the research object. It is a complex
topological structure determined by multiple structural parameters, with typical represen-
tativeness and research value. In the following sections, the basic structural parameters
and performance indicators of the disk MEMS resonator are analyzed. At the same time,
the finite element analysis method is introduced and used to simulate the disk MEMS
resonators’ performance, to provide enough training and testing data. Then, the theoret-
ically analysis of the multilayer perceptron neural network and its model structure are
studied. Furthermore, the structural performance indicators learned by the neural network
according to the prepared dataset are compared with the finite element analysis results.
Finally, the basic principles for the application of the multilayer perceptron neural network
in MEMS resonators are concluded.

2. Disk MEMS Resonator
2.1. Structure Description

The disk MEMS resonator is a typical distributed mass structure, which is composed
of multiple connected beams and rings [18,19]. Its key structural parameters include height,
spoke width, ring width, ring gap, anchor radius and ring number, which contribute
to its final performance indicators. Numerous structural parameters make the structure
of the disk MEMS resonator relatively complex and hard to be modeled. The structure
of a typical wafer-level disk MEMS resonator is shown in Figure 1a, which is mainly
composed of a substrate, an oxidizing isolation layer, a resonant structure, and multiple
electrodes [20]. The silicon-based substrate is used to carry the resonant structure and
electrodes. Its oxidation isolation layer is used to be insulated. The resonant structure is
the core component of the resonator, as shown in Figure 1b, which is mainly connected by
a plurality of concentric rings and spokes. The gaps between those rings are used to place
electrodes to drive, detect and tune the disk MEMS resonator.

Obviously, the structure of the disk MEMS resonator is relatively complicated, with
numerous structural parameters. In order to facilitate the subsequent analysis, the main
structural parameters are defined as follows: the thickness of the structure layer H, the
number of resonant rings N, the ring thickness Rw, the gap between rings (spoke length)
G, the radius of the anchor r, and the width of the spoke Sw. It is worth noting that
because the structure of disk MEMS resonator is composed of multiple nested rings, a
typical structure contains multiple Rw, G, and Sw. These values at the position of the
ith ring can be expressed as Rwi, Gi, and Swi, where i = 1, 2, . . . , N; these values can be
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different from each other. Through these parameters, a typical disk MEMS resonator can
be completely designed.
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In addition, it is reasonable that the structural parameters of disk MEMS resonators
are not unlimited. According to prior knowledge and previous experience, these structural
parameters can be constrained in reasonable value ranges. Using values in the interval for
structural design can be purposeful and directional, and can effectively reduce the number
of trial and error. The value ranges of different structural parameters of the disk MEMS
resonator used in the design process of this paper are shown in Table 1.

Table 1. The structural parameter range table of the disk MEMS resonator.

Structural Parameter Symbol Value Range Unit

Height H 100:100:500 µm
Anchor radius r 1.5:0.5:5 mm
Ring number N 5:1:20 1
Ring width Rw 3:2:30 µm
Ring gap G 100:20:600 µm

Spoke width Sw 3:2:30 µm

The complex structure and numerous parameters pose a huge challenge to the disk
MEMS resonator’s design and analysis process. To achieve a reasonable design and
improve the resonator’s performance, an accurate performance evaluation is required.

2.2. Core Performance Indicators

The characteristics of the resonant structure determine the ultimate performance
of the MEMS resonator. As a typical representative, the performance of a disk MEMS
resonator can be mainly characterized by its mechanical structure performance indicators,
thermodynamic performance indicators, and electrical performance indicators [12].

2.2.1. Fundamental Frequency

The disk MEMS resonator is a typical representative of MEMS sensors that works in
a specific operating mode [21]. The fundamental frequency of the operating mode is one
of the core performance indicators. It is mainly determined by the resonator’s material
properties and structural characteristics. When the disk MEMS resonator is excited by the
resonance frequency of its operating mode, its dynamic response can be amplified and its
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sensitivity can be improved. For a common traditional mass-stiffness system, its resonant
frequency can be calculated as:

fi =

√
ki
mi

(1)

2.2.2. Quality Factor

In addition, the quality factor (Q) is the key indicator to evaluate the dynamic char-
acteristics of the resonator, and a resonator with a higher quality factor will have better
performance characteristics. It is an evaluation of the energy dissipation and damping
characteristics in the micromechanical resonator system, which is mainly affected by the
damping loss. The energy of the resonator will be dissipated in the form of heat during
a period of movement. There are different energy loss mechanisms in MEMS resonators,
including thermoelastic damping, air damping, anchor loss, surface loss, etc. For the disk
MEMS resonator, in order to improve its vibration stability and reduce the power consump-
tion of the system, it is generally expected that it has a higher quality factor characteristic.
It can be obtained from Equation (2) that the total quality factor is limited to the smallest
one of its many quality factors:

1
Q

=
1

QThermoelastic
+

1
Qair

+
1

Qanchor
+

1
Qsur f ace

+
1

Qother
(2)

For the disk MEMS resonator, due to its symmetrical planar structure, its support loss
can be neglected; at the same time, since the MEMS resonator usually adopts a mature
high-vacuum packaging process, its air loss can also be controlled in a very small range.
Therefore, the thermoelastic damping is the key factor, which could be explained by the
Zener’s formalism [22]. It is mainly determined by the resonant structure parameters and
material properties [23,24]. Therefore, in order to improve the theoretical quality factor of
the disk MEMS resonator, optimizing its geometry and size is a common method to reduce
the thermoelastic damping.

2.2.3. Mechanical Sensitivity

The output of the disk MEMS resonator contains effective signals and error signals,
so that one of the designing goals is to improve the resonator’s signal-to-noise ratio,
which could be described by the mechanical sensitivity. The mechanical sensitivity is an
important parameter that characterizes the resolution of the detection axis displacement
of the resonator in the force feedback control mode. It determines the accuracy of the
resonator system. The expression of the mechanical sensitivity of the classic disk MEMS
resonator can be expressed in Equation (3) [25]:

Smech =
2k|x|√(

ω2
0

ωd
−ωd

)2
+ 4

τ2
0

(3)

where k is the Coriolis coupling coefficient, x is the amplitude of the resonator when it
is working, ω0 is the natural frequency of the working mode, ωd is the frequency of the
driving signal, and τ0 is the decay time constant of the working mode, which is related to
the quality factor of the resonator.

2.2.4. Mechanical Thermal Noise

The resolution of the disk MEMS resonator is mainly determined by the mechanical
thermal noise and the circuit noise. The mechanical thermal noise determines the limit
resolution of the disk MEMS resonator and is closely related to its structural parameters
and material properties. The mechanical thermal noise is random motion caused by the
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Brownian thermal motion of the MEMS resonator structure itself, the expression of which
is shown in Equation (4) [26]:

ΩBrown =
1

k|x|

√
2kBT
ke f f τ0

(4)

where kB is the Boltzmann’s constant, T is the absolute temperature, and keff is the equivalent
stiffness coefficient of the working mode of the resonator.

In summary, the core performance indicators of the disk MEMS resonant gyroscope
studied in this paper are shown in Table 2.

Table 2. The core performance indicators table of the disk MEMS resonator.

Core Performance Indicators Symbol Unit

Fundamental frequency f0 Hz
Quality factor Q 1

Mechanical sensitivity Smech m/(◦/s)
Mechanical thermal noise Ωbrown

◦ /
√

h

2.3. Finite Element Analysis Method

In the designing process, it is necessary to obtain theoretical performance indicators of
the disk MEMS resonator. These performance indicators can be used to obtain feedback and
optimize the structural design parameters. Therefore, the finite element analysis method is
applied to provide related simulation research.

The basic idea of the finite element analysis method is to discretize the structure
and use a finite number of easy-to-analyze elements to represent complex objects. The
elements are connected to each other through a finite number of nodes, and then they are
comprehensively solved according to the deformation coordination conditions. However,
the meshing density has a great influence on the accuracy of simulating results. The higher
accuracy of finite element analysis, the more computing time and computing resources
are required.

In this paper, the finite element analysis simulation is used to provide enough sim-
ulation results for different disk MEMS resonators, which will be used as the training
dataset and testing dataset. To make samples more representative and disorderly, the
structural parameters of the disk resonator studied in the paper are randomly selected
from the corresponding value range, and then simulated by simulation software to extract
its performance indicators. In order to visually show the changes in disk MEMS resonators’
structures, some typical disk resonator structures with only one single structural parameter
changed are selected and displayed in Figure 2. In the actual simulation process, the
structural parameters of the disk resonator are changed together by multiple parameters,
and are not limited to changing only one single parameter. At the same time, their changing
order and trend are also random.
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3. Multilayer Perceptron Neural Network Model

A neural network is a widely parallel interconnected network composed of adapt-
able simple units [27]. According to the input of the system, by constructing a neural
network structure and adjusting the distribution weight of neurons and the number of
propagation layers, the corresponding system response output can be obtained. Based on
the characteristics of the neural network, it can be applied to other fields of engineering
and scientific research.

Through extensive training datasets, the neural network structure is optimized, and
the ideal output value can be reasonably predicted based on the input value. Therefore,
proper neural network structure parameters are the key to the high speed and high accuracy
of prediction. Due to the complex structure, it is extremely difficult to manually modify
and optimize its structure parameters, and machine learning methods can be used to
optimize it [28]. The machine learning method can effectively improve the optimization
efficiency, greatly reduce the optimization time, and realize the rapid convergence of the
neural network structure. It is a typical regression task using the neural network to learn
the simulation process of the finite element analysis method. Therefore, based on the
neural network and machine learning method, this paper proposes a high-speed and
high-accuracy simulation analyzer, and its top-level architecture is shown in Figure 3.

3.1. Dataset Definition

Machine learning is an algorithm that uses a large amount of historical data to dig
out the hidden laws, which could be used for prediction or classification [27]. The general-
ization error of the learning algorithm could be evaluated through an experimental test.
The overall dataset can be divided into two mutually exclusive sets. One set is used as the
training set S to guide the update iteration of the learning algorithm; the other set is used
as the test set T to test the learning algorithm’s ability to analyze new samples. In this case,
the basic idea is to first train the model within the training set S, and then verify it on the
test set T, and evaluate the test error as an estimate of the generalization error.

In order to ensure the validity of the dataset, it is necessary to maintain the consistency
of the data distribution when dividing the training set and the test set. This paper adopts
a dual random classification method: firstly, in the process of generating the parameters
of the dataset, the method of randomly picking values in the parameter interval is used
to generate the dataset; then, when dividing the training set and the test set, the random
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sampling method is used to divide. These methods can effectively reduce the subjective
error introduced when the dataset is classified, and ensure the uniformity and consistency
of the dataset distribution. In this case, the additional bias introduced by the input division
process can be avoided.
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In this paper, we randomly generated 4000 sets of data, and randomly selected
3200 sets of data as the training set for the machine learning on the neural network struc-
ture; the remaining 800 sets of data were used as the test set to detect neural network
models’ accuracy and reliability.

3.2. Multilayer Perceptron Neural Network

The multilayer perceptron neural network is also called the artificial neural network,
which introduces one or more hidden layers on the basis of a single-layer neural net-
work [27,29]. In addition to the input and output layers, there are multiple hidden layers in
the middle. The simplest MLP model only contains one hidden layer, which is a three-layer
structure. It is a composite architecture composed of multiple neurons in an orderly dis-
tribution. Its core mainly includes two parts: a feedforward neural network and an error
back propagation algorithm. The following subsections will systematically describe the
multilayer perceptron model constructed in this paper.

3.2.1. M-P Neuron Model

A neural network is a composite structure composed of multiple neurons, and its
basic unit is a neuron [27]. The used neuron model in this paper is the M-P neuron model
proposed by McCulloch and Pitts [30], which could be described in Figure 4. In this
model, the neuron receives input signals from n other neurons, and these input signals are
transmitted through weighted connections. The total input value received by the neuron
will be compared with the neuron’s threshold θ, and then processed through the activation
function f(·) to produce the neuron’s output.
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In our model, the output of a single neuron can be expressed as:

y = f

(
n

∑
i=1

wixi − θ

)
(5)

where xi and wi (i = 1, 2, 3, . . . , n) are the inputs of the neuron and the weight coefficients,
respectively. θ is the threshold of the neuron and f(·) is its activation function, which is
used to process the input signal of the neuron to generate its output signals.

However, since the structural analysis of the MEMS resonator is a complex nonlinear
problem, this simple linear model is obviously limited. Therefore, in order to make the
model better reflect the actual condition, the Sigmoid function is taken as the activation
function in this paper, which can make the neural network arbitrarily approximate any
nonlinear function [28]. The mathematical expression of Sigmoid activation function is
as follows:

sigmoid(x) =
1

1 + e−x (6)

3.2.2. Multi-Layer Feedforward Neural Networks

Generally, it is believed that the typical structural parameters of disk MEMS resonators
are independent of each other and do not affect each other; at the same time, all structural
parameters have an impact on the final performance indicators of the resonator. As a result,
the multilayer perceptron architecture is applied in this paper. The multilayer perceptron
model is a typical multilayer feedforward neural network. In this neural network structure,
neurons in each layer are fully interconnected with neurons in the next layer, indicating
that the neurons in the bottom layer all contribute to the state of the neurons in the next
layer; there is no connection between neurons in the same layer, indicating that neurons in
the same layer are independent of each other and do not affect each other; at the same time,
there is no cross-layer connection.

The first step of the multilayer perceptron architecture is to transfer the signal from
the input layer to the output layer, which is the process of forward propagation. Forward
propagation refers to the process of gradually transferring information from the first layer
to the high-level layer. The forward propagation schematic diagram of the three-layer
multilayer perceptron model is shown in Figure 5.
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Figure 5. The forward propagation schematic diagram of the three-layer multilayer perceptron model.

Figure 5 exhibits the three-layer feedforward propagation network structure used in
this paper, which contains d input neurons, q hidden neurons, and l output neurons. The
initial input information of the model is [x1, x2, . . . , xd], and the final output information
is [y1, y2, . . . , yl]. In this model, the threshold of the hth neuron in the hidden layer is
represented by γh, and the threshold of the jth neuron in the output layer is represented by
θj. In addition, the connection weight between the ith neuron in the input layer and the
hth neuron in the hidden layer is vih, and the connection weight between the hth neuron in
the hidden layer and the jth neuron in the output layer is whj. The activation function of
the hidden layer is f(·) and the activation function of the output layer is g(·). Therefore, the
input signal received by the hth neuron in the hidden layer is shown in Equation (7):

αh = ∑d
i=1 vihxi (7)

The input signal received by the jth neuron in the output layer is as follows:

β j = ∑q
h=1 whjbh (8)

Among them, bh is the output of the hth neuron in the hidden layer, which can be
expressed as:

bh = f (αh − γh) = f
(
∑d

i=1 vihxi − γh

)
(9)

As a result, the final output signal of the jth neuron in the output layer of the perceptron
can be expressed as:

yj = g
(

β j − θj
)
= g

(
∑q

h=1 whjbh − θj

)
= g

[
∑q

h=1 whj · f
(
∑d

i=1 vihxi − γh

)
− θj

]
(10)

Finally, the matrix expression of the forward propagation model of the entire three-
layer perceptron can be obtained:
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y =



y1
...

yj
...

yl

 = g





w11 · · · w1h · · · w1q
...

. . .
...

. . .
...

wj1 · · · wjh · · · wjq
...

. . .
...

. . .
...

wl1 · · · wlh · · · wlq





b1
...

bh
...

bq

−


θ1
...

θj
...
θl



 = g

w



b1
...

bj
...

bq

− θ



= g

w · f





v11 · · · v1i · · · v1d
...

. . .
...

. . .
...

vh1 · · · vhi · · · vhd
...

. . .
...

. . .
...

vq1 · · · vqi · · · vqd





x1
...

xi
...

xd

−


γ1
...

γh
...

γq



− θ

 = g(w · f (vx− γ)− θ)

(11)

3.2.3. Error Back Propagation Algorithm

Another core task is updating the multilayer perceptron model’s structural parameters,
where the error back propagation algorithm is applied in this paper. The back propaga-
tion of the loss function from the top layer to the bottom layer was used to realize the
updating optimization of these parameters [27,31]. In this model, the mean squared error
characterizes the degree of difference between the predicted value of the neural network
and the theoretical value, which is used to express the learning accuracy of the multilayer
perceptron neural network. According to Equation (5), for the training example (xk, yk), the
output of the neural network can be expressed as:

ŷk =
(

ŷk
1, ŷk

2, · · · , ŷk
l

)
(12)

where:
ŷk

j = f
(

β j − θj
)
, j = 1, 2, · · · l (13)

Therefore, the mean squared error of this neural network on the training set (xk, yk) is
as follows:

Ek =
1
2

l

∑
j=1

(
ŷk

j − yk
j

)2
(14)

In the three layers perceptron neural network designed in this paper, as shown in
Figure 5, a total of (d + l + 1) × q + l network parameters need to be optimized: d × q
weight values from the input layer to the hidden layer, q × l weight values from the hidden
layer to the output layer, q thresholds of hidden layer neurons, and l thresholds of output
layer neurons.

The error back propagation algorithm used in this paper is based on a gradient descent
strategy, which optimizes the parameters in the direction of the negative gradient of the
target. The learning rate η ∈ (0, 1) controls the update step size in each iteration of the
algorithm. For the connection weight whj from the hidden layer to the output layer, when
the learning rate is η, its updated value can be expressed as:

∆whj = −η
∂Ek
∂whj

(15)

According to the forward propagation network model, it is obvious that whj first
affects the input value βj of the jth output layer neuron, then affects its output value ŷk

j ,
and finally affects Ek, so:

∂Ek
∂whj

=
∂Ek

∂ŷk
j
·

∂ŷk
j

∂β j
·

∂β j

∂whj
(16)
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Combined with Equation (8), it can be seen that:

∂β j

∂whj
= bh (17)

In this paper, the activation functions of both the hidden layer and the output layer
adopt the Sigmoid function, which has a good property to satisfy the following derivative:

f ′(x) = f (x)(1− f (x)) (18)

On this basis, combining Equations (13) and (14), we obtain:

gj = −
∂Ek

∂ŷk
j
·

∂ŷk
j

∂β j
= −

(
ŷk

j − yk
j

)
f ′
(

β j − θj
)
= ŷk

j

(
1− ŷk

j

)(
yk

j − ŷk
j

)
(19)

Substituting Equations (17) and (19) into Equation (16), and then substituting the result
into Equation (15), the updated equation for whj in the error back propagation algorithm
can be expressed as:

∆whj = ηgjbh (20)

In the same way, other updated equations can be obtained:

∆θj = −ηgj (21)

∆vih = ηehxi (22)

∆γh = −ηeh (23)

where:

eh = −∂Ek
∂bh
· ∂bh

∂αh
= −

l

∑
j=1

∂Ek
∂β j
·

∂β j

∂bh
f ′(αh − γh) =

l

∑
j=1

whjgj f ′(αh − γh) = bh(1− bh)
l

∑
j=1

whjgj (24)

As for the multilayer perceptron neural network, the goal of the error back propagation
algorithm is to minimize the cumulative error on the training set:

E =
1
m

m

∑
k=1

Ek (25)

Therefore, the cumulative error back propagation algorithm gets the errors of the
entire training set before updating and optimizing the parameters. The working flow chart
of the error back propagation algorithm used in this paper is displayed in Table 3. For each
training example, the error back propagation algorithm performs the following operations:
(1) first provide the input example to the input layer neuron, and then forward the signal
layer by layer until the output layer result is produced; (2) calculate the output layer’s
error (corresponding to Process 4 to Process 5 in the Table 3), and then propagate the error
back to the hidden layer neuron (corresponding to Process 6 in the Table 3); (3) finally,
adjust the connection weights and thresholds based on the error of the hidden layer neuron
(corresponding to Process 7 in the Table 3). This iterative process is repeated until the
stopping condition is satisfied. The stop condition used in this paper is that the cumulative
error is less than 10−3 or the number of iterations exceeds 105.
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Table 3. The working flow chart of the error back propagation algorithm used in this paper.

Input: The training dataset D = {(xk, yk)}m
k=1 and the learning rate η.

Process:

1 Randomly initialize all connection weights and thresholds in the
network within the range of (0, 1).

2 repeat

3 for all (xk, yk) ∈ D do

4 Calculate the output value ŷk of the current sample according to
the current parameters and Equation (13).

5 Calculate the gradient index gj of the neurons in the output layer
according to Equation (19).

6 Calculate the gradient index eh of the hidden layer neuron
according to Equation (24).

7 Update the connection weights whj, vih and thresholds θj, γh in the
neural network according to Equations (20)–(23).

8 end for

9 until satisfies the stop condition (the cumulative error is less than
10−3 or the number of iterations exceeds 105).

Output: Multi-layer perceptron neural network after optimizing connection
weights and thresholds.

4. Discussion
4.1. Neural Network Structure Parameters

In this paper, a traditional three-layer perceptron neural network as the deep learning
tool to build a high-speed and high-accuracy mathematical modeling analysis model is
explored. In this neural network structure, the number of the input layer’s neurons d is
equal to the number of the typical disk MEMS resonator’s basic structural parameters,
while the number of the output layer’s neurons l is equal to the number of the resonator’s
core performance indicators. Considering the complexity and accuracy of the model, the
number of neurons in the hidden layer of the neural network built in this paper is set as
(d + l) × 30 [27,32]. The learning rate is 0.01 and the activation functions are both Sigmoid
functions. The stop condition of the training process is that its cumulative error is less than
10−3 or the number of iterations exceeds 105.

4.2. Neural Network Learning Performance

The multilayer perceptron neural network needs to be trained before performing the
prediction process. The automatic structural parameters generator produces 4000 different
typical disk MEMS resonator samples, which are divided as the training dataset and the
testing dataset. With these sample data, the multilayer perceptron neural network steps
into the training process. To obtain an effective mathematical modeling tool with high
speed and high accuracy, the entire training process takes about 516 min by using an
NVIDIA GeForce GTX 1660Ti graphics cards. With more advanced equipment, both the
training time and the runtime can be potentially further reduced. The cumulative error
curves of the multilayer perceptron neural network are displayed in Figure 6. It is obvious
that with the increasing of the iterations, the cumulative errors of the training data and the
testing data both decrease gradually, which are 0.0017 and 0.0063 in the end, respectively.
It proves that the cumulative error of the multilayer perceptron neural network reaches a
satisfying level.

Generally, the evaluation indicators of the neural network learning performance are
the prediction speed and the prediction accuracy. In the evaluating process, the perfor-
mance of our high-speed and high-accuracy mathematical modeling tool generated by the
multilayer perceptron neural network is compared with the corresponding performance
produced by the traditional finite element analysis, which is set as the reference.
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In order to fairly compare the runtime of different methods, these two methods
dealt with the same structural models under the same computer configuration. Firstly,
the automatic structural parameters generator produces 800 new typical disk MEMS
resonator’s structural parameters. Then, these two methods both simulates or predicts
these samples’ performance indicators. The runtime for 200 samples comparison between
the traditional finite element analysis method and the neural network analyzer based on
the multilayer perceptron neural network is shown in Figure 7. The average runtime for the
traditional finite element analysis method is 496 (±30) minutes per 200 samples, while the
time consumption of the neural network for the same work is only 0.033 (±0.001) minutes.
It is obvious that the comparation speed of the neural network is much higher than the
traditional finite element analysis speed. The calculation speed of the neural network is
nearly about 15,000 times that of the finite element analysis speed, exhibiting excellent
calculation characteristics and effectively shortening the simulation time.
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In the process of evaluating the accuracy of the predictions produced by the multi-
layer perceptron neural network, the corresponding simulation results produced by the
traditional finite element analysis method are chosen as the reference. The comparison
between performance indicators calculated by the finite element analysis method and
predicted by the multilayer perceptron neural network is depicted in Figure 8. In order to
better characterize the cumulative error of the neural network, all the performance index
parameters of the disk MEMS resonator are normalized. The accuracy of the multilayer per-
ceptron neural network is defined by the mean squared error Ek, as shown in Equation (17),
which could be represented by the matching degree of the predictions from the neural
network and the simulation results produced by the finite element analysis method. It
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is obvious that the training dataset and test dataset for different performance indicators
both scatter around the straight line y = x. Moreover, the mean squared errors for different
performance indicators of this neural network are all less than 0.06. It has been proved that
the multilayer perceptron neural network has a high prediction accuracy and there is no
overfitting problem.

Micromachines 2021, 12, x FOR PEER REVIEW 14 of 16 
 

 

 
Figure 8. Predicted performances of automatically produced disk MEMS resonators given by the 
neural network analyzer based on the multilayer perceptron neural network compared with the 
traditional finite element analysis method. (a) The comparison with the fundamental frequency, 
where 𝑓 is normalized fundamental frequency reference; (b) the comparison with the quality fac-
tor, where Q0 is normalized quality factor reference; (c) the comparison with the mechanical sensi-
tivity, where 𝑆  is normalized mechanical sensitivity reference; (d) the comparison with the me-
chanical thermal noise, where Ω௪  is normalized mechanical thermal noise reference. 

Obviously, the neural network model after training has reached a very good accuracy 
and speed, which is of great significance for reducing repetitive work. Since the neural 
network is a learning model based on prior knowledge, it needs to provide certain data 
for its learning and training, so that the time cost of pre-training needs to be taken into 
consideration. Although it takes a certain amount of time for the neural network to grasp 
the internal characteristics of the resonator, this time is very short in a long time span. It 
can realize the fast simulation of the resonator’s performance under fixed constraints, 
greatly reducing the time-consuming and long repetitive work. In addition, the multilayer 
perceptron network also has great application potential in other fields. For the multilayer 
perceptron network, it does not care about the internal physical connection, but focuses 
on the connection between inputs and outputs. Therefore, for the problem of clarifying 
the input and output of the system, the multilayer perceptron neural network can obtain 
an ideal system architecture through learning and training with sufficient sample data 
[27–32]. It has important significance and value for the optimization and simulation of 
structural parameters in specific scenarios, and greatly improves design efficiency. 

5. Conclusions 
The complete procedures of the multilayer perceptron neural network have been dis-

cussed in detail in this paper. To provide enough samples, an automatic structural param-
eter generator is applied to produce different data within reasonable regions. The error 
back propagation algorithm is used to update the connection weights and thresholds in 

Figure 8. Predicted performances of automatically produced disk MEMS resonators given by the
neural network analyzer based on the multilayer perceptron neural network compared with the
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where Q0 is normalized quality factor reference; (c) the comparison with the mechanical sensitivity,
where S0

mech is normalized mechanical sensitivity reference; (d) the comparison with the mechanical
thermal noise, where Ω0
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Obviously, the neural network model after training has reached a very good accuracy
and speed, which is of great significance for reducing repetitive work. Since the neural
network is a learning model based on prior knowledge, it needs to provide certain data
for its learning and training, so that the time cost of pre-training needs to be taken into
consideration. Although it takes a certain amount of time for the neural network to grasp
the internal characteristics of the resonator, this time is very short in a long time span.
It can realize the fast simulation of the resonator’s performance under fixed constraints,
greatly reducing the time-consuming and long repetitive work. In addition, the multilayer
perceptron network also has great application potential in other fields. For the multilayer
perceptron network, it does not care about the internal physical connection, but focuses on
the connection between inputs and outputs. Therefore, for the problem of clarifying the
input and output of the system, the multilayer perceptron neural network can obtain an
ideal system architecture through learning and training with sufficient sample data [27–32].
It has important significance and value for the optimization and simulation of structural
parameters in specific scenarios, and greatly improves design efficiency.
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5. Conclusions

The complete procedures of the multilayer perceptron neural network have been
discussed in detail in this paper. To provide enough samples, an automatic structural
parameter generator is applied to produce different data within reasonable regions. The
error back propagation algorithm is used to update the connection weights and thresholds
in the neural network. The time consumption for optimizing the neural network structure
is about 516 min after iterating 105 dealing with 4000 samples. It is worth noting that the
cumulative error of the multilayer perceptron neural network decreases to 0.0017 in the
end, proving that the training performance of the neural network reaches a satisfying level.

This study has proven that when dealing with the same samples, the time consumption
of the neural network is less than 1/15,000 of the time required for the finite element
analysis, exhibiting excellent calculation characteristics. Moreover, the prediction accuracy
of the neural network remains a remarkable level after an adequate training process.
Compared with the traditional finite element analysis method, the mean squared errors for
different performance indicators of this neural network are all less than 0.06. As a result,
it can be concluded that the predication tool based on the multilayer perceptron neural
network achieves a high speed and accuracy level.

The high-speed and high-accuracy mathematical modeling technology is a product
of the artificial neural network in the traditional MEMS resonator design process, and it
has great potential in enhancing the designing performance. It has been proved that it is a
good method to accelerate the predication speed while considering the accuracy. Moreover,
it is demonstrated that the artificial neural network model can provide a promising tool for
the design and optimization of structures. This mathematical modeling method presented
in this work is suitable for other MEMS devices, which can be applied in the optimization
design after suitable training process.
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