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Abstract: To precisely achieve a series of daily finger bending motions, a soft robotic finger cor-
responding to the anatomical range of each joint was designed in this study with multi-material
pneumatic actuators. The actuator as a biomimetic artificial joint was developed on the basis of
two composite materials of different shear modules, and the pneumatic bellows as expansion parts
was restricted by frame that made from polydimethylsiloxane (PDMS). A simplified mathematical
model was used for the bending mechanism description and provides guidance for the multi-material
pneumatic actuator fabrication (e.g., stiffness and thickness) and structural design (e.g., cross length
and chamber radius), as well as the control parameter optimization (e.g., the air pressure supply). An
actuation pressure of over 70 kPa is required by the developed soft robotic finger to provide a full
motion range (MCP = 36◦, PIP = 114◦, and DIP = 75◦) for finger action mimicking. In conclusion, a
multi-material pneumatic actuator was designed and developed for soft robotic finger application
and theoretically and experimentally demonstrated its feasibility in finger action mimicking. This
study explored the mechanical properties of the actuator and could provide evidence-based techni-
cal parameters for pneumatic robotic finger design and precise control of its dynamic air pressure
dosages in mimicking actions. Thereby, the conclusion was supported by the results theoretically and
experimentally, which also aligns with our aim to design and develop a multi-material pneumatic
actuator as a biomimetic artificial joint for soft robotic finger application.

Keywords: biomimetic artificial joints; multi-material actuator; pneumatic bellows; mathematical
model; soft robotic finger

1. Introduction

Soft actuators have been widely applied in soft artificial muscles [1], soft gripper [2]
and wearable rehabilitation [3] since they are compliant and intrinsically suited for contact-
ing soft tissue [4]. The soft actuators commonly consist of internal channel(s) for pneumatic
or hydraulic supply and reinforced with fiber to improve actuation [5]. However, when
compared with pneumatic supply, soft actuators driven by hydraulic supply usually have
a heavier structure with limitations in degrees of freedom and bending motion. Thereby,
the soft pneumatic actuator is lightweight, flexible, and compatible for human–machine in-
teractions [6], and the inner pneumatic chambers could offer a smooth and flexible bending
motion that makes them the ideal components of soft robotic fingers [7,8]. The extensively
used materials for soft actuators [9], such as electroactive polymers [10], shape memory
polymers and alloys [11], and hyper-elastic elastomers [12], could provide flexibility and
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output force in the deformation. However, the inherent low stiffness in the soft actuator usu-
ally could not provide enough force output, which results in failures in object grasping [13].
Although actuators with high stiffness could bear a heavy load, they have some limitations
in adapting to diverse shapes of objects during manipulating in practical applications [14].
Pressure-driven soft actuating materials rely on external pneumatic forces to spatially strain
the actuator for working [15,16]. This actuation scheme requires a stiffness gradient or a
special structure design to generate anisotropic motions and more sophisticated deforma-
tions [17,18]. Purely elastic materials do not dissipate energy when a load is applied and
thus exhibit virtually no loss modulus [19]. By contrast, viscoelastic materials (such as poly-
dimethylsiloxane [PDMS]) exhibit viscous and elastic properties [20,21]. Rehman et al. [22]
used to develop a novel monolithic PDMS-based dual-channel bellows-structured pneu-
matic actuator that fabricated through a sacrificial molding technique which has also been
adopted for the fabrication of microfluidic device in our previous study [23]. Additionally,
the commercially available product PneuNets adopted molded elastomeric material and
attach it to a stiffer material to make the multi-material actuator with an extensible top layer
and an inextensible bottom layer [24]. Commonly, multi-material actuator composed of soft
and stiffer materials to make good use of their characteristics, while the soft one generates
deformation and the stiffer to restrict swelling effect and support bending. Therefore, a
novel pneumatic actuator design based on multi-materials could improve its robustness
and repeatability in performance.

With respect to the design methods, the soft actuator are usually measured through
experiments or analyzed using mathematical and finite element model [25,26]. However,
the finite element model is difficult to construct because of the highly nonlinear charac-
teristics of the applied material and the complex coupling between the human fingers
and the actuator [27]. Polygerinos et al. [28] recently presented a quasistatic model for
a soft fiber-reinforced actuator to analyze the bending angle and the contacting force of
object. Ding et al. [29] proposed a soft multi-material pneumatic actuator on the basis of
principal strain field. Kumar et al. [30] designed a flexible bandage system on the basis
of a polymeric stress memory actuator, and Ghate et al. [31] designed a bendable, soft,
pneumatic silicone rubber actuator prototype and built a corresponding mathematical
model to characterize its mechanical behavior. In addition, Taigo et al. [32] proposed a
parametric model for extensible pneumatic actuator with bellows that have a long strain in
one direction. Therefore, modeling is necessary in developing actuators because it could
help generate geometrical design parameters and predict the bending angle and material
selection in fabrication, thus reducing the cost and experimental exploration time [27,33,34].
However, different materials and structures need varying models, and pneumatic actuators
with simple structure could easily bend into an arc, which is inconsistent with the curved
contour of the finger [35–37].

Given the complexity of the finger motion, it is essential to consider the natural skeletal
structure of human finger in order to achieve perfect compliance of soft robotic digit [38].
The human finger structure contains three interphalangeal joints, namely, distal (DIP),
proximal (PIP), and metacarpal (MCP) joints [35,39]. Based on previous studies [8,40], the
ranges of motions (ROMs) of finger joints among different individuals are approximately
the same level, and the maximum flexion values for the MCP, PIP, and DIP joint ranges are
approximately 95◦, 110◦, and 90◦, respectively [41]. Thus, for the development of biomimetic
artificial joints for a soft robotic digit, three sections of multi-material pneumatic actuators
were essential, except the thumb with two joints. Furthermore, anthropomorphic robotic
digit used multi-materials to place on each joint of the finger, matching the bending of the
natural skeletal structure and its inherent similarity to the human finger. This can potentially
be applied in a wide range of fields, from automatic finger operation to healthcare robot
exploration.

The present study aims to design and develop multi-material pneumatic actuators as
biomimetic artificial joints for soft robotic finger application. The multi-material pneumatic
actuator mainly contains two parts (i.e., pneumatic bellows and PDMS frame constraint
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structure) and developed on the basis of two composite materials with slightly different
shear modules. The bellows were partitioned into several compartments to achieve dif-
ferential stretching when applying different pressures to each chamber to obtain different
bending angles when the freedom of one is limited. The mechanical properties of the
multi-material pneumatic actuators were analyzed using a simplified mathematical model
and experimentally tested. A simplified mathematical model was adopted for the bending
mechanism description; to provide guidance for actuator fabrication (e.g., stiffness and
thickness), structural design (e.g., cross length and chamber radius), as well as the control
parameter optimization (e.g., the air pressure supply); and to precisely achieve a series of
daily finger bending motions mimicking the trajectory of human fingers.

2. Materials and Methods
2.1. Multi-Material Pneumatic Actuator Design and Fabrication

The multi-material pneumatic actuator was engineered into three parts of different
stiffness materials, i.e., pneumatic bellows, rigid section, and semi-rigid sections, as shown
in Figure 1a. The designed pneumatic bellows with flexible chambers are made of silicone
rubber material (SY-HR02, Shanghai Si Yi Intelligent Technology Co., Ltd., Shanghai,
China), and located between two rigid sections in alternating order. The semi-rigid section
was under the flexible chambers. This geometry allows the bending motions in one
direction during air inflation and recovery during deflation. The hybrid architecture of the
multi-material pneumatic actuator provides specific mechanical characteristics required by
individual finger arthrosis to realize the desired bending motions.
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actuator structure; (b) actuator reinforcement deployment; (c) actuator molding; (d) actuator with
different stiffnesses.

The manufacturing process of the multi-material pneumatic actuator mainly includes
three steps. The first step is reinforcement shaping of the adopted pneumatic bellows
(Figure 1b). A thread was embedded into the bellow chamber center that helps keep the
bellows in place. Afterwards, the pneumatic bellows were fixed and covered with fluidic
PDMS (Dow Corning 184, Midland, MI, USA), as shown in Figure 1c. When compared
with other materials, PDMS has a typically low surface interfacial free energy, good elastic
characteristic as well as chemical inertness and durability, thus could be easily fabricated
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by molding [20,21,23]. The PDMS reagent contained a vinyl-terminated base and a curing
agent (cross-linker agent) in two liquid component kits. The curing agent was added into
the vinyl-terminated base and mixed together to make PDMS mixtures at the following
weight ratios (vinyl-terminated base: curing agent) of 20:1, 15:1, and 10:1 respectively (the
10:1 ratio was suggested by the Sylgard 184 datasheet [42]). Trapped bubbles may form
due to the different viscosities of the vinyl-terminated base (−5 × 10−3 m2 s−1) and the
curing agent (1.1 × 10–4 m2 s−1) and need to be removed before molding and curing by
placing in a low-vacuum chamber (−100 kPa) to degas for several minutes. The prepared
PDMS mixtures were then injected into the mold for curing for 2 h at 70 ◦C. After that, the
pneumatic bellows with PDMS substrate were removed from mold as well as the embedded
thread. In the last step, an air tube was connected to the open side of the bellows and
assembled a single multi-material pneumatic actuator as shown in Figure 1d.

2.2. Actuator Mathematical Model Design

The multi-material pneumatic actuator could be considered as a flexible semicircular
bellow placed on a flat plate as presented in Figure 2a. When air pressure P was applied in
the actuator with the free end closed, the actuator bended (Figure 2b) due to the differential
expansion (e.g., one convolution expansion shown in Figure 2c) of the top bellows and
bottom plate. P delivered a force F = P × Ai to the actuator, where Ai is the internal
top bellow chamber’s cross-sectional area. Given the combined effect of PDMS frame
constraint structure, the pressure center was slightly shifted from the bellow centroid by a
small distance “e”, and the neutral planer was also shifted (Figure 2d).
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The deflection of the multi-material pneumatic actuator was caused by the internal
pressure action and the corresponding deformed geometry structure. Based on the bellows
and beam theory [43,44], the vertical deflection W at the tip of the bellows and the angular
deflection θ1 are given in terms of M as
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θ1 =
ML
EIxa

(1)

where M indicates the moment acting at the free end, Ixa is the area moment of inertia of
the cross section of both bellows and the substrate, E is the Young’s modulus, and L is the
length of the bellows.

The multi-material pneumatic actuators exhibited different stiffnesses, assuming they
keep constant during working. The pressure force applied to the multi-material pneumatic
actuator was separated into Fb and Fp for top and bottom bellows with PDMS, respectively.
The total force was calculated as

F = Fb + Fp = Kbwb + Kpwp (2)

where wb and wp are the deflections, and Kb and Kp are the corresponding axial stiffness at
the top bellow side and bottom flat side, respectively. When the bottom flat was assumed
to be a whole block while ignored the embedded bottom bellows, then Kp = (E2 × As)/L,
where As is the cross-section area of the substrate and E2 is the Young’s modulus of PDMS.

A simplified geometry for bending analysis in one bellow convolution is shown in
Figure 2c. The stiffness of the top bellow expansion was defined as Kb = B × Ixb in Hermann
et al.’s research [45], where B is a constant which related to the geometry and the material
properties of the bellow. B could be calculated as follows:

B =
24E1

(
4.602 + 6 × 107a3 − 86.2r0

)
4n[6πa3 + 24ta2 + t3 + 3t2aπ(1 + h2/12a2)]

Ixb =
π(r0 + ri)h3

12
=

πrmh3

6

(3)

where a, t, and h indicate the radius of corrugation, flank distance, and bellow thickness,
respectively; r0 and ri are the outer and inner radius of the bellow; rm is the average radius
of the bellow; E1 means the modulus of bellows; and n is the number of convolutions of
bellows. Thus, the angular deflection θ2 generated by inner deformation was obtained as

θ2 =
wb − wp

rm
(4)

The total angular deflection of the multi-material pneumatic actuator in bending
progress could be summarized by Equations (1) and (4) as

ϕ = θ1 + θ2 (5)

When the bellow expansion generated the moment Mexp, the deflection force that
varies around the circumference is multiplied by the corresponding levers and integrated
around the circumference [44]. Thus, at any location of the bellows, an element force dF
was equivalent to that exist at the average diameter. The moment Mexp is determined as

Mexp =
∫

dFrm sin α =
wmaxBh3r2

m
6

∫ π

0
sin2 αdα =

wmaxBπh3r2
m

12
(6)

where ωmax is the maximum defection at the top of bellows: ωmax = rm θ2. The total
moment of the multi-material pneumatic actuator due to P could be obtained as

M = F × e + Mexp (7)

When the multi-material pneumatic actuator was inflated with air pressure, ϕ became
larger due to actuator bending. Thus, the model–experiment method for the actuator could
be used to predict the bending angle of the multi-material pneumatic actuator from a
quantitative or qualitative perspective.
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2.3. Soft Robotic Finger Design and Fabrication

To mimic finger action, it is essential to study the natural skeletal structure of the
human finger [8,46]. The finger mainly contains three interphalangeal joints, namely, distal
phalange (DIP), proximal phalange (PIP), and metacarpal phalange (MCP) joints [35,39].
According to previous studies [40], the ROMs of finger joints among different individuals
are approximately the same. Thus, three sections of pneumatic bellows were necessary
for the soft robotic digit to place on each joint of finger matching the natural skeletal
structure. Figure 3a shows the robotic digit and its components (different types of multi-
material pneumatic actuators with different sizes). Refer finger bending stage Figure 3b, a
simple kinematic model of the robotic digit was depicted in Figure 3c,d from a kinematic
perspective.
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The multi-material pneumatic actuators were assembled for the robotic finger, and the
manufacturing process followed three steps. Firstly, for reinforcement shaping, a thread
was embedded into the bellow center to keep the bellows on the same axis. Secondly, after
the pneumatic bellows were fixed, they were covered with fluidic PDMS with the curing
parameter setting similar to that of single-actuator fabrication. Lastly, when PDMS was
cured, the external mold was opened to gently remove the three-part pneumatic bellows
and connect an air tube to the open side of the bellows as shown in Figure 4. Thus, a soft
robotic finger was fabricated based on multi-material pneumatic actuators with special
dimension, which could bend along the PDMS substrate downwards when air pressure is
inflated.
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3. Result
3.1. Actuator Model for Material and Structural Parameter Analysis

Finite element methods are commonly adopted to simulate the pneumatic bellow
actuator behavior for working mechanism analysis [47–49]. However, these methods
require precise object description and complex computation [50,51]. In the current study,
from the optimization perspective of the materials and structure, the simplified static
mathematical model for multi-material pneumatic actuator analysis only involved a small
set of calculations on the basis of some assumptions. As mentioned in Section 2.2, the
bending angle is relative to the internal pressure of chamber in free end motions, which
could be determined using Equation (5) as:

ϕ = f (P) (8)

Table 1 lists the values used in the model for Equation (10) calculation. The mathe-
matical model showed that a multi-material pneumatic actuator could work under low
pressure due to the rubber material. The model demonstrated good agreement with the
experiment results thereby could be adopted for robotic finger unit design.

Table 1. Simulation parameters of multi-material pneumatic actuator.

Param. Definition Value

a Bellow arch 0.3 × 10−3 m
h Thickness of the rubber 0.4 × 10−3 m
t Flank distance 1 × 10−3 m
ri Representative radius of small chambers 5 × 10−3 m
r0 Representative radius of large chambers 8 × 10−3 m
s Thickness of the substrate 8 × 10−3 m
n Number of bellows 4
E1 Young’s modulus of silicone rubber 2 × 106 Pa [52]
E2 Different Young’s modulus of PDMS (280–750 kPa) [53,54]
P Supply pressure 100 kPa

Figure 5a–f present the interactions among the vital parameters of the multi-material
pneumatic actuator revealed by MATLAB simulation (MATLAB, 2019b, MathWorks, MA,
USA). Bending angle of the actuator increased along with the increased pneumatic pressure
inside (Pa) as illustrated in Figure 5a. Under different pressure conditions (e.g., P = 100, 80,
and 60 kPa), the bending angle of the bellows increased obviously with the increase in small
chamber radius; conversely, the bending angle of the bellows increased slowly along with
the increase in big chamber radius, as shown in Figure 5b,c. Moreover, Figure 5d,e present
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that when the stiffness of substrate PDMS increased, the bending angle of the actuator
decreased, and when the stiffness of the top bellows increased, the bending angle of the
actuator increased. Therefore, the material properties could affect the bending angle of
actuators. In addition, the bending angle of the bellows increased along with the increase
in the cross length of the chambers, as shown in Figure 5f. Thus, the effects of multiple
factors (e.g., cross length of bellows, chamber radius, and stiffness) on multi-material
pneumatic actuators could be quantitatively and qualitatively analyzed in accordance with
the simulated results.
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Material parameters, such as PDMS substrate with different stiffnesses and chambers
of bellows in various geometries, could be utilized to tailor the bend angle of the pneumatic
bellow and design the robotic digit in accordance with the requirements on specific finger
applications. This study found that the key parameters (e.g., radius and structure of the
bellow chambers, bellow stiffness, and PDMS substrate) and the pressure supply directly
affect the bending angle of the pneumatic bellows.
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3.2. Single Actuator Motion Range Analysis

Following the aforementioned processes Figure 1b–d there fabricated the single actua-
tor with two different materials where the PDMS parts considered as the frame constraint
structure for fixing the bottom side of the pneumatic bellow and limiting forward expan-
sion. PDMS with different stiffnesses was used to explore its effect on bending performance
of the pneumatic bellow. The PDMS mixtures under different weight content ratios upon
mixing the vinyl-terminated base and the curing agent exhibited different stiffnesses, and
previous research offered a range of reported PDMS Young’s modulus (280–750 kPa) [53,54].
The stiffness of the frame constraint structure increased along with weight content ratio
of the PDMS mixtures. Thus, the bending angle of the multi-material pneumatic actuator
differed under the same pressure as shown in Figure 6a. Three kinds of PDMS (i.e., 20:1,
15:1, and 10:1) that fabricated the multi-material pneumatic actuator were simultaneously
tested for bending angles by using a tee connector under the same pressure (0–58.6 kPa),
as shown in Figure 6b–d illustrates that the flexion angles were measured and calculated
under a special given pressure.
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Figure 6a shows the bending angles of the developed actuator increased with PDMS
stiffness decrease under the pressure less than 80 kPa. However, the decreased PDMS
stiffness (20:1) in the actuator bottom generated large deformation under high pressure
(i.e., when the pressure was higher than 60 kPa, the length of multi-material pneumatic
actuator in the center axis direction increased). Meanwhile, the increased PMDS stiffness
(10:1) generated the same bending angle but needed higher pressure. A rigid PDMS was
not suitable for the frame constraint structure of the multi-material pneumatic actuator.
Therefore, PDMS fabrication technology with a weight content ratio of 15:1 was selected in
this study for the fabrication of multi-material pneumatic actuators.

Figure 7a presents the comparison between the proposed model (Equation (10)) and the
experimental results. There is a dead zone caused by the material deformation properties
at the first stage. Additionally, the relative error variations of the flexion angles were
calculated to explore the consistency of bellows under repeated pressure test as shown in
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Figure 7b. The relative error can be determined as e = ∆θ/θ0 at a certain supplied pressure,
where ∆θ indicates the maximum deviation of the flexion angle and θ0 represents the
average flexion angle. The difference between the simulation and the experimental results
possibly due to the elimination of the PDMS base weight, and the effect of the dynamic
stiffness of the actuators during the experiments. However, when the pressure was higher
than 80 kPa, the deformation of the bottom bellows embedded in the substrate could not
be ignored.
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By comparing the experimental and simulation results, the PDMS (15:1) for multi-
material pneumatic actuator showed an acceptable performance towards the bending angle
and lower required pneumatic pressure. The results demonstrated that when the bellow
stiffness decreased there produce forward expansion and the required bending angle design
could not be realized; when the stiffness increased, the bellow needed higher pressure
to produce bending. Additionally, and simulated and experimental results revealed that
when the current stiffness of the frame constraint structure increased, the bending angle
would decrease. Thus, the target bending shape required in multi-material pneumatic
actuators could be achieved by fine tuning the PDMS stiffness and the supply pneumatic
pressure. Moreover, when compared with aforementioned existing actuators [22,28,29], our
multi-material pneumatic actuator has better integration, simpler fabrication technique
and more ergonomic considerations in application. Additionally, when compared with the
commercially available bellow actuator, PneuNets (Soft robotics toolkit, MA, USA), which
adopted molded elastomeric material and stiffer material, our actuator is more stable and
easier to be assembled as artificial joints in a soft robotic finger application.

3.3. Finger Motion Range Analysis

The MCP, PIP, and DIP joints were fixed with different chamber-structure bellow
actuators with chamber cross widths of 1.5, 2.5, and 2 mm, respectively. The ROMs of the
different bellows were highly dependent on the pressure supply when bellows structure
was fixed. References were set up based on the finger frames and assigned to this model
to depict the bending actions of joint points and the tip point C (Figure 3). The position
variation of the tip point in the bending direction could be described using its components
as follows:

xc = L1cosφ1 + L2cos(φ1 + φ2) + L3cos(φ1 + φ2 + φ3) (9)

yc = L1sinφ1 + L2sin(φ1 + φ2) + L3sin(φ1 + φ2 + φ3) (10)

where ϕ1, ϕ2, and ϕ3 are the first, second, and third actuator joint bending angles, and
L1, L2, and L3 are the lengths of DIP, PIP, and MCP, respectively. The trajectory of the
digit tip and the range motion of each joint were simulated and measured in the robotic
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digit experiments (Figure 8), in which different points were tested under various constant
pressure supplies.
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(b) finger trajectory; (c) soft robotic digit mimicking finger action (four types, from extension to
flexion) under different pressure.

Experiments on soft robotic digit mimicking the finger action (four types, from ex-
tension to flexion) were conducted as presented in Figure 8a–c, which also presents a
comparison of the robotic digit tip trajectory in the experiment and the kinematic model
simulation. The two trajectory path plots behaved in the same trend and exhibited a similar
inflection point. Although the tip trajectory had a small deviation under high air pressure
(more than 40 kPa), the main reason is that the expansion of the bottom bellows cannot be
ignored. Therefore, based on the established kinematic model, the finger actuators can be
customized for different applications by different pressure supply.

The measured motion range of the soft robotic digit not only satisfied the finger bend-
ing range but also was close to the reported anatomical motion range and the simulated
results in Figure 8c. The slight variations between the experimental and simulation results
could be attributed to the friction between the fabricated robotic digit and the flat support-
ing surface during flexion and extension. Therefore, an actuation pressure of over 70 kPa
is required to provide a full motion range of soft robotic finger. Moreover, the achieved
motion ranges (MCP = 36◦, PIP = 114◦, and DIP = 75◦) are consistent with the functional
ROM of the human finger for performing daily activities [55,56].

The multi-material pneumatic actuators based soft robotic finger match with the
bending changes in the anatomy of the human finger structure. In the range of soft robotic
digit motion experiments, the MCP joint has a small motion range and the DIP and PIP
joints have a wider motion range when it grasped many different objects with various
shapes (such as beaker, USB box, socket, etc.) as shown in Figure 9a–c, which is matched
with the theoretical design. These results showed that the developed soft robotic digit has
the potential to assist gripping movements.
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The bending experiments on the basic movement of the soft robotic finger and the
experiments of gripping many different objects demonstrated that soft robotic digit mimick-
ing finger action could be achieved by using the multi-material pneumatic actuator. Thus,
the extension and flexion mechanism of the soft robotic digit could be easily controlled by
pneumatic pressure. The object grasp experiment demonstrated that the developed soft
robotic finger is not only be able to mimic finger flexion and extension but also grasp some
daily objects. The primary focus of this work was the development and optimization of
the multi-material pneumatic actuator for the soft robotic finger motion mimicking. In
the future, we will evaluate the soft robotic finger for basic gripping movement assisting
patients who have difficulty with finger movements.

4. Conclusions

This study proposed a multi-material pneumatic actuator based on simplified math-
ematical model for soft robotic finger application and theoretically and experimentally
demonstrate its feasibility in mimicking human finger motions. The actuator was designed
to satisfy the anatomical range of finger motion for each joint, and the simplified mathemat-
ical model was used to analyze the robotic finger motion and therefore predict the design
and fabrication parameters, such as the pressure supply and the material requirements.
The multi-material pneumatic actuator as a biomimetic artificial joint was developed on
the basis of two composite materials with different shear modules, meanwhile pneumatic
bellows as expansion parts was restricted by frame which was made from PDMS. The
three-step fabrication progress method provided an easy and fast technique for casting
such multi-material models. The geometry of each robotic finger with three multi-material
pneumatic actuators allowed forward and backward bending motions during pneumatic
pressure inflation and deflation, respectively. The effectiveness of the proposed soft robotic
finger was validated by the experimental results which demonstrated the bending charac-
teristics of the multi-material pneumatic actuators under different pneumatic pressures.
Theoretical models and experimental analysis were both conducted to investigate the me-
chanical properties of the developed actuator and could provide evidence-based technical
parameters for pneumatic robotic finger design and the precise control of its dynamic air
pressure dosages in mimicking actions. In the future, the adopted multi-material pneumatic
actuator could be optimized to explore the interaction (motion and force) between human
finger and soft robotic digit for assistive applications.
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