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Abstract: Recently, with the development of convolutional neural networks, single-image super-
resolution (SISR) has achieved better performance. However, the practical application of image
super-resolution is limited by a large number of parameters and calculations. In this work, we present
a lightweight multi-scale asymmetric attention network (MAAN), which consists of a coarse-grained
feature block (CFB), fine-grained feature blocks (FFBs), and a reconstruction block (RB). MAAN
adopts multiple paths to facilitate information flow and accomplish a better balance of performance
and parameters. Specifically, the FFB applies a multi-scale attention residual block (MARB) to capture
richer features by exploiting the pixel-to-pixel correlation feature. The asymmetric multi-weights
attention blocks (AMABs) in MARB are designed to obtain the attention maps for improving SISR
efficiency and readiness. Extensive experimental results show that our method has comparable
performance with fewer parameters than the current advanced lightweight SISR.

Keywords: super-resolution; lightweight; multi-scale; asymmetric multi-weights attention

1. Introduction

Image super-resolution (SR) is the process of recovering a high-resolution (HR) image
from a given low-resolution (LR) image. Several corresponding HR images can be generated
from a given LR image, which is fundamentally ill-posed. Recently, many researchers have
introduced deep learning (DL) to solve the SR problem. In particular, the domain of
single-image SR has achieved remarkable performance using deep convolutional neural
network (CNN) techniques [1]. Dong et al. [2] built an end-to-end SR convolutional
neural network (SRCNN), which obtained significant performance improvement compared
to traditional methods. Kim et al. [3] presented a very deep super-resolution (VDSR)
network, which increased the depth of the network to 20 layers and reduced training
difficulty by residual learning. Lim et al. [4] designed an enhanced deep super-resolution
(EDSR) network with an intense architecture with more than 60 layers, acquiring high
reconstruction accuracy. To reduce the network depth and extract diversity features, some
researchers studied multiple path networks to obtain various features at multiple contextual
scales. Liu et al. [5] proposed a residual feature distillation network (RFDN), which
learned more discriminative feature representations through multiple feature distillation
connections. The SR network design discussed above is of equal importance for all channels
and locations. Furthermore, the attention-based network implemented confirms that
not all features are essential for SR. Inspired by SENet [6], Zhang et al. [7] employed a
residual channel attention network(RCAN) to enhance the results of SR by exploiting
the interdependence with the channel attention residual blocks. In addition, the spatial
attention mechanism exploited the spatial information of the feature maps for HR image
reconstruction. Liu et al. [8] present a residual feature aggregation network (RFANet) using
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spatial attention to achieve a greater performance improvement, including 30-layer residual
feature aggregation.

As mentioned above, although they achieved great success, there were some defects in
the structure of SR methods. Firstly, these methods are only suitable for deeper architectural
design because of the huge network capacity required. Secondly, multi-path networks miti-
gate gradient disappearance at the cost of numerous parameters and high computational
costs. Finally, the attention mechanism network reduces the parameter overhead at the cost
of network capacity. The drawback of the above approaches is that numerous parameters
are required to obtain better performance, which is not conducive to real-world applications.
Practical applications such as mobile devices (e.g., cell phones) are limited by performance
breakthroughs that increase parameters and complexity while imposing high computa-
tional costs and huge memory capacity. To address these issues, some researchers have
turned their concerns to the construction of lightweight models. The cascading residual
network(CARN) [9] utilized the residual cascade network of group convolution to achieve
lightweight and efficient reconstruction. The lightweight information multi-distillation
network (IMDN) [10] introduced multiple distillation blocks of information to expand
the receiving field and then took a step-by-step approach to extract hierarchical features
and merge them through channel attention. However, most of the previously proposed
lightweight networks have poor model performance with fewer parameters by designing
shallow network structures or recursive connections. Meanwhile, these methods ignore the
exploration of the correlation of the middle layer features, which makes CNN’s representa-
tion ability inadequate [11]. In addition, some advanced lightweight networks introduced
attention into deep extraction feature models, which contained channel attention (CA) and
spatial attention (SA) [12]. This information tended to recover only high-frequency details
of the different functions; CA and SA ignore the relationship between pixels. However, the
layer interaction is significant to facilitate the interchange of information. It is essential to
find an advanced module to refine the convolutional output within the block so that the
whole network can learn more helpful features.

In this work, we address a lightweight multi-scale asymmetric attention network
(MAAN), with a diverse network architecture design to gain better performance. MAAN
fully utilizes multiple path aggregation of the middle- and deep-layer features to achieve
more accurate extraction. On the one hand, it presents asymmetric multi-weight attention
to recover high-frequency feature details and refine important information. On the other
hand, a 1 × 1 convolution operation is implemented to reduce the parameters and improve
the training efficiency of the network. The peak signal-to-noise ratio (PSNR) is the most
commonly used reconstruction quality metric in image SR. The PSNR is determined by
the maximum pixel value and the mean square error comparing the reference image to
the SR image. The more the parameters, the higher the PSNR value and the quality of the
reconstructed image and the better the performance. As Figure 1 shows, compared to the
state-of-the-art SR networks, MAAN obtains the best PSNR with appropriate parameters.

Overall, our goal is to propose a lightweight model that optimizes the reconstructed
image and achieves the desired trade-off between parameters and computation. The
contribution of our work is as follows:

1. We employ fine-grained feature blocks (FFBs) as the backbone module of our frame-
work implementation, which accesses reasonable SR performance with fewer param-
eters. The multi-scale attention residual block (MARB) of FFBs extracts sufficient
multi-scale features for global feature fusion. It enhances asymmetric attention neu-
rons in a larger receptive field to capture richer multi-frequency information features
significantly.

2. We propose an asymmetric multi-weights attention block (AMAB) to enhance feature
propagation and further extract high-frequency detail features by adaptive selection
among the layers.

3. MAAN acquires a better trade-off between performance and lightweight compared to
the popular models.
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Figure 1. Performance and parameters compared between MAAN (red star) and the existing meth-
ods on Set5 with scale factor ×3. MAAN gains the best PSNR with the appropriate parameters. 
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and computation cost. The deeply recursive convolutional network (DRCN) [13] utilized 
recursive neural networks to employ a single convolutional layer without including many 
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lution images by learning residuals in convolutional layers with step-by-step scaling. To 
better balance performance and reasoning application, the information distillation net-
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Figure 1. Performance and parameters compared between MAAN (red star) and the existing methods
on Set5 with scale factor ×3. MAAN gains the best PSNR with the appropriate parameters.

The rest of this paper is structured as follows: Section 2 presents related work on
lightweight networks and attention mechanisms in image super-resolution. Section 3 shows
the MAAN approach in detail. Section 4 illustrates the experiments and provides important
arguments for the proposed technique and shows the experimental performance of SISR.
Section 5 concludes the paper.

2. Related Work
2.1. Lightweight Super-Resolution Networks

To further extend the SR model to mobile device applications, lightweight models have
attracted the attention of researchers on how to decrease the number of parameters and com-
putation cost. The deeply recursive convolutional network (DRCN) [13] utilized recursive
neural networks to employ a single convolutional layer without including many parameters.
The Laplacian pyramid SR network (LapSRN) [14] reconstructed high-resolution images
by learning residuals in convolutional layers with step-by-step scaling. To better balance
performance and reasoning application, the information distillation network (IDN) [15]
effectively combined the characteristics of a global long path and a local short path, which
achieved lightweight and efficient reconstruction. Multiple information distillation blocks
were introduced into the IMDN [10] to increase the receptive field, which was fused with
stratified information through channel attention. The lightweight enhanced SR CNN (LESR-
CNN) [16] adopted a heterogeneous structure, improving network SR performance by
combining low-frequency with high-frequency features. The asymmetric CNN (ACNet) [17]
utilized asymmetric convolution to construct hierarchical structure features for adaptively
combining local and global information. The multi-scale attention network (MSAN) [18]
adopted cascading multiple multi-scale attention blocks and split channel characteristics
to further improve performance. Even though the number of lightweight SR methods has
grown significantly, it is hard to balance reconstruction accuracy and model capacity.

In some methods, multi-scale feature extraction via dilated convolution leads to cap-
turing redundant contextual information, while bringing in some non-essential parameters
and computational costs. In others, excessive scaling of model parameters makes the image
too smooth to better capture the perceptual difference between the model output and the
true-value image. Hence, we aim to build a lightweight network, utilizing multiple paths to
facilitate information flow and accomplish better information exchange. Accordingly, our
study introduces a novel multi-scale block with simple 3× 3 convolutional combinations to
realize the aggregation of different scales and levels of information. Concurrently, channel
scaling with asymmetric convolution further reduces parameters and computational costs.
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2.2. Attention Mechanism

The attention mechanism assigns more priority to specific pixels, which leads to better
data processing than others. Recently, the attention mechanism has been widely used in
SR to obtain significant features by inhibiting insignificant features. The channel atten-
tion mechanism only focused on each channel feature, which computed one-dimensional
weights multiplied by channel pixels. Niu et al. [19] presented the holistic attention net-
work (HAN), which fully employs more informative features across layers, channels, and
positions for selectively capture. The dense residual Laplacian network (DRLN) [20] pro-
posed a Laplacian pyramidal attention mechanism for learning multiple frequency features.
The sparse mask SR (SMSR) [21] explored spatial masks to improve the inference effi-
ciency of SR networks. The SMSR learned to identify “significant” regions in contrast to
channel masks. We observe that existing attention modules focus on channel attention or
spatial attention, which limits the flexibility of the network to learn 1D and 2D attention
weights. SimAM [22] proposed 3D attention weights to refine the feature map in a layer
without adding parameters to the original networks. The SimAM module had excellent
performance on image classification or object detection.

The attention mechanism still has a lot of room for improvement between accuracy
and model capacity. Inspired by SimAM, our study introduces a new attention module
AMAB, which identifies significant information by exploring relationships between inter-
channel and intra-channel and facilitates the extraction of diverse features, as well as further
improving performance with a small number of parameters and computations.

3. Methods
3.1. Network Architecture

In this section, our lightweight and efficient MAAN is employed. MAAN consists of
three main components: coarse-grained feature block (CFB), fine-grained feature blocks
(FFBs), and reconstruction block (RB), as depicted in Figure 2. We represent the LR image,
the HR image, and the SR image, respectively, as ILR, IHR, and ISR.
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Figure 2. The network framework of the proposed MAAN, which comprises three stages: coarse-
grained feature block (CFB), fine-grained feature blocks (FFBs), and reconstruction block (RB). CFB 
means a 3 × 3 convolution, the core of the structure contains i FFB modules. Lastly, we add an up-
sampled image to the reconstructed output. 
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Figure 2. The network framework of the proposed MAAN, which comprises three stages: coarse-
grained feature block (CFB), fine-grained feature blocks (FFBs), and reconstruction block (RB). CFB
means a 3 × 3 convolution, the core of the structure contains i FFB modules. Lastly, we add an
upsampled image to the reconstructed output.

Firstly, the input is processed by the CFB. We extract coarse-grained features via only
one 3 × 3 convolution layer for lightweight design. The CFB block can be formulated as
follows:

x0 = fCFB(ILR) (1)

where fCFB(·) denotes the operation of CFB. x0 is the coarse-grained features, which is
used as input to the fine-grained feature block (FFB) for deep feature extraction.
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Secondly, the FFB is the core step for extracting high-frequency features. To fully
utilize the image features of the CFB block, we utilize multiple paths to further refine the
features and gather various features. The specific progress can be expressed as follows:

xi = fFFB(xi−1) (2)

where fFFB(·) denotes the operation of FFB, where xi−1 and xi represent the input and the
output respectively of the i-th FFB block.

Finally, in the last stage of the model, we reduce artifacts by using an upsampling
operation with sub-pixel convolution, and the enlarged features are mapped to the SR
image through a 3 × 3 convolution layer. As shown in Figure 2, x0 and xi are transmitted
to the reconstruction block, fRB, via a global residual connection.

ISR = fRB(x0, xi) (3)

Hence, MAAN improves the quality of the final reconstruction with a small cost
in parameters. It aggregates features from multiple fields of perception to collect rich
contextual information for low-resolution to high-resolution mapping, and it enables a
more detailed image to be reconstructed. The super-resolved image, ISR, can be expressed
by:

ISR = fRB( fFFB( fCFB(ILR)) = fMAAN(ILR) (4)

We adopt L1 [23] as the loss function. It can be used to minimize the difference
between the predicted SR image and the given HR image to train the MAAN for SR, where
θ represents the learning parameter, L represents the loss function. Given a training set{

Ii
LR, Ii

HR
}M

i=1, the loss function can be formulated as follows:

L(θ) =
1
M

M

∑
i=1
|| fMAAN(Ii

LR)− Ii
HR||1 (5)

3.2. Fine-Grained Feature Block

As depicted in Figure 3, our FFB is essentially a multiple paths module, which can
refine the features in terms of spatial context and produce better information exchange
through multiple paths of information flow. FFB is constructed using MARB, AMAB, and
1 × 1 convolutions. FFB utilizes a channel segmentation operation with multiple paths,
which divides the input features into two parts. The upper part is retained for MARB
operation, and the lower part is compressed into 1 × 1 convolution to extract features.
fMARB(·) represents the operation of MARB, each branch is defined as follows:

F1 = C1×1(xi−1)
F2 = C1×1( fMARB(xi−1))
F3 = C1×1( fMARB( fMARB(xi−1)))
F4 = C3×3( fMARB( fMARB( fMARB(xi−1))))

(6)

The concatenated features of multiple branches are fused by a convolution operation
with 1 × 1 kernel size. Then, AMAB is applied to significantly enhance the feature flow,
allowing higher weights to be assigned to more important features and high-frequency
refining details. It can be expressed as

xi = fAMAB(C1×1[F1, F2, F3, F4]) (7)

where [F1, F2, F3, F4] denotes the concatenation of aggregated features. Ck×k denotes the
convolution operation with k × k kernel size. fAMAB(·) is defined asymmetric multi-
weights attention block.
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3.3. Multi-Scale Attention Residual Block

When feature extraction is carried out through the convolution kernel with a fixed
scale, the ability of network reconstruction is limited by the local feature information.
Multi-scale attention residual blocks can enlarge the receptive field and improve computer
vision performance. Chen et al. [24] addressed multi-scale feature extraction by dilation
convolution and proposed an encoding–decoding image segmentation method, called
DeepLabV3+. However, this method directly concatenated features at different scales,
which made it difficult to merge this information. To solve the issue, we implemented a
new module MARB, which can magnify the receptive field. MARB can employ an attention
mechanism to significantly improve the extraction of high-frequency detail features and
adopt residual learning to reduce gradient disappearance and facilitate information flow.

As depicted in Figure 4, MARB applies multiple paths to combine the multi-scale
features, with one 3 × 3 convolution layer at the top and two 3 × 3 convolution layers at
the bottom to expand the perceptual field and achieve better feature correlation. It can be
expressed as follows: 

Fup = C3×3(Fin)
Fdown = C3×3(Fin)

F′down = C3×3(C3×3(Fin))
(8)
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AMAB operation ensures maximum capture of feature information at different scales
to achieve better feature relevance. Residual learning for each MARB helps ease the training
difficulty of convolution networks and improves the information expression effectively.
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As mentioned above, this allows MARB to take advantage of available resources to obtain
richer information in the SR image. Formally, we describe MARB as follows:

Fout = Fin + fAMAB(C1×1[Fup, Fdown, F′down]) (9)

3.4. Asymmetric Multi-Weights Attention Block

Each pixel in the image does not exist independently, and they have some correlation
with each other. The previous methods always designed channel attention or spatial
attention for refining feature maps, thereby ignoring the relation of pixels. Pixel equal
treatment is performed either on all channels or on all locations so that the accurate 3D
weights can not be computed efficiently. Yang et al. [22] proposed to use 3D attention feature
mapping to extract features to compensate for the imperfection of a 1D attention vector or
2D map in extracting features. The linear separability can be used to find the corresponding
neurons between a target neuron and other neurons. Borst et al. [25] determined that,
for drosophila’s visual orientation selectivity, lobule plate neurons determine the spatial
receptive fields of neurons through direction-selective inputs from perceptual neurons T4
and T5 in the fly’s visual system, significantly enhancing preferred directional features and
zero-directional features, and performing directional information integration for efficient
information flow. Inspired by these, we design an asymmetric multi-weights attention
block (AMAB) that can captured the long-range dependencies directly from feature maps.

Firstly, asymmetric convolutions reinforce the salient features by horizontal and ver-
tical directions, so a k × k convolution is factorized into a k × 1 and a 1 × k kernel [26].
To avoid introducing the computational overhead and extra parameters, the upper branch
contains 3 × 1 and 1 × 3 asymmetric convolution kernels. Meanwhile, the 3 × 1 con-
volution compresses the number of channels with a reduction ratio R, and then another
1 × 3 convolution to expand original channels. We set R = 2, which reduces nearly half of
operations and parameters while retaining the same receptive field and optimally balances
the number of channels and input/output connectivity.

As shown in Figure 5, AMAB has three steps: the first step fuses features from
horizontal and vertical directions via asymmetric convolutions. It can be calculated as
follows:

F′up = C1×3(C3×1(F′ in)) (10)

where F′up is utilized as the input with multi-weights attention.
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The second step is to extract more effective features using multi-weights attention.
All computing is an element-wise operation in the AMAB. Each pixel of the channel and
spatial dimensions can be formulated as

F′out = σ(F′up)× F′ in (11)

where σ(·) is the sigmoid function, which does not affect the importance of each pixel, but
only the value of the pixel calculation process is limited to avoid excessive overruns. In
multi-weights attention, each pixel is interconnected with other pixels, which allows the
feature map to more realistically reflect the internal features of the image.
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The weight generation is formulated as an energy function to reconstruct the attention
mechanism while remaining lightweight. By adaptive selection among various layers,
AMAB can capture features of different frequencies. The specific implementation of asym-
metric multi-weights attention is shown in Algorithm 1.

Algorithm 1: The implementation of asymmetric multi-weights attention.

Input X: The feature matrix of H ×W × C size.

Output X: The resultant matrix of H ×W × C size.

(1) Set a 3 × 1 convolution layer and compress the channels to C/2.
(2) Use a 1 × 3 convolution layer and expand the channels to C.
(3) Calculate spatial size N = H ×W − 1.
(4) Calculate square D = X − X.mean().pow(2).
(5) Calculate channel variance through D/N and derive function F for finding the importance

of each pixel as F = D/(4 × (v + lambda)) + 0.5, where lambda is the coefficient value.
(6) Adding sigmoid to restrict F.
(7) Save the value of the output matrix.

4. Experiments
4.1. Datasets and Metrics

The DIV2K [27] was the source of training and validation data for our model, including
the first 800 images as training data and the rest for validation data. We trained the MAAN
using the training dataset (DIV2K), which is utilized in most models. We also used four
standard benchmark datasets as test datasets, including Set5 [28], Set14 [29], B100 [30],
and Urban100 [31]. The original HR training images were downsampled with bicubic
interpolation of scale factors ×2, ×3, and ×4, respectively, to obtain the corresponding LR
images. The training images were subjected to random rotations of 90◦, 180◦, and 270◦ and
were manipulated by horizontal flipping. Traditionally, the PSNR has been used for the
evaluation of computer vision tasks. However, the perception of structural information
within images is measured by structure similarity (SSIM). Then, human vision is more
sensitive to changes in luminance. The experiment results are calculated on the PSNR and
SSIM by performing on the luminance (Y) channel of the converted YCbCr space. During
the training stage, LR images were split into 64 × 64 patches, and the mini-batch size
is set to 16. Our network adopted the ADAM optimizer [32] with β1 = 0.9; β2 = 0.999;
and ε = 1 ×10−8 to minimize the loss function. The initial learning rate was taken as
lr = 1 × 10−4 and halved for every 25,000 epochs. To ensure that our proposed MAAN had
a lower model capacity, we set the number of FFBs to i = 4 and set C = 40 as the number
of channels. We constructed our network utilizing Pytorch with an RTX 3080 GPU of 12G
memory on the R5-5600 machine.

4.2. Model Analysis
4.2.1. Number of FFBs

To better balance model capacity and reconstruction accuracy, we conducted experi-
ments with different numbers of FFBs. As shown in Table 1, we analyzed the number of
FFBs with scale factor ×3 on Urban100, the performance of SR can be improved as i grows,
accompanying computational cost and parameter increase. To ensure that the proposed
model is lightweight enough, we set i = 4 as the final model.

4.2.2. Effect of Reduction Ratio R Setting in AMAB

For analyzing the value of reduction ratio R in asymmetric convolution, we conducted
two extra models for comparison. We set R = 1 and R = 4, respectively. In Figure 6,
compared to the first two models, MAAN obtained the best results with the advantages
of split channels, making the value of PSNR increase dramatically from 34.12 to 34.32,
and the SSIM value consequently improved by 0.0021. Simultaneously, the number of
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parameters decreased by 28 K, and the computational cost, i.e., multi-ddds, dropped by
7.89G. Asymmetric convolution improved feature representation through channel changes.
However, if the number of channels is compressed too low, there will also be a loss of
some detailed features. Meanwhile, these changes also imply that effectively using the
correlation of asymmetric multi-weights attention within the image can significantly assist
in extracting accurate features from the image.

Table 1. Analysis of the number of FFB with scale factor ×3 on Urban100.

The Number of FFB Params Multi-Adds PSNR/SSIM

i = 2 342K 39.39G 27.66/0.8422

i = 4 668K 75.60G 28.02/0.8498

i = 6 993K 111.82G 28.20/0.8535
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4.2.3. Effect of AMAB

In order to evaluate the superiority of the AMAB, we provided two models for compar-
ison. We first replaced the AMAB with a plain channel attention (CA), namely MAAN-CA.
Then, we removed the AMAB to obtain a MAAN-NOAMAB. As shown in Table 2, the
performance of the MAAN-NOAMAB was much lower than that of the original MAAN,
with a 0.10 dB drop in PSNR value. At the same time, the PSNR and SSIM values of MAAN-
CA were 0.05 dB and 0.0007 less than our model, respectively. Notably, our proposed
AMAB only had a small increased cost of a few extra parameters and memory with a higher
reconstruction accuracy. These results prove the effectiveness and rationality of the AMAB.

Table 2. Ablation study of AMAB with scale factor ×3 on Set14.

Model CA N-AMAB AMAB Params Multi-Adds PSNR/SSIM

MAAN-CA X 668K 75.60G 30.25/0.8401

MAAN-NOAMAB X 639K 68.52G 30.17/0.8393

MAAN X 668K 75.60G 30.27/0.8408

4.3. Comparison with State-of-the-Art Methods

To verify the advantages of our model, we compare the MAAN with several state-
of-the-art SR methods in terms of quantitative and qualitative evaluation, such as SR-
CNN [2], FSRCNN [33], VDSR [3], DRCN [13], LapSRN [14], MemNet [34], CARN [9],
LESRCNN [16], ACNet [17], and WMRN [35].
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4.3.1. Quantitative Evaluation

The quantitative evaluation results concerning the average PSNR and SSIM over the
four benchmark datasets are shown in Table 3. For a more intuitive comparison, we give the
parameters and multi-adds. The parameters of the network model were derived from the
number of operations computed in the convolutional window, i.e., generated by the output
convolutional elements. In addition, multi-adds was employed to evaluate the model’s
computational complexity. It indicates the number of complex product operations for a
single image. The multi-adds were computed with a 1280 × 720 output image. Overall,
our model with nearly 668K parameters showed better reconstruction accuracy in terms of
objective quality scores on most benchmark datasets. Most of the quantitative results of
MAAN were either the best or the second-best from a lightweight modeling perspective.
For the scale factor ×2, the PSNR gain of MAAN was slightly lower than that of the
WMRN by 0.01 dB in Set5 and slightly lower than CARN, which was 0.01 dB in Set14.
Unfortunately, CARN suffered from enormous network parameters and computational
overhead. For the scale factor ×3, MAAN achieved the best SSIM of all methods and
was superior to other modules for the PSNR value except for CARN. For the scale factor
× 4, MAAN outperformed most methods and achieved comparable results running very
few operations, which takes up fewer multi-adds with more moderate parameters. These
advantages indicate that MAAN has a good reconfiguration capability and tends to produce
high-quality human perception. Moreover, it can be found that existing models with fewer
parameters have lower performance than our model. For example, although the multi-adds
value of LESCRNN is much lower than that of our model, it has unsatisfactory results.
Compared to the MWRN, our method achieved a performance improvement with slightly
more parameters. These results prove the superiority of our proposed MAAN over the
advanced models in attaining lightweight and efficient accuracy.

Table 3. Quantitative comparison over state-of-the-art SR methods on PSNR/SSIM. MAAN is our
method. The red/blue text depicts the best results and the second best ones, respectively.

Scale Model Params Multi-Adds Set5 Set14 B100 Urban100

×2

SRCNN 57K 52.7G 36.66/0.9524 32.42/0.9063 31.36/0.8879 29.50/0.8946

FSRCNN 12K 6.6G 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020

VDSR 665K 612.6G 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140

DRCN 1774K 17974G 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133

LapSRN 813K 29.9G 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100

MemNet 677K 2662.4G 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195

CARN 1592K 222.8G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.33/0.9200

LESRCNN 516K 110.6G 37.65/0.9586 33.32/0.9148 31.95/0.8964 31.45/0.9206

ACNet 1356K 501.5G 37.72/0.9588 33.41/0.9160 32.06/0.8978 31.79/0.9245

WMRN 452K 103G 37.93/0.9603 33.49/0.9169 32.13/0.8991 31.83/0.9253

MAAN 596K 170G 37.92/0.9604 33.51/0.9174 32.14/0.8997 31.86/0.9259

×3

SRCNN 57K 52.7G 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989

FSRCNN 12K 5.0G 33.16/0.9140 29.43/0.8242 28.53/0.7910 26.43/0.8080

VDSR 665K 612.6G 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279

DRCN 1774K 17974G 33.85/0.9215 29.89/0.8317 28.81/0.7954 27.16/0.8311

LapSRN 813K 149.4G 33.82/0.9227 29.87/0.8320 28.82/0.7980 27.07/0.8280

MemNet 677K 2662.4G 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376

CARN 1592K 118.8G 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493

LESRCNN 516K 49.1G 33.93/0.9231 30.12/0.8380 28.91/0.8005 27.70/0.84152

ACNet 1541K 369G 34.14/0.9247 30.19/0.8398 28.98/0.8023 27.97/0.8482

WMRN 556K 57G 34.25/0.9263 30.26/0.8401 29.04/0.8033 27.95/0.8472

MAAN 668K 75.6G 34.32/0.9269 30.27/0.8408 29.05/0.8042 28.02/0.8498
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Table 3. Cont.

Scale Model Params Multi-Adds Set5 Set14 B100 Urban100

×4

SRCNN 57K 52.7G 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221

FSRCNN 12K 4.6G 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280

VDSR 665K 612.6G 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524

DRCN 1774K 17974G 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510

LapSRN 813K 149.4G 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560

MemNet 677K 2662.4G 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510

CARN 1592K 90.9G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837

LESRCNN 516K 28.6G 31.88/0.8903 28.44/0.7772 27.45/0.7313 25.77/0.7732

ACNet 1784K 347.9G 31.83/0.8903 28.46/0.7788 27.48/0.7326 25.93/0.7798

WMRN 536K 45.7G 32.14/0.8944 28.58/0.7804 27.54/0.7342 26.00/0.7816

MAAN 653K 42.6G 32.21/0.8947 28.58/0.7811 27.55/0.7355 26.01/0.7840

4.3.2. Qualitative Evaluation

Figures 7–9 show a visual comparison of the different scale factors on the benchmark
dataset. In Figure 7, MAAN shows qualitative comparison over Set14 for scale factor
×2. Many methods cannot reconstruct the enlarged outline of the left side of the boy’s
hair strands, whereas MAAN can recover the hair details well, fully reflecting the role of
AMAB and allowing a complete recovery of high-frequency details. In Figure 8, MAAN
displays qualitative comparison over Set5 for scale factor ×3, most methods reconstruct
images with severe blurring artifacts and fail to restore headpieces clearly. In contrast,
MAAN removes artifacts and recovers a higher-quality image. Qualitative comparison
over Urban100 for scale factor ×4 was as depicted in Figure 9, although CARN, LESRCNN,
and ACNet can produce slightly sharper lines, their lines suffer from significant distortions.
In comparison, MAAN combines multi-scale features to expand the receptive fields to
capture richer multi-frequency information features. MAAN can overcome this point and
have the effect of more accurately reflecting the details of the HR image, thus reconstructing
satisfying results.
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5. Conclusions

In this paper, we present a lightweight MAAN for solving image SR tasks. MAAN
first extracts low-resolution features by CFB. Then, the FFB utilizes multiple paths to
complement the information exchange. Meanwhile, MARB can extend the perceptual field
by extracting feature information at different scales. To further extract high-frequency
detail features, an attention mechanism was introduced. AMAB in MARB assigns higher
weights to more important features to learn all the previous layers better. Finally, the
reconstruction module employed a combination of low- and high-frequency features to
capture SR features more robustly. Experiments show that our final model, the MAAN, can
achieve comparable performance to state-of-the-art lightweight models.

In the future, we will apply AMAB to improve the performance of water surface video
super-resolution that requires more efficiency and lighter weight. MAAN is more suitable
for small networks to be applied to other image tasks.
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