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Abstract: Video object and human action detection are applied in many fields, such as video surveil-
lance, face recognition, etc. Video object detection includes object classification and object location
within the frame. Human action recognition is the detection of human actions. Usually, video
detection is more challenging than image detection, since video frames are often more blurry than im-
ages. Moreover, video detection often has other difficulties, such as video defocus, motion blur, part
occlusion, etc. Nowadays, the video detection technology is able to implement real-time detection, or
high-accurate detection of blurry video frames. In this paper, various video object and human action
detection approaches are reviewed and discussed, many of them have performed state-of-the-art
results. We mainly review and discuss the classic video detection methods with supervised learning.
In addition, the frequently-used video object detection and human action recognition datasets are
reviewed. Finally, a summarization of the video detection is represented, e.g., the video object and
human action detection methods could be classified into frame-by-frame (frame-based) detection,
extracting-key-frame detection and using-temporal-information detection; the methods of utilizing
temporal information of adjacent video frames are mainly the optical flow method, Long Short-Term
Memory and convolution among adjacent frames.

Keywords: video object detection; human action recognition; deep learning; temporal information;
optical flow; LSTM; video dataset

1. Introduction
1.1. Background and Motivation

Video object detection and human action recognition are applied to various scenarios,
such as the recognition of vehicle plate numbers in traffic monitoring systems, the detec-
tion of dangerous vehicle behaviors, the detection of running red lights, the detection of
abnormal production behaviors in industrial production, the identification of abnormal
passenger behaviors at stations and airports, etc.

The difficulties of video detection include video defocus, motion blur, part occlusion,
etc. Video defocus would be generated during the focusing process. The defocus of the
video and the motion of the object may cause the video defocus and motion blur. Occlusion
between objects may cause the part occlusion. In addition, the shape of the objects in the
video may be changing with the distance of the camera. Therefore, compared with image
detection, video detection should be more challenging.

The existing video detection methods are operated on frames. Most of the existing
video detection methods are to decompose the video into frames, and then use the image
detection method to detect the frames. Therefore, the speed of video detection depends

Micromachines 2022, 13, 72. https://doi.org/10.3390/mi13010072 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13010072
https://doi.org/10.3390/mi13010072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-4653-5137
https://doi.org/10.3390/mi13010072
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13010072?type=check_update&version=1


Micromachines 2022, 13, 72 2 of 46

on the speed of image detection. In addition, some methods directly operate on the video,
however, these methods are also frame-based. They operate adjacent frames by using
specific algorithms. Therefore, for video detection, image detection methods are still
important.

Before, the methods applied to image detection include Histogram of Oriented Gra-
dients (HOG) [1], Scale-Invariant Feature Transform (SIFT) [2], Haar-like feature [3], etc.
Haar-like feature is from Haar wavelet [4], which is a kind of square-shaped function. These
above methods are used to extract the features of the image, and then used for detection.
The HOG method first grayscales the image, and then performs Gamma correction [5]
for reducing the impact of local shadows and lighting changes in the image, and it can
also suppress the noise interference. HOG captures the outline of the object, computes the
gradient histogram of each cell in the image, and combine the gradient histogram of each
cell to generate the descriptor. SIFT searches key points in different scales and calculates
the direction of the key points. The key points will not change when the illumination,
affine transformation and noise of images changes. The key points include corner points,
edge points, bright spots in dark areas, and dark spots in bright areas, etc. The advantages
of SIFT include good stability, good feature distinctiveness, high feature recognition rate.
HAAR uses the feature template sliding in the image, calculates the feature value, and
recognizes the image by a classifier.

Machine learning classifiers include Support Vector Machine (SVM) [6], Random
Forest [7], and some loss functions, etc. SVM maps data to space, and classifies the
data through a hyperplane. The advantage of SVM is high classification accuracy, the
disadvantage may be large computational consumption and large storage space.

Random Forest is based on Decision Tree [8]. Decision Tree is the classifier that
simulates human. Decision Tree selects the class which has more votes. Random Forest is
the multiple Decision Trees. Random Forest usually consist of hundreds to thousands of
Decision Trees. After training, Random Forest classifiers can often achieve high accuracy.

In the deep learning tasks, some loss functions can also be regarded as the classifiers,
since only the class which conforms to the loss function can be detected and recognized.
These loss functions include cross-entropy function [9] and some loss functions customized
by researchers themselves.

Before deep learning, local feature extraction methods such as SIFT, HOG, etc., did
not have the ability of feature translation invariance. The possible reason may be that the
features extracted by these methods may be simpler than the deep learning methods.

The detection speed of one-stage detector is usually faster than two-stage detector.
The two-stage detector has higher detection accuracy, but the detection speed would be
reduced. The two-stage detector usually follows the two steps: extracting features from
the input (feature extractor), recognizing the features by the trained classifiers (classifier).
The difference between one-stage detector and two-stage detector is mainly that the two-
stage detector often has a separate feature extractor, which is called “backbone” in some
literatures. Meanwhile, the one-stage detector combines the feature extractor and classifier
into one, which can reduce the complexity of the network structure and improve the
detection speed, but the detection accuracy may be reduced.

Generally, video object and human action detection can be classified into three cate-
gories: detecting frames by the image detector, extracting the key frames for the detection,
or using temporal information between adjacent frames. The former is implemented frame
by frame, and the speed of video detection depends on the speed of the frame detection.
Moreover, these methods usually do not extract the key frames from videos. Thus, the base
of these methods is still image detection. Some algorithms, such as You Only Look Once
(YOLO) [10], use the structure of Feature Pyramid Networks (FPN) [11]. Feature pyramid
networks (FPN) is used in one-stage detectors such as YOLO, and two-stage detectors
such as Faster Regions with Convolutional Neural Networks Features (Faster R-CNN) [12],
Mask R-CNN [13], Residual Net (ResNet) [14], etc.



Micromachines 2022, 13, 72 3 of 46

The latter of the above paragraph includes optical flow [15] and Long Short-Term
Memory (LSTM) [16]. Optical flow is to aggregate the feature maps of adjacent frames and
to improve the detection accuracy of blurry frames. Some other methods are similar to
optical flow, such as using convolutions to aggregate the feature maps of adjacent frames.
Many video detection algorithms use the architecture of LSTM or modified LSTM into their
own structure.

The connection between object tracking and object detection is the method of object
tracking could be used for object detection, since object tracking and object detection both
use the temporal information of the video frames.

1.2. Contributions

The contribution of this paper is summarized as follows:
(A) Review the commonly-used video-based detection datasets, and their applica-

tion scope.
(B) Review the machine learning-based models, which are used for video object and

human action detection.
(C) Summarize and analyze the performance of the classical video detection algorithms,

and summarize the methods of improving the speed of video detection.
(D) Summarize and analyze the image and video evaluation metrics used in the

literatures, and illustrate that most video metrics use image detection metrics by frames.
(E) Summarize the algorithms of video surveillance system, face detection, face recog-

nition, face tracking, image and video quality enhancement, respectively.
(F) Summarize the three main ideas for video detection: the first is to detect each frame;

the second is to extract the key frames; the third is to adopt the LSTM structure, the optical
flow method or convolution among adjacent frames for using the temporal information
among adjacent frames.

1.3. Paper Organization

The main structure of the paper is: first, the video datasets are introduced; second,
the video detection algorithms are introduced and analyzed; third, the video detection
algorithms are discussed and evaluated. Among them, the video detection algorithms are
classified as the frame-by-frame algorithms (Section 3) and the using-temporal-information
algorithms (Section 4).

The paper reviews the video object detection and human action recognition using
deep learning methods, summarizes the current video detection approaches. Our paper
is organized as follows: Section 2 summarizes the image detection metrics and the most
commonly used video classification datasets. Section 3 describes the frame-based (frame-
by-frame) video object detection approaches. Section 4 describes the video detection
methods by extracting the key frames. Section 5 analyses the video object and human
action detection approaches which use the temporal information. Section 6 discusses and
analyzes the performance of video detection algorithms and remarks the limitations and
future research directions of the reviewed methods. Section 7 remarks the limitations of
the current algorithms, and discusses the future research directions, in our own opinion.
Finally, Section 8 gives a conclusion about the video object and human action detection.
The summarization of the video object and human action detection is shown in Figure 1.
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Figure 1. The summarization of video object and human action detection. The paper is organized as
this structure as well.

2. Machine Learning-Based Evaluation Metrics and Video-Based Datasets
2.1. Machine Learning-Based Evaluation Metrics

The machine learning-based evaluation metrics used for image detection mainly
include: accuracy, precision, recall, F1-score, AP, mAP, ROC, AUC, etc. These metrics are
from the classification results of the positive and the negative data. The positive data
indicates the correct data, and the negative data indicates the wrong data. The calculation
factors of these metrics are: True Positive (TP), True Negative (TN), False Positive (FP),
False Negative (FN). TP represents the number of the positive classes predicted as the
positive classes. TN represents the number of the negative classes predicted as the negative
classes. FP represents the number of the negative classes predicted as the positive classes.
FN represents the number of the positive classes predicted as the negative classes.

accuracy =
TP + TN

TP + TN + FP + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 =
2× precision× recall

precision + recall
(4)

AP =
∑N

i=1 precision
N

(5)

mAP =
∑M

i=1 AP
M

(6)

Receiver Operating Characteristic (ROC) curve uses the False Positive rate and the True
Positive rate as the coordinate axes. The area under the ROC curve is Area Under Curve
(AUC). Figure 2 illustrates the training accuracy and the test accuracy of a CNN-LSTM
model on UCF101 [17] dataset.
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Figure 2. The training accuracy and the test accuracy of a CNN-LSTM model, which was implemented
in nearly 3 days. The dataset is UCF101. The accuracy is an important metric on UCF101. The training
accuracy is the result of the training data on the model. The test accuracy is the result of the test data
on the model. The metric of accuracy is using image detection metrics by frames.

From the existing video detection literatures, it could be found that most of the
video detection evaluation use the image metrics. The method is to use video frames for
calculation. We think that there are many differences between video and image. Video
frames are always not independent of each other, but images are independent of each other.
Thus, using image metrics to the video frames may cause the duplicated statistics, such as
TP, FP, etc., since the same objects in the frames may be counted repeatedly.

2.2. Video-Based Datasets for Object Detection and Action Recognition

The commonly used video classification datasets are as follows: ImageNet VID
dataset [18], which has 3862 snippets for training, 555 snippets for validation, 937 snippets
for test. The dataset has 30 classes. These classes are carefully selected as considering differ-
ent factors, such as motion type, background interference, average number of objects, etc.
Each frame of the videos is annotated. Another video object detection dataset is YouTube-
Objects dataset [19], which is collected from YouTube, has 10 object classes. The videos in
the dataset are formed as the frames, these frames can be restored to videos if necessary.
A video object dataset that has man-made bounding boxes is YouTube-BoundingBoxes
dataset [20], which contains 380,000 19-s-long videos, with 23 classes of objects. The quality
of the video is similar to that of a mobile phone. The project is made by Google Brain, and
the dataset has 5.6 million human-annotated bounding boxes. A video object detection
dataset used for urban geographic recognition is Apolloscape dataset [21], which provided
by Baidu includes RGB videos with high-resolution images and per-pixel annotations. The
dataset defines 26 different objects, such as cars, bicycles, pedestrians, buildings, street
lights, etc. CDnet2014 [22] is a video change detection dataset, which has 11 categories.

Some video datasets are used for video segmentation, which is based on video object
detection. These video datasets include: Cambridge-driving Labeled Video Database
(CamVid) [23], which is the dataset of video semantic segmentation. The data was taken
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from the perspective of driving cars, has 32 semantic classes. Densely Annotated Video
Segmentation [24] is an object segmentation dataset with high-definition video, including
50 videos, 3455 annotated frames, and the video resolution is 1080p. DAVIS dataset [25] is
used for video segmentation, which has 50 clips, 3455 annotated frames.

Some video datasets are used for pedestrian and human face detection. These datasets
include: UCSD Pedestrian dataset [26] is a video dataset containing pedestrians, which can
be used for computer vision tasks such as pedestrian detection and recognition. Caltech
Pedestrian dataset is also a dataset for pedestrian detection. Similarly, there are ETH
Pedestrian dataset, INRIA Pedestrian dataset, TudBrussels Pedestrian dataset, Daimler
Pedestrian Dataset. DeeperForensics-1.0 [27], containing 60,000 human face videos, which
is used to train models, for the purpose of detecting forgery faces.

Video tracking is based on video object detection either. Amsterdam Library of
Ordinary Videos for tracking (ALOV++) [28] is an object tracking video dataset, which is
used to detect and track similar objects under different light, transparency and focal length.
The videos are from YouTube, with an average duration of 9.2 s. VOT dataset [29] is for
VOT-Challenge, which is also a video object tracking dataset. MOT dataset [30] is a video
multi object tracking dataset, used for MOT-Challenge.

Human action recognition uses the video object detectors. The datasets include:
HMDB51 [31], which is a dataset published in a paper on behavior recognition. There are
51 human action categories, 6766 video clips. The video clips are classified as facial actions
and body actions. UCF101 [17] is an action and sports recognition dataset. The dataset
has 101 human action categories, 13320 videos. The dataset is from YouTube. ASLAN [32]
is an action recognition dataset, which has 432 action categories and 3697 video clips.
Sports-1M [33], an action and sports recognition dataset, has 487 action categories and
1,100,000 video clips. FCVID [34] is a human action and activity recognition dataset, scene
and objects recognition. There is 239 action categories and 91,223 video clips in the dataset.
ActivityNet [35], is an action recognition and human activity dataset. Youtube-8M [36] is an
action recognition video dataset, which has 3862 action categories and 5,600,000 video clips.
Charades [37] is a human action and activity recognition dataset, which has 157 action
categories and 9848 video clips. Kinectics [38] is a human action recognition dataset, has
600 action categories and 500,000 video clips. The scale of Kinectics is larger than UCF101.
AVA [39] is a human action recognition dataset, and has 50,000 video clips from YouTube.
VLOG [40] is an action recognition dataset, and has 114,000 video clips. HACS [41] is an
action recognition and action localization dataset. The dataset has 200 action categories and
520,000 video clips. 20BN-SOMETHING-SOMETHING [42] is a human action recognition
dataset. The dataset has 174 action categories and 220847 video clips.

3. Video Frame-Based Object Detection Algorithms

Most video detection methods decompose the video into frames, use the image de-
tection model to detect. Therefore, almost all image detectors can be applied for video
detection. The other video detection methods utilize the correlation between frames, op-
erate on adjacent frames. Some of the methods which operate on adjacent frames use
LSTM-like models. The following discusses in detail.

3.1. One-Stage Video Object Detection

The current object detection methods are divided into two categories, one-stage ob-
ject detection and two-stage object detection. In the two-stage object detection, feature
extraction is the first stage, the classification is the second stage. One-stage object detection
methods include YOLO [10], SSD [43] and RetinaNet [44]. Their common point is that
the detection speed of a single frame is very fast, and real-time video detection can be
implemented.
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3.1.1. You Only Look Once (YOLO)

YOLO [10] makes the object classification as “regression”. In the training, YOLO will
resize the images to a specific size, which can be set in the program. In the model, the
nonlinear mapping between image features and neural network parameters is established.
In the detection, the image or video is performed.

The network structure of YOLO uses the structure of GoogLeNet [45] for classification,
and replaces the inception modules of GoogLeNet with 1 × 1 and 3 × 3 convolutional
layers, in order to simplify the structure and improve the detection speed. YOLO has
24 convolutional layers and 2 fully connected layers. The network structure is illustrated in
Figure 3.
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Figure 3. The network structure of YOLO, the purple ones are convolutional layers, the purple-red
ones are max pooling layers. The structure has 26 convolutional layers and 4 max pooling layers. The
layers are for extracting features of the objects, the rear layers are for classification of the objects. The
design of the structure should have some fixed routines. The planes reflect the size of the feature
maps. The dimension of the network is not shown in the figure. The video frame shown in the figure
is from the YouTube Objects (YTO) dataset [19].

YOLO divides the input image into s × s grid cells, each grid cell only predicts one
object, but an object may occupy multiple cells and may be predicted by multiple cells.
Every grid cell generates B (number) bounding boxes, and the bounding box like the anchor
box used in Faster R-CNN, has several different scales and aspect ratio. If an object occupies
multiple grids, the bounding boxes of the grids merge into one. The bounding box is not
only used to positioning, but also used to generate the object confidence. Each bounding
box has 5 parameters: x, y, w, h, and the confidence. (x, y) denotes the center coordinate of
the bounding box, w and h denote the relative location to the whole image. The detection
confidence value is defined as follow:

con f idence = Pr(Object)× IoUtruth
pred (7)

where Pr(Object) is the probability of the object, IoU represents Intersection-over-Union,
which is the quotient of the intersection and union of the candidate bounding box and the
ground truth bounding box. The Pr(Object) is 1 when an object locates at a grid cell, or
else the value is 0. The second item of the right side of the above equation is the IoU value,
which is the overlapping area of the bounding box and the ground truth.
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In the test, the bounding boxes are filtered by Non-Maximum Suppression (NMS).
Compared with the previous video frame-based object detection methods, such as the frame
detection methods using R-CNN, Faster R-CNN, Deformable Parts Model (DPM) [46] etc.,
YOLO has such advantages:

(A) The detection speed of YOLO is very fast. As YOLO does not have the separate
stage of generating the region proposals, the detection speed of YOLO is 45 FPS using
TITAN X GPU, and the speed of Fast YOLO can reach 155 FPS with the same type of GPU.
Since the playback speed of the video is about 30 frames per second, the real-time video
detection can be implemented when the video detection speed reaches 30 FPS. Compared
with the previous real-time detection system, such as Deformable Parts Model (DPM) [46],
YOLO’s mean Average Precision (mAP) value has been increased by more than two times.

(B) YOLO uses the context information to enhance the detection accuracy. Since YOLO
does not limit the number of grids occupied by the object, then, the relationship between
the grids is relatively close. In the two-stage object detection, the classifier only detects the
pixels in the region proposals, while YOLO uses the context information more. Thus, the
detection accuracy is higher.

(C) YOLO can learn high semantic features. As shown in Figure 3, YOLO’s network
structure is deep enough so that the features are advanced and easy to classify. In addi-
tion, YOLO performs a lot of optimization, thus, the network is fast and the features are
generalized.

3.1.2. YOLO9000 (YOLOv2)

YOLOv2 [47] uses a series of methods to improve detection accuracy and speed, and
adopts strategies to enable YOLOv2 to detect more than 9000 objects. In addition, the basic
framework of YOLOv2 is similar to YOLOv1.

YOLOv2 uses the following methods to improve the detection speed: (A) YOLOv2
adopts Darknet19 as the detection neural network, which has 19 convolutional layers with
3 × 3 filter and 5 max pooling layers with doubling the number of channels compared with
the previous layer. (B) YOLOv2 follows almost every 3 × 3 convolution layer with a 1 × 1
convolution layer, which may reduce the complexity of network computing and improve
the detection speed. (C) YOLOv2 does not use the dropout layer, which may reduce the
network computational complexity and help increase the network speed.

In addition, the following methods are used to improve the detection accuracy:
(A) YOLOv2 uses Batch Normalization (BN) [48] after every convolutional layer, which
could improve the detection accuracy, by unifying the distribution of all data to the stan-
dard normal distribution. (B) YOLOv2 uses data augmentation, which can randomly crop
and rotate the input image, which is equivalent to expanding the input dataset, so that the
established model contains more features. (C) YOLOv2 improves the resolution of the input
image, increases the detected pixels, and increases the amount of detected information,
which is conducive to improving the detection accuracy. (D) YOLOv2 removes the fully
connected layer and uses anchor box to predict the bounding box directly. (E) YOLOv2 adds
an identity mapping which is similar to residual skip connection, reduces the information
loss caused by convolution and pooling, and improves the detection accuracy.

The structure of DarkNet19 used in YOLOv2 is shown in Table 1. As YOLOv2 adopts
a strategy of constructing dataset, which is the method WordTree, it can detect more than
9000 categories of objects. Common datasets may not have a tree type, and the WordTree
method constructs labels of dataset as a tree, the probability of a leaf node is the product
of the parent nodes. YOLO uses COCO dataset [49] to detect, and uses ImageNet dataset
to classify.
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Table 1. The structure of DarkNet19.

Dimension Convolution Kernel Stride Output

Conv. 32 3 × 3 224 × 224
Maxpool 2 × 2 2 112 × 112
Conv. 64 3 × 3 112 × 112
Maxpool 2 × 2 2 56 × 56
Conv. 128 3 × 3 56 × 56
Conv. 64 1 × 1 56 × 56
Conv. 128 3 × 3 56 × 56
Maxpool 2 × 2 2 28 × 28
Conv. 256 3 × 3 28 × 28
Conv. 128 1 × 1 28 × 28
Conv. 256 3 × 3 28 × 28
Maxpool 2 × 2 2 14 × 14
Conv. 512 3 × 3 14 × 14
Conv. 256 1 × 1 14 × 14
Conv. 512 3 × 3 14 × 14
Conv. 256 1 × 1 14 × 14
Conv. 512 3 × 3 14 × 14
Maxpool 2 × 2 2 7 × 7
Conv. 1024 3 × 3 7 × 7
Conv. 512 1 × 1 7 × 7
Conv. 1024 3 × 3 7 × 7
Conv. 512 1 × 1 7 × 7
Conv. 1024 3 × 3 7 × 7
Conv. 1000 1 × 1 7 × 7
Averagepool Global 1000
Softmax

3.1.3. YOLOv3

YOLOv3 [50] still uses the framework of DarkNet, and the network uses the residual
module and the multi-scale prediction. The multi-scale prediction is similar to Feature
Pyramid Networks (FPN) [11]. Compared with YOLOv2, YOLOv3 uses more residual skip
modules presented in ResNet [14], which reduces the loss of the information caused by
convolution and pooling, making the network deeper, which can extract more advanced
semantic features and improve the recognition accuracy.

YOLOv3 uses multi-scale prediction to enhance the detection accuracy. In DarkNet53,
the final detection result is synthesized by Scale1, Scale2 and Scale3, which is illustrated
in Figure 4. YOLOv3 does not use the fully connected layer either, which reduces the
complexity of network computing and improves the detection speed. Because of the above
methods, it ensures the detection accuracy. The detection accuracy of DarkNet53 is as much
as ResNet152 [14], but the detection speed is much higher than ResNet152.

YOLOv3 uses convolution instead of pooling for down-sampling, which reduces the
information loss in the neural network iteration. Usually, the information loss of pooling
may be large, because the pooling operation merges multiple pixels into one pixel.
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detect small-size objects. YOLOv3 concatenates the output feature maps of 32 × 32, 16 × 16, 8 × 8 for
detection.

3.1.4. YOLOv4

The detection speed and detection accuracy of YOLOv4 [51] are improved, compared
with YOLOv3. YOLOv4 has three parts: backbone, neck and head. The backbone is used
for extracting features. The neck is used for transmitting the extracted features to the part
of head. The head is used for object classification and bounding box regression.

YOLOv4 uses Cross Stage Partial Networks (CSP Darknet) [52] as the backbone.
CSPNet solves the problem of gradient information duplication in other backbones, and
integrates the gradient changes into the feature map, therefore, YOLOv4 reduces the
parameter amount and FLOPS of the model, improves the detection speed and accuracy,
and reduces the size of the model. CSPNet is based on the idea of DenseNet. CSPNet uses
the shortcut connections for reducing the information loss in the transmission, effectively
alleviates the gradient disappearance.

YOLOv4 uses PANet [53] as the neck. The neck can generate the feature pyramids.
PANet is based on Mask R-CNN [13] and FPN [11]. The neck adopts a kind of FPN structure
that enhances the bottom-up transmission, which improves the transmission of the bottom
features.

YOLOv4 uses the YOLOv3 detector as the head. The characteristic of the head is fast
detection speed and high detection accuracy. In the head, each object class generates three
kinds of anchor boxes, corresponding to the three different object scales and sizes. The
structure of YOLOv4 is shown in Figure 5.
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Figure 5. The structure of YOLOv4, which has 3 parts: backbone, neck and head. The backbone
is used to extract the features of the object, the neck is used to transmit the features, the head is a
detector, which classifies the object in the image (frame), and indicates the location of the object in the
image (frame). Each part is constructed by the convolutional layers and pooling layers.

3.1.5. Using-Dilated-Convolution Unmanned Aerial Vehicle (UAV) Detection

Yavariabdi et al. [54] propose a framework which is based on YOLOv3 tiny, for UAV
detection. The structure improves the backbone of YOLOv3 tiny, adds the Inception module
which is from GoogLeNet, and adds the dilated convolutions. The model uses 5 Inception
modules, and the dilated factor is 2. In the detection, the scalable kernel correlation
filter (sKCF) is integrated into the model to improve the detection speed. Generalized
Intersection over Union loss is used in the system. The experimental results show that the
UAV video detection framework improves the detection accuracy, and the detection speed
is not reduced. The structure is shown in Figure 6.
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Figure 6. The structure of using-dilated-convolution UAV detection, which has 5 Inception modules.

3.1.6. FastUAV-NET

Yavariabdi et al. [55] also propose a UAV detection method called FastUAV-NET,
which is an improvement of [54]. FastUAV-NET uses intra-frame detection and inter-frame
tracking. Intra-frame detection is similar to the literature [54], which also uses 5 Inception
modules. The inter-frame tracking between frames uses the structure of a Feature Pyramid
Network (FPN). The proposed model achieves a good trade-off between detection speed
and detection accuracy. The workflow is shown in Figure 7.
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3.1.7. Single Shot MultiBox Detector (SSD) and Other Improved Versions

Single Shot MultiBox Detector (SSD) [43] uses the anchor of Faster R-CNN [12], and
performs the multi-scale prediction, i.e., generates the multi-scale feature map to obtain a
nonlinear mapping between the image and the features. It makes the detection speed of
SSD fast, and the localization of bounding box is as accurate as YOLOv2.

In the multi-scale feature maps of SSD, the large feature map is used to detect small
objects, and the small feature map is used to detect large objects. Since the information loss
of the large feature map is little.

The loss function of SSD has two parts: the loss that calculates the detection confidence
of the object, and the loss that calculates the location of the object. As shown in Equation (8).

L(x, c, l, g) =
1
N

(
Lcon f (x, c) + αLloc(x, l, g)

)
(8)

where N is the number of boxes, which is mapped to Ground Truth, and the parameter α
is the ratio between the confidence loss and the location loss, the default value of α is 1.
Here x evaluates how much the i-th detection bounding box matches the j-th ground truth
bounding box, and xp

ij ∈ {0, 1}. When xp
ij = 1, it means that the i-th detection box matches

the j-th ground truth, and the class of ground truth is p. The parameter c is the value of
class confidence. The parameter l is the location value of the detection box, and g is the
position value of the ground truth.

The location regression loss uses Smooth L1 loss function, which is one of the classic
regression functions. The confidence loss is a classic softmax loss function. The location
regression loss and the confidence loss are shown in Equations (9) and (10).

Lloc(x, l, g) =
N

∑
i∈Pos

∑
m∈{cx,cy,w,h}

xk
ijsmoothL1

(
lm
i − ĝm

j

)
(9)

Lcon f (x, c) = −
N

∑
i∈Pos

xP
ij log

(
ĉP

i

)
− ∑

i∈Neg
log

(
ĉ0

i

)
(10)

where ĉP
i =

exp(cP
i )

∑P exp(cP
i )

, x, l, g, c, N are the same with Equation (8), m is the pixel within a

bounding box. Pos denotes the positive samples of the bounding boxes, Neg denotes the
negative samples of the bounding boxes, smoothL1 is the Smooth L1 loss function.

The detection speed of SSD is fast, and the detection accuracy is similar or higher than
Faster R-CNN [12]. SSD also uses the data augmentation [56], such as image flipping, image
cropping, image distortion, etc. Data augmentation has a significant effect on improving
the mAP value. Because the detection speed of SSD is fast, about 59 FPS, SSD can be used
for real-time video object detection.

Compared with SSD, a difference of DSSD [57] is the addition of contextual infor-
mation. DSSD replaces VGG-16 [58] with ResNet-101 [14], and uses the de-convolutional
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layers and skip connections to enhance the small object detection of the initial large feature
map. Like SSD, the ResNet-101 module in DSSD also adopts the mode of multi-scale pre-
diction. The feature maps are extracted from the front, middle, and back of ResNet-101, and
summarized to the de-convolutional layer at the end of DSSD. The use of de-convolutional
layers is another characteristic of DSSD. The aim of using the de-convolutional layer is to
utilize the context information, which is beneficial for the detection of small objects via
shallow feature maps. The structure is illustrated in Figure 8.
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Figure 8. The structure of DSSD. The orange boxes are convolutional layers, the light-orange boxes are
pooling layers, the lilac boxes are de-convolutional layers, the lilac gates represent the concatenation
of the convolution and the deconvolution. There are 10 convolutional layers, 1 pooling layer and
5 de-convolutional layers in the main pipeline. The planes reflect the size of the feature maps, the
thickness reflects the dimension of the feature map. The six branches on the top right of the figure
represent the prediction module, i.e., classification and object localization module.

Other improved versions of SSD include Rainbow SSD (RSSD) [59], Feature Fusion
Single Shot Multibox Detector (FSSD) [60], etc. RSSD does not replace the basic network
VGG-16 in SSD with ResNet-101, but improves the feature concatenation method. In this
way, shallow features and deep features are better used. Although the detection speed is
reduced, the detection mAP value is improved.

RSSD improves SSD algorithm from the following two aspects: (A) RSSD uses the
classification networks to strengthen the connection of feature maps between different
layers, which reduces the duplicate frames; (B) RSSD increases the number of feature maps
in the multi-scale feature map prediction, increasing the robustness of the detection of
small objects.

In the network structure of RSSD, pooling and deconvolution are implemented simul-
taneously. Before the concatenation, Batch Normalization (BN) operations are performed
on the feature maps to unify the feature distribution of the data, thereby improving the
detection accuracy.

FSSD emphasizes on the fusion of shallow and deep features. Shallow features have
a low semantic level, while deep features have a high semantic level, if they are directly
fused, these features will not be able to make full use, and the information loss may occur.

The basic model of FSSD is basically the same as that of SSD, using VGG-16 as the
basic model. The structure of FSSD is shown in Figure 9. The feature map of each layer is
resized to the same size to concatenate. In addition, simple block and bottleneck block are
used to generate the feature pyramid in the rear stage of FSSD. In the FSSD-512 detection
(the input image size is 512 × 512), the detection speed is 35.7 FPS, and the mAP is 84.5%.
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Figure 9. The overall structure illustration of FSSD. The arrows show the information flow. The
box of “Detection” is the detector, which output the classes and location of the object in the image
or frame.

3.2. Two-Stage Video Object Detection

Since video is composed of frames, theoretically, all two-stage image detection methods
could be used for video detection by detecting the frames. In general, since the detection
speed of the two-stage detector would be not very fast, this form of video detection cannot
implement real-time detection.

Two-stage object detection has a separate module for extracting features and region
proposals, which is called backbone. Therefore, the detection speed is slower than the one-
stage detector, although the detection accuracy is always higher than the one-stage detector.

Now the classic two-stage object detection models include Regions with CNN (R-
CNN) [61], Spatial Pyramid Pooling (SPP) Net [62], Fast R-CNN [63], Faster R-CNN [12],
ResNet [14], GoogLeNet [45], etc. These models are based on deep convolutional neural
networks. The idea of these models is to extract features from images, and classify objects
by the trained classifiers. In the stage of extracting features (backbone), the earlier deep
learning methods, such as R-CNN, use Selective Search, which slides many boxes in the
images, and use neural networks to extract features in these boxes. Selective Search is
replaced with Region Proposal Networks (RPN) in Faster-RCNN. RPN generates bounding
boxes when extracting features. The idea is applied to other models such as RetinaNet [44].
Since this paper is a review on video detection, please refer to the image detection literatures.
The universal work flow of the image-video detection method is shown in Figure 10.
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Figure 10. The universal work flow of the two-stage video object detection. The framework is based
on the two-stage image object detection, which is the “Image detection” module in the figure.

3.3. Mixed-Stage Video Object Detection

The mixed-stage object detection is a mixture of one-stage detection and two-stage
detection, or other video detections which could not be classified as one-stage or two-stage
detection.

Minimum Delay video object detection [64] uses one-stage and two-stage image
detector simultaneously, which can achieve real-time detection speed. The idea of Minimum
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Delay is the quickest detection theory. The “quickest detection” is to realize fast detection
with a probability, by calculating the distribution variation of the video sequences. The
“quickest detection” is implemented as the cumulative sum (CUSUM) algorithm. The
algorithm of CUSUM integrates the feature map sampling values of the video sequence,
and can aggregate the small deviations of the video sequence into a fluctuation. Therefore,
CUSUM can detect the changes of the average value of the observed video sequences, and
can overcome the signal-to-noise ratio threshold effect. The framework of Minimum Delay
Video Object Detection is composed of CNN detector which is implemented frame by
frame, an NMS module which is used to filter the inaccurate candidate boxes, the CUSUM
module to implement the accurate and minimum delay detection. The CNN detector
adopts ResNet [14], SSD, RetinaNet [44], VGG net [58], ZF net [65] in the experiments. The
method improves the detection accuracy without reducing the detection speed. When using
one-stage detector as the CNN detector, the framework can achieve real-time detection
speed. The framework of Minimum Delay video object detection is shown in Figure 11.
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Figure 11. The structure of Minimum Delay video object detection. The single frame detector is a
one-stage detector, and the rest is a two-stage detector (include feature extractor and classifier), thus
we regard it as a mixed-stage object detector. The structure has two shortcut connections, and a
feedback connection, which have improved the detection.

Lyu et al. [66] uses Convolutional Regression Tracking between the adjacent frames
for enhancing the video object detector. The structure is shown in Figure 12. Sabater
et al. [67] propose a detection refinement method for video object detection, and the
refinement method uses a link scoring model to link the feature map of adjacent frames.
Bertinetto et al. [68] propose a fully-convolutional Siamese network for the video object
tracking, which is light, and outperform the previous object tracking methods. Cai et al. [69]
propose Cascade R-CNN, which has a cascade structure, and the cascade structure send
the bounding boxes of the previous branch to the next branch. The performance of the
method is state-of-the-art. Ustinova et al. [70] propose Histogram loss function for deep
embedding learning, and the loss function outperforms the previous loss functions on
some important datasets.

Zhang et al. [71] find that, in the multi-object tracking (MOT) system, the detection
task and the re-ID task have an interaction, which may affect the re-ID task. They propose a
tracking method, which uses an anchor-free single-shot deep network to solve the problem.
The network is an unsupervised architecture, and use the input image multiple times
for encoding. This makes the network need less training data, and the anchor boxes
are not needed in training. Kusetogullari et al. [72] introduces a large-scale handwriting
dataset named DIDA, and a deep learning architecture named DIGITNET, which is used to
recognize the handwriting in DIDA and other handwriting datasets. DIGITNET is based
on YOLO, and followed by three different designed Convolutional Neural Network (CNN)
architectures.



Micromachines 2022, 13, 72 16 of 46

Micromachines 2022, 12, x FOR PEER REVIEW 15 of 45 
 

 

method uses a link scoring model to link the feature map of adjacent frames. Bertinetto et 

al. [68] propose a fully-convolutional Siamese network for the video object tracking, which 

is light, and outperform the previous object tracking methods. Cai et al. [69] propose Cas-

cade R-CNN, which has a cascade structure, and the cascade structure send the bounding 

boxes of the previous branch to the next branch. The performance of the method is state-

of-the-art. Ustinova et al. [70] propose Histogram loss function for deep embedding learn-

ing, and the loss function outperforms the previous loss functions on some important da-

tasets. 

Zhang et al. [71] find that, in the multi-object tracking (MOT) system, the detection 

task and the re-ID task have an interaction, which may affect the re-ID task. They propose 

a tracking method, which uses an anchor-free single-shot deep network to solve the prob-

lem. The network is an unsupervised architecture, and use the input image multiple times 

for encoding. This makes the network need less training data, and the anchor boxes are 

not needed in training. Kusetogullari et al. [72] introduces a large-scale handwriting da-

taset named DIDA, and a deep learning architecture named DIGITNET, which is used to 

recognize the handwriting in DIDA and other handwriting datasets. DIGITNET is based 

on YOLO, and followed by three different designed Convolutional Neural Network 

(CNN) architectures. 

 

Figure 11. The structure of Minimum Delay video object detection. The single frame detector is a 

one-stage detector, and the rest is a two-stage detector (include feature extractor and classifier), thus 

we regard it as a mixed-stage object detector. The structure has two shortcut connections, and a 

feedback connection, which have improved the detection. 

 

Figure 12. The structure of Convolutional Regression Tracking. Convolutional Regression Tracking 

is located between the 2 convolutional neural network (CNN) pipelines. The structure can improve 

the mAP of the image object detector, which can be used as video object detector. 

Single frame 
detector

Trajectory 
update

NMS
CUSUM 
update

Detection

CNN

CNN

Classification

Localization

RoI Pooling

RPN

Convolutional Regression 
Tracking

RoI Pooling

RPN

Figure 12. The structure of Convolutional Regression Tracking. Convolutional Regression Tracking is
located between the 2 convolutional neural network (CNN) pipelines. The structure can improve the
mAP of the image object detector, which can be used as video object detector.

Qin et al. apply convolutional neural networks to human behavioral recognition, to
constitute an intelligent city system [73]. The proposed approach includes bottom layers,
middle layers and top layers, which can locate objects, recognize objects, and recognize
the behavior of the objects. The approach has reached good performance in city. Mühling
et al. use deep learning method for video content retrieval in films and TV programs, and
achieve high retrieval rate in those videos [74]. Hu et al. construct a deep incremental slow
feature analysis (D-IncSFA) network, to implement video anomaly detection, which relies
on hand-crafted representations [75]. Wang et al. propose a deep learning model to detect
video salient regions [76]. They also develop a data augmentation method to simulate
the video datasets. Li et al. use deep reinforcement learning method to detect temporal
action in videos [77]. They design a long short-term memory (LSTM) structure to generate
the features of video sequences. Protasov et al. use a kind of deep convolutional neural
network to extract features, then implement semantic video annotation after video scene
detection [78].

Wang et al. present three-level hierarchical context modeling, which can recognize
the events in videos by using the previous events [79]. Hu et al. propose a deep neural
network architecture to enhance person re-identification [80]. The proposed architecture
uses neural network to extract the whole and part features of person, and synthesizes the
features to realize person recognition. Xu et al. use an unsupervised learning method
to detect anomalous events in video surveillance scenes [81]. The method learns person
features and their optical flow maps separately after unsupervised encoding and decoding,
then uses Support Vector Machine (SVM) [82] to score the events and detect them.

Cao et al. propose a Teacher Network and Student Network architecture, which
realize the real-time video detection from vehicle cameras [83]. The Teacher Network
is pre-trained, the architecture transfers a layer of the Teacher Network to the Student
Network, to make the smaller and simpler Student Network have better performance.
Takahashi et al. propose audio event recognition (AER) for video analysis [84]. The audio
of the video is used to train a CNN architecture, and then the CNN architecture outputs
probability of classes, which will be helpful for video detection, video analysis and subtitle
matching. A face video verification system proposed by Chen et al. has four parts: face
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detection, face association, face alignment, face verification [85]. The method synthesizes
the previous face detection methods, and the detection effect is better.

Zheng et al. propose a video dynamics detection method that can detect the events in
videos [86]. The method combines Deep Neural Network (DNN) and Recurrent Neural
Network (RNN), increases the detection accuracy, and reduces the training time. A novel
convolutional neural network architecture is proposed to detect the event of action in
videos [87]. The architecture is called Tube Convolutional Neural Network (also abbreviated
as T-CNN), which uses 3D convolution on videos, extends 2D convolution and pooling
to 3D, to generate 3D video Region of Interests (RoIs). Yao et al. propose a kind of deep
learning method to detect object-based forgery [88]. The method detects video frames by
using convolutional neural network (CNN) after a predefined high pass filter, and achieves
better performance than in existing literature.

Wang et al. integrate the method of object detection into video saliency detection,
propose a feature hybrid framework to detect the spatiotemporal saliency in videos [89].
Their method also works in video frames. Niu et al. propose an architecture to detect fake
face or masked face from normal face video frames, which first aligns the faces and extract
facial features, then utilizes Gaussian Mixture Model (GMM) to classify faces [90]. GMM is
a model that implements clustering through Gaussian probability function. The method
achieves real-time speed and high accuracy. A deep learning-based detection method called
NB-CNN detects video frames of reactors’ cracks [91]. NB-CNN uses convolutional neural
network and Naive Bayes classifier. This method has reached a good level among similar
algorithms.

Li et al. consider the background and foreground of the video frames both, and
implement background extraction and foreground detection [92]. The approach is named
Hierarchical Modeling and Alternating Optimization (HMAO). Tao et al. [93] uses sig-
nal processing methods to detect smoky vehicles on the road, such as Grey-Level Co-
Occurrence Matrix (GLCM) [94], Discrete Wavelet Transform (DWT) [95]. The detection
speed is high, and the method can use the videos taken by the car camera to detect. Bilal
et al. [96] propose a method to detect pedestrian in an efficient way, the method is made up
of cascaded Support Vector Machine (SVM). The detection accuracy and speed are better
than other similar methods.

A novel convolutional neural network (CNN) architecture is proposed to recognize
human action in videos [97]. The architecture first extract action region of video frames, and
then use CNN combined with optical flow algorithm. The Siamese region proposal network
(Siamese-RPN) is proposed to track the objects in videos by Li et al. [98]. The videos are
converted into frames, then the frames are divided into template frames and detection
frames. Siamese-RPN is a parallel connection of the template frames and detection frames.
The tracking speed is about 160 FPS.

Diba et al. present a kind of 3D convolution to extract the features of videos [99]. It
performs convolution operations on multiple video frames simultaneously. The method
is more expressive and efficient for multiple video frames. Nascimento et al. propose
a framework which can evaluate the detection effect via frames of videos [100]. This
framework is applied to the detected image frames through a series of templates.

Zhou et al. present a novel unsupervised learning architecture, to automatically learn
the features of Depth and Ego-Motion from videos [101]. The architecture is made up of a
kind of Depth CNN and Pose CNN, the target frame is learned through Depth CNN, the
previous frame, the next frame and the target frame pass to the target frame through CNN.
The unsupervised learning method is comparable to those supervised learning methods.
Feichtenhofer et al. combine two Residual Networks together with a kind of multiplicative
interaction, to perform the spatiotemporal video action recognition [102]. The method has
a state-of-the-art detection effect on dataset UCF101 [17] and HMDB51 [31].

Liu et al. propose an unsupervised learning architecture named Deep Voxel Flow
(DVF) [103]. DVF uses an encoder network and a decoder network to generate the voxel
flow of a video. The approach achieves state-of-the-art in video frame synthesis. Zhu et al.
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present a novel detection method of person re-identification in videos [104]. The method is
named Simultaneous Intra-video and Inter-video Distance Learning (SI2DL), which uses
intra-video distance metric and inter-video distance metric to learn the features. Intra-video
distance metric is used for learning the features within a video, and inter-video distance
metric is used for learning the features between videos. The method is also implemented
on the video frames. An unsupervised learning representation called DRNET is proposed
by Denton et al., used for many tasks, such as predictions of future frames in videos [105].
The model uses a content encoder and a pose encoder to learn the content feature and
the human pose feature, and uses a novel adversarial loss, which is similar to Generative
Adversarial Networks (GAN) [106].

Fast YOLO [107] adopts probabilistic genetic encoding modeling strategy, and motion-
adaptive inference, and the architecture can be used in embedded systems. Galteri et al.
apply a closed-loop structure to object detection such as EdgeBoxes [108], BING [109],
RPN [12], which has achieved a superior detection effect [110]. The key of the closed-loop
structure is the feedback function, which feeds back the detected information to image by
multiplying IoU and the detection score. Wang et al. analyze the process of convolution
and find that lower layers of convolution have more details of object features, higher layers
of convolution have high semantic features [111]. They also find that most of the feature
maps are irrelevant to the detected objects. These findings provide useful insights for video
detection.

Yuan et al. proposed a framework which can efficiently detect the traffic sign in
videos [112]. The method uses the video frames as the input, first, the traffic signs are
located through Aggregated Channel Features (ACF) detection, which can aggregate the
features from different convolutional channels. Second, the state of the traffic signs is
estimated by a proposed function, to make some modifications, and then the deposed signs
are detected by an online detector with KF model, if they are not detected in the first step.
Deng et al. propose an external memory method, when the detection system needs to store
long term temporal information [113].

Chen et al. present a set of video detection metrics, to assess the dynamic detection
effect of videos, such as center jitter error (CJE) and size jitter error (SJE) of them [114].
Bengar et al. propose a kind of active learning method, which is used to assist in annotating
video data [115]. The method detects the un-annotated video frames, and uses adjacent
frames to locate the object in the current frame. Yang et al. add Temporal Context Module
and Spatial Context Module into the multiple image object detectors, for the usage of
detecting wild great apes [116]. Literature about the UG2+ (UAV, Glider, Ground) challenge
concludes that the methods with better video detection effect use spatiotemporal context
method [117].

Luo et al. use spatial-temporal context aggregation (STCA) to fuse the feature maps [118].
STCA learns the spatial-temporal information from the object proposals both within a frame
and among the adjacent frames. Shankar et al. study the impact of the video perturbation
to the detection accuracy, and find that the previous frame would have a negative impact
on the next frame, resulting in a detection error of the next frame [119]. Wang et al. design
a statistical convolutional neural network (SCNN), and the convolutional neural network
is composed of coefficient vectors and deterministic weights [120]. Chin et al. find that
the lower resolution image can produce better accuracy sometimes, and they propose
AdaScale to reduce the frame resolution, and select the smallest loss frame scale to train and
detect [121]. Kumar et al. invented an algorithm that can integrate the Regions of Interest
(RoIs) of the adjacent frames to one, to detect the object in the RoI [122]. The algorithm can
reduce the computational FLOPS.

4. Extracting the Key Frames for the Video Detection

Han et al. invented Seq-NMS to find the most accurate region proposals from a video
clip [123]. The method selects the highest score of a frame sequence from a video, rescores
the sequence, and removes the overlapped region proposals. Seq-NMS placed high rank in
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the video object detection (VID) task of the 2015 ImageNet Large Scale Visual Recognition
Challenge.

Scale-Time Lattice (ST-Lattice) [124] also does not implement convolution, feature
extraction and detection on non-key frames, and does not use optical flow. It propagates
the key frame to the non-key frames via Motion History Image (MHI). This method uses
the idea of recursion, starting from the key frames of the beginning and the end, detects the
non-key frame in the middle of two key frames via MHI, and then divides them into two
segments by the non-key frame, and detects the residual non-key frames in the middle of
these two segments, and then divides them into four segments, recursively detects them
until all the non-key frames are detected.

Pouyanfar et al. propose a kind of deep learning architecture to detect the semantic
event of videos [125]. They extract the features of a video frame and detect it via Support
Vector Machine (SVM), after the key frame selection. Luo et al. invented a scheduler
network to select which frame is the key frame, and the network detects the key frames
and tracks the non-key frames [126].

5. Video Detection Using the Temporal Information

The following methods use the temporal information by Long Short-Term Memory
(LSTM) [16], by optical flow [15], or use convolution on multiple frames in chronological
order, such as 3D convolution [127]. Some use traditional video detection methods such as
optical flow on the adjacent frames, such as FGFA [128]. Some implement image detection
methods such as R-CNN on the neighbor frames, such as T-CNN [129].

5.1. LSTM-Based Video Detection
5.1.1. Association Long Short-Term Memory (Association LSTM)

Long short-term memory (LSTM) [16] is suitable for learning the features with tempo-
ral information, because of the connectivity of the structure. LSTM processes multiple video
frames simultaneously, and also has the memory characteristics. Association LSTM [130]
is proposed by Lu et al. in 2017, which could be considered as the combination of SSD
and LSTM.

The architecture of Association LSTM is shown in Figure 13. The video frames are
first sent to SSD network to extract the features, then stacked and sent to LSTM for training.
Association LSTM uses an additional association error loss function. Since SSD can extract
features quickly, the consumption of association LSTM in training may not increase much.
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5.1.2. Temporal Dynamic Graph LSTM (TD-Graph LSTM)

TD-Graph LSTM [131] is a weakly-supervised video object detection framework.
The framework adds a Temporal Dynamic Graph Construction before Long Short-Term
Memory (LSTM), to enhance the temporal information between the original video frames.
The proposed approach has an advantage on object motion recognition, i.e., the recognition
of the label of human actions.

The workflow of TD-Graph LSTM is shown in Figure 14. The adjacent frames are sent
into Temporal Dynamic Graph Construction via Spatial ConvNet, a kind of CNN which is
derived from Fast RCNN. Then the generated feature maps are sent into TD-Graph LSTM
unit and Region-level Classification Module. The method has a good performance on
Charades dataset [37].
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5.1.3. Bottleneck-LSTM

Bottleneck-LSTM [132] is a lightweight LSTM, a video object detector running with
15 FPS on the mobile terminal, and detects every frame. This lightweight structure can
speed up the propagation, and the refinement of features between the video frames.

Bottleneck-LSTM is a combination of LSTM and SSD, i.e., SSD is integrated into the
front and back of LSTM, and the gates of LSTM, such as the forget gate, the input gate
and the output gate, are improved to make it more efficient, and more suitable for mobile
terminal.

5.1.4. Patchwork

Patchwork [133] introduces recurrent attention models into video object detection.
Similar to LSTM, patchwork transfers the information from the previous frame to the next
frame, adds attention mechanism into the network, and the attention is transmitted to the
next frame. For each frame detection, patchwork uses the attention module of the previous
frame to extract the sub-window of each frame, and only detects this sub-window.

Since each frame only detects a part of the frame (which is the sub-window), in order
not to omit some important information, patchwork combines the feature map of the
previous frame with the feature map of the sub-window by the patchwork cell. In this
way, detection of sub-window improves the detection speed, while patchwork cell makes
the network not omit the entire frame information. Patchwork also uses a Q-learning
method [134] to enhance the location of the object. Furthermore, patchwork has a low
detection latency compared with other video detection methods.

5.1.5. Progressive Sparse Local Attention (PSLA)

Guo et al. propose the Progressive Sparse Local Attention (PSLA) [135] to transfer the
feature maps between frames. This method achieves good detection results on ImageNet
VID dataset, with a smaller size model.
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The detection structure of PSLA is similar to LSTM. Different from LSTM, the recursive
module of this structure uses the proposed Recursive Feature Updating (RFU) and Dense
Feature Transforming (DenseFT). The core of RFU and DenseFT is the proposed PSLA.
Both RFU and DenseFT are used to transfer temporal information from the previous frame
feature map to the next, RFU is used on key frames, while DenseFT is used on non-key
frames.

Two kinds of mapping are used in the implementation of PSLA. One is to use a sparse
matrix to scatter each feature map cell to the periphery. The advantage of this is to enhance
the neighbor information of each cell. The other is to integrate the results of the first step
with the corresponding weights. The approach gets 81.4% mAP on ImageNet VID.

5.1.6. Mobile High Performance Video Object Detection

Zhu et al. present a light weight video object detection architecture with high perfor-
mance [136]. The architecture is also similar to LSTM [16], and the difference from LSTM is
that the proposed architecture adds Light Flow network between the columns of LSTM.
The Light Flow network is derived from FlowNet [137], which transfers feature maps by
optical flow.

The detection network of the proposed architecture adopts RPN [12] and R-CNN [61],
and the feature network adopts MobileNet [138], however, the last pooling and the fully-
connected layer of MobileNet are removed. The system achieves 60.2% mAP score on
ImageNet VID validation dataset, with 25.6 FPS of Huawei Mate 8.

5.1.7. Learnable Spatio-Temporal Sampling (LSTS)

The optical flow method is often used to transfer feature maps. Jiang et al. proposed
Learnable Spatio-Temporal Sampling (LSTS) [139]. Different from the optical flow method,
LSTS integrates the feature map into other frames by a certain weight, and this weight can
be learned through iterations in the model training.

The framework of the proposed system is also like LSTM. The key part of the system is
Sparsely Recursive Feature Updating (SRFU) and Dense Feature Aggregation (DFA), SRFU
is used for key frames, and DFA is used for non-key frames. The LSTS module is integrated
into SRFU and DFA. The proposed system has good detection results on ImageNet VID
dataset, with 82.1% mAP score and less computation time.

5.1.8. LiDAR-Based Online 3D Video Object Detection

The proposed approach [140] is applied to point cloud videos. Point cloud video is
generated by Light Detection and Ranging (LiDAR), which contains 3D coordinates X, Y, Z,
color, time and other information. The method adopts the idea of LSTM, replacing the key
nodes of LSTM with Attentive Spatiotemporal Transformer GRU (AST-GRU), a proposed
structure embedded with Spatial Transformer Attention (STA) module and a Temporal
Transformer Attention (TTA) module.

The AST-GRU module is also used for extract the spatiotemporal relationship between
the adjacent frames. The STA in AST-GRU is used to detect the foreground objects, and the
TTA in AST-GRU is used to detect the dynamic objects.

The proposed system has a good performance on nuScenes dataset [141], which is a
large-scale automatic driving dataset, not only contains the data of camera and LiDAR, but
also records the radar data.

5.1.9. Memory-Guided Mobile Video Object Detection

Liu et al. develop a temporal memory fusion module from LSTM, to fuse the feature
maps of adjacent frames [142]. The feature extraction network adopts interleaving slow
network and fast network. This method uses reinforcement learning to establish an Adap-
tive Interleaving Policy Network to determine which feature extraction network (the slow
network or the fast network) to run.
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The approach achieves good performance on the dataset of ImageNet VID 2015,
compared with other mobile video detection methods. The running speed of the proposed
system can reach more than 70 FPS on PIXEL 3.

5.1.10. Two-Path Convolutional LSTM (convLSTM) Pyramid

Zhang et al. [143] proposed a pyramid LSTM structure for the video frame detection.
This structure combines LSTM into a pyramid structure. The workflow is that a CNN
backbone is used to extract the features of a frame, and then the features are sent to the
LSTM pyramid structure for detection. The previous frame and the next frame are detected
respectively with two LSTM pyramid structures, and the two paths of the LSTM pyramid
structures are connected. This structure has the state-of-the-art result in the ImageNet VID
dataset. The structure is shown in Figure 15.
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5.1.11. Spatial-Temporal Memory Network (STMN)

Spatial temporal memory network (STMN) [144] may be a kind of Recurrent Convo-
lution Network (RNN) [145]. STMN convolutes the video frames at the beginning, and
obtains the spatial features, then sends them to Spatial-Temporal Memory Module (STMM),
and then the classification and regression network via position sensitive pooling. Since
different STMMs are connected, the temporal features of the feature map are obtained
via STMM. Since STMM is a bidirectional circular neural network, it may be able to learn
the motion information in a longer period of time. The structure of STMN is shown in
Figure 16.

A Tubelet Proposal Network (TPN) [146] is presented by Kang et al., to generate long
tubelet proposals more efficiently. The tubelet is a cubic tube formed by the same object in
adjacent frames. A Long Short-term Memory (LSTM) network is adopted to combine the
tubelet proposals, and the detection accuracy is high.
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5.2. Video Detection Using Optical Flow
5.2.1. Tubelets with Convolutional Neural Networks (T-CNN)

T-CNN [129] is proposed by Kang et al. T-CNN is composed of tubelet extraction
module, tubelet classification module and tubelet re-scoring module. One of the innovations
of T-CNN is the tubelet in video convolution. Tubelet is formed by combining the bounding
boxes of the same object in adjacent frames. The construction of tubelet consists of three
steps. Firstly, the image object detection method is used on the video frames, and the
bounding boxes are extracted by Selective Search; secondly, the bounding boxes are scored
and classified by R-CNN; thirdly, the bounding boxes with high confidence scores are
combined to form the tubelet.

T-CNN uses optical flow to adjacent video frames. T-CNN calculates the average
optical flow vectors in the region proposal boxes. This may improve the robustness of video
detection. The flow chart of constructing tubelet is shown in Figure 17. The three steps
of constructing tubelets in T-CNN is illustrated in the figure. While scoring the bounding
box, the average weighted optical flow method is used to strengthen the detected frame.
Finally, the generated tubelet is filtered by Non-Maximum Suppression to leave the highest
score tubelet.
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T-CNN achieved good detection results on ImageNet VID dataset and YouTube Objects
(YTO) dataset, and won the VID challenge in the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) 2015.

5.2.2. Deep Feature Flow (DFF)

This paper [147] combines deep learning with optical flow. Deep Feature Flow only
detects the key video frames. For the non-key frames, the feature map is transmitted
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from the feature map of key frames by optical flow. Then, the transmitted feature map is
detected by task net (Nettask). Since only the key frames are convoluted, DFF reduces the
computation of video detection.

ResNet-50 or ResNet-101 [14] is used as the feature extraction network, R-FCN [148]
is used as the recognition network, and the simple version of FlowNet [137] is used as
the optical flow network. Since the computation of FlowNet is much faster than the
convolutional network, it can improve the speed of non-key frame detection. The structure
of DFF is shown in Figure 18.
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Another study by Zhu et al. [149] uses key frame adjustment, which is different from
DFF using fixed key-frames. The method of adjusting the key frame avoids selecting frames
that are too blurry, or have too little difference from the previous key frame.

Key frame adjustment generates the feature consistency metric to measure whether
the two frames have obvious optical flow motion. If the offset is too large, this frame will
be taken as a key frame, and the feature will be extracted by image object detection method;
if the offset is less than the threshold (0.2 in the literature [147]), it means that the frame is
measured as a non-key frame, a DDF method will be used to calculate the feature map and
detection result of the non-key frame.

5.2.3. Flow-Guided Feature Aggregation (FGFA)

FGFA [128] finds that the detection accuracy of blurry frames can be improved by
aggregating the feature maps of adjacent frames. The method is proposed by Zhu et al. in
2017. FGFA uses optical flow to aggregate the feature maps.

FGFA includes the modules of feature map extraction, optical flow transmission and
feature map aggregation. The feature map extraction module is called backbone in some
literatures, which is ResNet-50, ResNet-101 [14] and Inception-ResNet [150] in the paper.
The optical flow module uses FlowNet [137], which transfers the feature map of adjacent
frames. The feature map aggregation module uses the weighted sum algorithm. In the
paper, the cosine similarity algorithm is used to describe the similarity among the feature
maps, and used as the weight in the weighted sum algorithm.
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The structure of FGFA is shown in Figure 19. Although good results have been
achieved in the detection, we consider that FGFA is of great significance for blurry video de-
tection.
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Figure 19. The structure of FGFA. Optical flow is a feature transmission method.

5.2.4. Fully Motion-Aware Net (MANet)

MANet [151] is proposed by Wang et al. in 2018, which is also a method to fuse
different feature maps by optical flow. The discovery of this paper is that the combination
of global features, local features by optical flow can improve the video detection. MANet
uses optical flow to fuse the global features and local features on adjacent frames, and
fuses the feature maps of global features and local features. After that, the feature maps are
trained and tested. MANet has a good performance in the experiment.

5.2.5. Long Short-Term Feature Aggregation (LSFA)

Long Short-Term Feature Aggregation (LSFA) [152] is proposed by Wang et al. in 2021.
This method may refer to the idea of FGFA. LSFA has two parts, which perform detection
separately: one part is a long-term feature aggregation, the other part is a short-term feature
aggregation. Long-term feature aggregation uses a large feature extraction network, and
short-term feature aggregation uses a tiny feature extraction network.

In long-term feature aggregation, key frames and non-key frames are fused by optical
flow method. After the key frame goes through the large feature extraction network, a
feature map is generated. The generated feature map is then fused with the previous fused
feature map, and finally sent to R-FCN for detection.
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In short-term feature aggregation, motion vectors and residual errors are calculated
from the non-key frames and key frames. After that, motion vectors, residual errors, and
the feature maps generated in long-term feature aggregation are fused with the non-key
frames, and then R-FCN is used for detection. This method has achieved good results on
the large-scale ImageNet VID benchmark, and meanwhile improved the detection speed.
The structure is shown in Figure 20.
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Figure 20. The structure of Long Short-Term Feature Aggregation (LSFA). Flow Net implements the
optical flow method, large feature extraction network extracts the complex features from the key
frame, tiny feature extraction network extracts the simple features from the non-key frame.

The literature [153] is to convolute the original frames and the optical flow of the
frames respectively, go through the pooling layer and LSTM, respectively, and finally fuse
the two results to get the classification results. Another method is to fuse the frames and
the optical flows after going through CNN separately [154]. The improved version is that
the frames and the optical flows goes through CNN, then goes through LSTM, and finally
fused to classify [155]. The above methods take advantage of the optical flow, which may
be one of the directions of video object detection.

5.3. Video Detection Using Convolution among Adjacent Frames

Convolution among adjacent frames is generally used for video object tracking. The
idea of video tracking is generally convolution among adjacent frames first, and aggregation
second. Some methods are to convolve adjacent frames sequentially for extracting the
temporal features, such as 3D convolution [127].

5.3.1. 3D Convolution

Three-dimensional convolution [127] was proposed by Ji et al. in 2012, which is used
to recognize the motion state of objects. Three-dimensional convolution integrates the
spatiotemporal feature information of frames. The convolution architecture can generate
multi-channel information from adjacent video frames, and perform convolution and
down-sampling operations on each channel separately, and finally combine the information
of all channels to obtain the final feature description.

The ways of extracting temporal information include: using LSTM to operate multiple
adjacent frames [130,131], combining the same object of adjacent frames [129], etc. Three-
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dimensional convolution [127] is to make convolution on every three adjacent frames, and
move the stride of one frame in chronological order to do the convolution repeatedly. After
that, the process is similar to the conventional convolution, and finally the full connection
layer. The advantage of 3D convolution is that it might fully extract the small differences of
objects in different frames. For high-precision video detection, using this method to train
the model might be effective. Figure 21 illustrates 3D convolution.

Micromachines 2022, 12, x FOR PEER REVIEW 26 of 45 
 

 

5.3.1. 3D Convolution 

Three-dimensional convolution [127] was proposed by Ji et al. in 2012, which is used 

to recognize the motion state of objects. Three-dimensional convolution integrates the spa-

tiotemporal feature information of frames. The convolution architecture can generate 

multi-channel information from adjacent video frames, and perform convolution and 

down-sampling operations on each channel separately, and finally combine the infor-

mation of all channels to obtain the final feature description. 

The ways of extracting temporal information include: using LSTM to operate multi-

ple adjacent frames [130,131], combining the same object of adjacent frames [129], etc. 

Three-dimensional convolution [127] is to make convolution on every three adjacent 

frames, and move the stride of one frame in chronological order to do the convolution 

repeatedly. After that, the process is similar to the conventional convolution, and finally 

the full connection layer. The advantage of 3D convolution is that it might fully extract 

the small differences of objects in different frames. For high-precision video detection, us-

ing this method to train the model might be effective. Figure 21 illustrates 3D convolution. 

 

Figure 21. Three-dimensional Convolution. Every 3 adjacent feature maps are convolved to the next 

feature map, and move on in this style. 

5.3.2. Temporal Convolutional Network (TCN) 

Temporal Convolutional Network (TCN) [156] is proposed by Bai et al. in 2018. The 

authors prove that convolutional neural network can be used for modeling with temporal 

information, compared with Recurrent Neural Network (RNN) [145]. RNN is usually 

used for modeling with temporal information, because the cyclic structure of RNN is suit-

able for representing temporal information. 

TCN merges and convolves adjacent frames, and then convolutions after sampling. 

In addition, the shortcut in ResNet is added to the convolution. The structure of TCN is 

shown in Figure 22. In the experiment, TCN performs better than the original LSTM [16], 

GRU [157] and RNN [145] in multiple tasks, it takes less memory and converges better 

than RNN. 

Figure 21. Three-dimensional Convolution. Every 3 adjacent feature maps are convolved to the next
feature map, and move on in this style.

5.3.2. Temporal Convolutional Network (TCN)

Temporal Convolutional Network (TCN) [156] is proposed by Bai et al. in 2018. The
authors prove that convolutional neural network can be used for modeling with temporal
information, compared with Recurrent Neural Network (RNN) [145]. RNN is usually used
for modeling with temporal information, because the cyclic structure of RNN is suitable for
representing temporal information.

TCN merges and convolves adjacent frames, and then convolutions after sampling.
In addition, the shortcut in ResNet is added to the convolution. The structure of TCN is
shown in Figure 22. In the experiment, TCN performs better than the original LSTM [16],
GRU [157] and RNN [145] in multiple tasks, it takes less memory and converges better
than RNN.
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Figure 22. The structure of TCN. Every 3 adjacent feature maps are convolved to the next feature
map. The blue connection is a residual skip connection.

5.3.3. Detect to Tracks and Tracks to Detect (D&T)

The idea of this paper [158] is that two frames of a certain time interval are convoluted
and extracted the features by the backbones, then sent into two branches. One is to use
the structure of Faster R-CNN [12] to classify the objects and regress bounding box, and
the other is to use the correlation network to calculate the correlation features. Next, the
correlation features are combined with the features of the above Faster R-CNN features
to generate RoI tracking. The final output also contains two outputs: one is the class and
bounding box of the objects in the frames, and the other is the trajectory of each object in
different frames generated by RoI tracking. The illustration is in Figure 23.
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Figure 23. The illustration of Detect to Tracks and Tracks to Detect. The two CNN pipelines are
correlated for the RoI Tracking, for the purpose of enhancing the video object detection.

5.3.4. Recurrent Residual Module (RRM)

RRM [159] uses the relationship between adjacent frames to speed up the calculation
of CNN, thereby improving the detection accuracy and speeding up the detection. The
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idea of RRM is to subtract the repeated elements of adjacent frames, and only detect the
changed information between video frames. This may be conducive to the detection of
moving objects, because the background may be often the repeated.

The illustration of RRM is shown in Figure 24, the adjacent frames are subtracted to
the second layer, and the feature maps of the second layer after convolution are added to
the next layer, and repeat. The operation of addition may be regarded as a kind of fusion,
and the effect may be to combine the features of the background (which is kept in the tensor
without subtraction, in the first line of Figure 24) and the foreground (which is subtracted
to extract in the previous layer), to make the detection result more accurate.
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highlight the differences among the adjacent frames. ⊕ represents the plus operation, which can
highlight the similarities among the adjacent frames.

5.3.5. Spatiotemporal Sampling Network (STSN)

STSN [160] extracts features from the reference frame and the supporting frame, and
goes through multiple deformable convolutional modules. Then, STSN classifies the objects
after the deformable convolutional layers.

Since STSN combines the reference frame and the supporting frame for detection, this
may have a significant detection effect on the video part occlusion and motion blur, for the
reason that there are always clear objects in the frames.

5.3.6. Integrated Video Object Detection and Tracking

Integrated Video Detection and Tracking [161] uses the idea of multi-object tracking.
A bounding box pool is used to store the results of the previous frames. These results are
associated with the current frame, to contribute to the classification and scoring of the
current frame.

The framework of this method adopts the structure which is similar to Faster R-
CNN [12]. The structure detects the current frame, and adds the bounding box information
of the previous frame into the current frame, to form the track, and then outputs the
bounding box to the next frame. This method achieves 83.5% detection mAP and 72.6%
tracking mAP on ImageNet VID validation set.

5.3.7. Relation Distillation Networks (RDN)

RDN [162] uses a detector (similar to Faster RCNN) to generate RoIs from multiple
video frames, and uses the relation module to combine the generated RoIs, finally the
feature maps are sent to a detection network for classification and location regression.

The relation module is derived from the literature [163]. Objects are closely related
to the surrounding environment, and the combination of surrounding information often
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has a favorable impact on object detection. The relation module is used to combine the
object with the surrounding neighborhood information. “Neighborhood” refers to the
adjacent background information of the object. The relationship module concatenates the
information of the object and its neighboring background with the coordinate information
of the object, and fuses with the object features detected before to obtain the final object
features. RDN fuses the top proposals of an object, and wins 84.7% mAP on the dataset of
ImageNet VID.

5.3.8. Long-Range Temporal Relationships

For video detection, motion blur, occlusion, and object deformation are often the
difficulties. The temporal information is often one of the effective methods to solve these
difficulties. The architecture is proposed by Shvets et al. It uses the relation block between
frames to learn the correlation information among frames, which improves the accuracy of
video object detection, and the detection consumption does not increase much [164].

The structure of the relation block is described as follows. The target feature map and
the support feature map are embedded in the linear layer. After the normalization, the ma-
trix multiplication, the softmax layer and linear conversion layer, the both feature maps are
concatenated to obtain the synthesized relation block feature map. The framework reaches
good detection accuracy on ImageNet VID dataset, reaching 84.1% frame mAP value.

5.3.9. Sequence Level Semantics Aggregation (SELSA)

The difficulties of the video detection are motion blur, part occlusion, and object
deformation, etc. One of the ideas which could solve the problems is to transfer the feature
maps from clearer frames to the blurry frames. Traditional methods often use optical flow
or Recurrent Neural Network (RNN) to transfer the feature maps. Wu et al. proposed the
novel Sequence Level Semantics Aggregation (SELSA) [165] for feature map transfer. The
advantage of this method is that the feature map transfer can be performed on all the video
sequences, not only the adjacent frames.

SELSA uses a novel algorithm to calculate the similarity of the region proposal box
between frames, calculates the weight from the similarity by another proposed algorithm,
and integrates the feature map of the support frame into the current frame by the calculated
weight.

The framework uses Faster R-CNN [12] to extract the proposal boxes and detects them,
and the SELSA module is added after the fully-connected layer of Faster R-CNN. The
video frames are processed by the framework, and are fused to the middle tested frame to
detect. The detect effect is superior compared with the test algorithms in the literature [165].
The proposed system has a good detection accuracy on the ImageNet VID and the EPIC
KITCHENS dataset [166], and the architecture of the system is simpler compared with
other video detection systems.

5.3.10. Detection System for Extended Video Analysis

Liu et al. propose a video detection system [167] to execute the video analysis in
the video surveillance application. The system has three stages: proposal generation,
spatiotemporal classification and post process, as shown in Figure 25. The video detection
should be based on the frame by frame method. Except for the conventional image detection
method (extracting region proposal boxes from an image, extracting features in the boxes
and detecting), a video scene judgment module and an object activity feature fusion module
from different frames are added. The method wins TRECVID Activities in Extended Video
(ActEV) challenge 2019.
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Figure 25. The workflow of proposed video detection system.

5.3.11. Memory Enhanced Global-Local Aggregation (MEGA)

MEGA [168] combines the global semantic information of adjacent frames with the
local information of a single frame, such as the location, shape and size of the object in
a frame. Previous methods either focus on the global semantic information or the local
information of a single frame. Additionally, MEGA measures the two aspects synthetically
to execute video object detection.

The architecture of MEGA is illustrated in Figure 26. The ordered video sequences and
the shuffled sequences are aggregated together to the next part. The next part of MEGA is
to aggregate the three adjacent feature maps of the first step, the number 3 is the memory
size. Next, the aggregated feature maps are integrated to the key frames, and the object
classification and location regression are implemented. MEGA has a good video object
detection on the ImageNet VID dataset using the backbone of ResNeXt101 [169].
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Figure 26. The illustration of MEGA. The arrows denote the directions of the aggregation. The depth
of the color indicates the sequence.

5.3.12. Temporal Shift Module (TSM)

Lin et al. [170] develop a method that consumes less resources, and can realize tem-
poral module of adjacent video frames, Temporal Shift Module (TSM). TSM shifts the
feature map tensor along the temporal dimension. We regard this shift as a kind of shuf-
fle before convolution among adjacent frames. Since the shift operation may not spend
much computing power, TSM can run fast for video object detection. TSM has a good
video detection performance on the datasets of Kinetics [38], UCF101 [17], HMDB51 [31],
Something-Something [42] and Jester [171]. The illustration of TSM is shown in Figure 27.
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5.3.13. Context Region with Convolutional Neural Network (Context R-CNN)

For the videos with a long-time span, such as the hidden video camera for filming
wild animals, and the video surveillance of the traffic conditions, their backgrounds are
always the same or similar. However, the previous video detection methods probably
analyze every frame or most of the frames. The same backgrounds of these frames may
cause a waste of computing.

The architecture of Context R-CNN [172] is based on Faster R-CNN and the Attention
modules. The Attention modules contain Short Term Attention Module and Long Term
Attention Module, and the difference between the two kinds of the Attention module is a
parameter of the standard dot-product attention formula. Short Term Attention Module
and Long Term Attention Module are connected in series.

The method performs well on the Snapshot Serengeti (SS) [173], Caltech Camera Traps
(CCT) [174], and CityCam (CC) [175] datasets. Moreover, Context R-CNN performs better
than the single frame image detector on the scenes with constant backgrounds.

5.3.14. RetinaNet-VIDeo (RN-VID)

RN-VID [176] is proposed to increase the utilization of the temporal information
between adjacent frames, the detection mAP is enhanced on the UA-DETRAC dataset [177]
and the UAVDT dataset [178].

The method is based on RetinaNet [44], fuses the feature maps of the adjacent video
frames using RetinaNet and VGG-16 [58]. The fusion module re-orders the feature maps,
and uses the 1 × 1 convolutional layer as the filter, and the next is to concatenate the
subsequent feature maps.

5.3.15. Plug & Play Convolutional Regression Tracker

The proposed network [179] is composed of two Faster R-CNN detectors and one Con-
volutional Regression Tracking module. The Convolutional Regression Tracking module
connects the RPNs of the two Faster R-CNN detectors, to generate the tracklet of an object
between video frames.

The Convolutional Regression Tracking module uses a crossed cascade structure. A
Region of Interest (RoI) is converted into two branches, the size of the RoI at the bottom
branch is 3 times larger than the top branch one, as the object in the top branch RoI may
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move to the adjacent area. Next, the two branches are crossed concatenated to four channels,
and the next is the fully connected layers which are used for the regression.

The Convolutional Regression Tracking module can be inserted into other image
detectors, as the module is light weighted. The approach has a good performance on the
dataset of ImageNet VID.

5.3.16. Geometry-Aware Spatio-Temporal Network (GAST-Net)

The approach [180] proposed by Xu et al. is generated from Visual Geometry Group,
which achieves good results on the datasets of Carla-Vehicle-Pedestrian [181] and DukeMT-
MC [182] compared with other detectors.

GAST-Net contains two inputs, one is the video frames, which pass through the back-
bones and fuse into a feature map, the other is the geometry input which is generated from
the input video frames. The geometry input passes through Geometry-Aware Attention
Maps, and the feature maps are fused with the above feature map, and the next is to pass
through the prediction module to classify and locate the objects.

5.3.17. High Quality Object Linking

Tang et al. [183] proposed a tubelet method to connect the same object in adjacent
frames. The difference between this method and T-CNN is that it generates tubelets in
two stages. In the first stage, a cuboid proposal network is used to generate the cuboid of
the object. In the second stage, on the basis of cuboid, different cuboids are connected to
generate the tubelet. Thus, the tubelet generated by this method is more accurate, and the
video detection accuracy is higher. The work flow of the method is shown in Figure 28.
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5.3.18. Spatio-Temporal-Interactive Network (STINet)

Zhang et al. [184] propose a video detection architecture to detect pedestrians. This
architecture has two stages: in the first stage, the Temporal Region Proposal Network (T-
RPN) is used to extract region proposals from adjacent frames, and these region proposals
are connected to generate region proposals with temporal information. In the second stage,
Spatio-Temporal-Interactive (STI) Feature Extractor is used to detect these region proposals.
This method has achieved state-of-the-art results in pedestrian detection. The flow chart is
shown in Figure 29.
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5.3.19. Pose-Embedding Network (PEN)

Jiao et al. [185] proposed Pose-Embedding Network (PEN) to detect pedestrians. This
method overcomes the problem of part occlusion in video detection, makes the pedestrian
detection surpass the state of the art results.

This method uses human pose information to predict the occluded pedestrian in the
next frame. PEN has two steps: the first step is to use the Region Proposal Network (RPN)
to extract the features of pedestrians, and to generate the boxes. The second step is to use
the Pedestrian Recognition Network to generate human pose information, and perform
detection. The pipeline of PEN is shown in Figure 30.
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5.3.20. Short-Term Anchor Linking and Long-Term Self-Guided Attention

Cores et al. [186] presents a network architecture which uses the temporal-spatial
information in video object detection. The architecture includes 3 components: one is
short-term object linking, which integrates the feature maps in the boxes of adjacent frames.
One is long-term self-guided attention module, which integrates the feature map of key
frames with the feature map of short-term object linking. The final is spatial-temporal
double head, which implements the classification and location. The workflow is shown in
Figure 31.
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5.3.21. Temporal Convolutional Network (TCN)

Kang et al. propose Temporal Convolutional Network (TCN) [187]. TCN operates on
tubelet proposals, which are generated by Selective Search (SS) algorithm. TCN generates
image object proposals, implements object proposal scoring, realizes high-confidence object
proposal tracking among adjacent frames. The method performs object detection around
the tubelet box, and replaces the tubelet box with the highest detection score box, thereby
reducing the instability of the tubelet box detection.

6. Discussion of the Video Object and Human Action Detection Methods
6.1. The Performance of the Deep Learning-Based Video Detection Methods

Video detection can be classified into video object detection, video saliency detection
and video object behavior detection, etc. Video saliency detection is closely related to
video object segmentation. Many valuable deep learning algorithms are developed in the
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recent years on video detection. YOLO detects the real-time stream videos at a very high
frame rate. FGFA [128] can detect blurry videos. CNN has the advantages that traditional
methods such as HOG and SIFT do not have, such as translation invariant, robustness,
and high detection accuracy. Table 2 summarizes the used datasets and experimental
results of one-stage video detection algorithms. Table 3 makes a summarization of those in
two-stage video detection algorithms. Table 4 summarizes the video detection algorithms
with temporal information of adjacent frames.

Table 2. The state-of-the-art one-stage video detection algorithms. The image detection algorithms
can be used to detect videos by the way of frames. FPS denotes frame per second.

Algorithm Category Dataset Results

AlexNet image detection
2012 ImageNet
Classification
Challenge

Champion

FCN image segmentation VOC2011, VOC2012 mean IU: more than 62.0%

YOLOv1 video detection VOC2007 and 2012 mAP: 63.4%, FPS: 45

YOLOv2 video detection VOC2007 and 2012 mAP: 78.6%, FPS: 40

YOLOv3 video detection COCO mAP-50: 57.9%, Inference
time: 51 ms

SSD image detection VOC2007 mAP: 72.1%, FPS: 58

DSSD image detection VOC2007 and 2012 mAP: more than 80.0%

RSSD image detection VOC2007 and 2012 mAP: 80.8%

FSSD image detection VOC2007 and 2012 mAP: 84.5%, FPS: 35.7

FPN image detection COCO mini-val set AP at 0.5 IOU: 56.9%

Table 3. The state-of-the-art two-stage image detection algorithms, which can be used to detect videos
by frames.

Algorithm Dataset Results Note

R-CNN VOC2007 mAP: 66%

SPP Net VOC2007,
ILSVRC 2014

mAP: 60.9%(VOC),
2nd(ILSVRC) Input image of any size

Fast R-CNN VOC 2007 and 2012 mAP: 70% Training and testing
time reduced

Faster R-CNN VOC 2007 and 2012 mAP: 73.2% Input image of any size

ResNet-101
COCO
VOC 2007 and 2012
ILSVRC 2015

mAP: 48.4%
mAP: 76.4%
champion

GoogLeNet ILSVRC 2014
ImageNet

champion
Top-5 error:
3.8%(Inception-v4)

Mask R-CNN COCO 50% IoU Keypoint,
AP: 87.3%
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Table 4. The state-of-the-art video detection algorithms, which operate on multiple adjacent frames.
ILSVRC denotes the ImageNet Large-Scale Visual Recognition Challenge.

Algorithm Dataset Results

3D Convolution TRECVID
KTH

AP: 0.7137
accuracy: 90.2%

T-CNN (Kang et al.) ILSVRC2015 Champion

TCN (Bai et al.) Sequential MNIST
Permuted MNIST

accuracy: 99%
accuracy: 97.2%

DFF ImageNet VID
Cityscapes

mAP: 73.1%
mIoU: 69.2%

FGFA ImageNet VID mAP: 83.5%

Association LSTM Youtube-Objects mAP: 72.14%

STMN ImageNet VID mAP: 80.5%

MANet ImageNet VID mAP: 86.9%

D&T ImageNet VID mAP: 79.8%

ST-Lattice ImageNet VID mAP: 79.0%, FPS: 62

TD-Graph LSTM Charades mAP: 19.52%

STSN ImageNet VID mAP: 80.4%

Patchwork ImageNet VID mAP: 58.7%

PSLA ImageNet VID mAP: 81.4%

RDN ImageNet VID mAP: 84.7%

LSTS ImageNet VID mAP: 82.1%

SELSA ImageNet VID mAP: 86.91%

MEGA ImageNet VID mAP: 85.4%

TSM

Kinetics
UCF101
HMDB51
Something-Something
ImageNet VID

accuracy: 74.1%
accuracy: 95.9%
accuracy: 73.5%
accuracy: 47.3%
mAP: 83.4%

The current ideas for improving the speed of video detection mainly are: (A) Increase
the single frame detection speed, while maintaining the detection accuracy, and the frame-
by-frame method can even reach the real-time detection. (B) Implement the accurate image
detection (such as using the two-stage detectors) on the key frames of the video, and skip
the non-key frames. Some methods (shown in Section 4) use optical flow or memory
history map to transmit feature maps from the non-key frames for detecting. The key
points to this approach may be the selection of the key frames and the derivation of the
non-key frame feature maps. (C) Another idea is to use the temporal information among
the adjacent frames to improve the detection accuracy, such as the LSTM-like approaches,
T-CNN [129], etc.

6.2. The Evaluation Methods of Video Detection

The video evaluation metrics used in the literatures, such as mAP, accuracy, FLOPs,
AP, AR, etc., are almost all calculated by image metrics, i.e., calculated by the frame. Some
paper proposes the special video metrics. Mao et al. propose a novel metric called Average
Delay to comprehensively evaluate video object detection [188]. Delay refers to the number
of frames from when an object appears to when it is detected. Average Delay measures
the response time of the detector, which also measures the temporal information of the
detector.
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Zhu et al. established a dataset for unmanned aerial vehicles (UAVs) video detection
named VisDrone, which was taken by UAVs in many cities in China [189]. The dataset
is a large-scale benchmark in the field of UAVs. The existing image and video detection
algorithms are tested on this dataset.

The methods of video surveillance system using deep learning are as follows: (A)
Convolutional Neural Networks (CNN) based methods, the CNN includes AlexNet [190],
VGG Net [58], GoogLeNet [45], etc. (B) Restricted Boltzmann Machine (RBM) [191] based
methods. RBM is a stochastic neural network, and the related works from RBM are Deep
Belief Networks [192], Deep Boltzmann Machines [193] and Deep Energy Models [194]. (C)
Auto encoder based methods, which is a kind of unsupervised machine learning methods,
and can learn the features of the input data to produce the output data which have the same
features with the input data. The usage of the method is Denoising Autoencoder [195] and
Contractive Autoencoder [196], etc.

For face detection, the following methods are proposed: (A) Template matching
methods, which is based on the pre-learned face templates [197,198]; (B) Feature-based
methods, which uses face features [199,200]; (C) Appearance-based methods, which is
trained with face data [201,202].

For face recognition, the following methods are proposed: (A) Total matching methods,
which compare the whole face region to the pre-learned face database, such as Eigen-
faces [203], Principal Component Analysis (PCA) [204], and Linear Discriminant Analysis
(LDA) [205]. (B) Feature-based methods, which utilize the specific face features to recognize
people, such as the distances, length or shape of mouth, nose and eyes [206]. (C) Hybrid
matching methods, which integrate the advantages of the above two methods, especially
for the recognition of 3D face images [207].

For face tracking, the following categories of methods are proposed: (A) Point-based
tracking, which includes Kalman and Particle filter methods [208]; (B) Multiple Hypothesis
Tracking algorithm, which can track multiple objects in the videos [209].

For the image and video quality enhancement, the following algorithms are proposed:
(A) Methods based on traditional image enhancement, such as contrast enhancement [210],
wavelet based enhancement [211], HDR-based enhancement [212], etc. (B) Context-based
video enhancement [213], which utilizes the information of previous frames to increase the
brightness of the frame, or to denoise the frame.

The relationships between detection and tracking is that tracking often relies on
detection. The main difference between them is that detection makes a classification,
tracking only marks the object. Most algorithms show that the faster the detection speed,
the lower the detection accuracy, and the lower the detection speed, the higher the detection
accuracy.

7. Remark of the Limitations and Future Research Directions of Video Detection

The followings are only our own opinions. The limitation of current video object
and human action detection algorithms might be that the detection speed and detection
accuracy often could not be acquired at the same time. Some algorithms can reach high
detection speed while improving the detection accuracy, such as YOLO. However, for those
particularly blurry videos, the detection speed could not be increased for now. Most of the
current video detection algorithms could not reach the real-time detection speed. On the
contrary, the detection and recognition speed might be slow. The phenomenon is especially
obvious for those algorithms that use the temporal information. Some literatures of those
algorithms did not state the detection speed, but only state the detection metrics. Those
particularly blurry videos may require the temporal information detection, thus, we think
that real-time detection of the blurry videos could not be implemented for now.

However, the detection accuracy of those algorithms has already been highly improved.
Some algorithms can reach a high level on the blurry videos, such as FGFA (shown in
Section 5.2.3). Nevertheless, we still think that the video detection speed is important either.



Micromachines 2022, 13, 72 38 of 46

The conceivable future research directions might be the following three aspects: (A) En-
hancing the detection accuracy, especially for the blurry videos. The main idea is to use the
temporal information among adjacent frames. (B) Enhancing the detection speed. The exist-
ing algorithms have advantage on those distinct videos, however, for those blurry videos,
the detection speed could be improved. (C) Enhancing the detection accuracy and speed
simultaneously. The main idea might be extracting the key frames. Since detecting the
key frames only, the detection speed could be enhanced. The key frames are often clearer,
and have more standard shape objects or human action shapes, which could enhance the
detection accuracy and speed both.

8. Conclusions

The discussed algorithms in the paper include object detection, action analysis, etc.
The video detection algorithms are all frame-based for now. Currently there are three ideas
for the video detection: (A) the first is to detect each frame. Some algorithms, such as
YOLO, can realize very fast detection speed; (B) the second is to extract the key frames,
and the detection depends on the algorithm of extracting key frames; (C) the third is to
use LSTM structure or the optical flow method for extracting the temporal information
among adjacent frames. The image detector can be applied to video detection in the
three ideas above. Some video detection algorithms extract the temporal information by
tracking on adjacent frames, such as the bounding box tracklet of the same object in adjacent
frames [129]. Many video detection algorithms are based on image detection algorithms,
and the video detection metrics in these algorithms use image detection metrics by frames.

For blurry videos, or the videos with part occlusion, making full use of the temporal
information among adjacent frames can significantly improve the detection accuracy, since
the blurry or occluded objects could be detected in adjacent frames. From the existing
literatures, the approaches of using the temporal information of adjacent frames include the
LSTM structure, the optical flow method and convolution among adjacent frames. Some
approaches transfer feature maps between frames via convolutions, such as Motion History
Image. We think extracting the key frames could enhance both the video detection accuracy
and speed.
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