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Abstract: Nature and biological creatures are some of the main sources of inspiration for humans.
Engineers have aspired to emulate these natural systems. As rigid systems become increasingly
limited in their capabilities to perform complex tasks and adapt to their environment like living
creatures, the need for soft systems has become more prominent due to the similar complex, compliant,
and flexible characteristics they share with intelligent natural systems. This review provides an
overview of the recent developments in the soft robotics field, with a focus on the underwater
application frontier.
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1. Introduction

Underwater exploration, much like space exploration, has been at the frontier of
science and engineering ventures. As with the many Mars missions, where rovers and
mobile robots are deployed instead of humans, deep underwater missions are mostly
carried out using underwater robots. However, to this day, delving deep within the oceans
of our planet still poses many challenges for these robotic systems. Some of the early
robotic systems sent by humans to explore marine life are known as remotely operated
vehicles (ROVs) [1]. ROVs are underwater robots, manually operated by a pilot, using
tethered communication. They mainly have a rigid body hull and are actuated using electric
thrusters. Autonomous underwater vehicles (AUVs) are similar to ROVs but differ in that
they are untethered and do not require a pilot or an operator, as they are programmed to
autonomously perform specific tasks. Both ROVs and AUVs vary in size, depending on
the type of tasks they are manufactured to perform.

These underwater robotic systems are used to execute a wide range of underwater
applications such as maintenance and monitoring applications. Such applications include
underwater pipe inspection, offshore infrastructure repairs, and condition monitoring.
Biological applications include seabed and abyssal exploration, sample gathering from
marine environments such as coral reefs, and ecological aquatic phenomena monitoring
and data collection [2]. More specifically, repairing and sampling tasks are carried out
using underwater vehicle manipulator systems (UVMSs). UVMSs are unmanned under-
water vehicles (UUVs) such as ROVs and AUVs that are equipped with different types of
underwater manipulators that are suitable for the mentioned tasks [3]. The majority of
manipulators used for underwater applications are actuated using hydraulic or electric
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systems. They can be used for the installation and maintenance 0f infrastructure such as
pipes and cables [4], salvaging debris and sunken objects, mineral exploration [5], and
biological samples gathering [6].

Even with the technological advances in UUVs and UVMS, they still face several
limitations that prevent deep sea exploration. For instance, AUVs are limited to long-
distance maneuvering at middle depths, while the use of ROVs is challenging in surface
waters with strong waves and disturbances caused by currents. ROVs and UVMS also
require constant communication with the operator, which becomes harder during seabed
tasks due to the limitations of tethered communication. Some proposed solutions involve
remote satellite communication [7]. In addition, the use of rigid manipulators is undesired
for gathering delicate marine samples such as coral reefs, as they are hard to handle and
can be damaged by the manipulators.

All these rigid robots have limited flexibility and adaptability to their environment.
By contrast, soft robots offer more adaptability due to their compliant nature [8]. Such
adaptability is exhibited in their ability to deform and change their shape according to the
surrounding environment with which they are interacting. For example, soft robots made
from compliant materials can achieve shrinking and bending motion that allow them to
navigate within narrow areas. They also offer the possibility to grasp and manipulate vari-
ous objects by adapting to their different shapes and structures. The evolution of soft robots
led to advances in the pursuit of biomimicry of living creatures. The ability of soft robots
to deform, change their shapes, exhibit infinite degrees of freedom, and perform complex
motion, makes them a suitable candidate for the basis of biological emulation, especially
that of underwater creatures, which are one of the sources of biomimetic inspiration for
robotic and engineering systems. The exploitation of theses advantages offered by soft
robots would help solve some of the challenges facing deep sea exploration. For instance,
the use of soft manipulators allows safe handling of delicate coral reef samples [9,10],
whereas imitating fishes’ and marine creatures’ propulsion methods can offer more efficient
solutions for exploration and maneuvering at depth or in perturbed surface waters [11–14].

Alongside the great potential of soft robots, many challenges need to be overcome in
order to reach the full functionality of bioinspired soft intelligent systems. Key challenges
vary from design and fabrication to modeling and control. These challenges and the current
state of research in solving them are discussed in this review.

2. Underwater Locomotion

Marine environments can seem extraterrestrial for humans at times. Hence, the study
of the locomotion techniques and the morphology of aquatic creatures is essential. These
types of biological studies offer insights providing keys toward the successful mimicry
of these marine creatures. The aquatic environment plays a large role in defining the
types of underwater locomotion, as governed by the four main forces acting on bodies
underwater [15]: vertical weight and buoyancy alongside hydrodynamic lift, and horizontal
thrust and drag (Figure 1a). Fish are able to generate lift and thrust in order to swim. They
can achieve swimming using their fins or swimming propulsors (Figure 1b). According to
the motion of these fins, fish swimming methods can be classified into several categories.

The two main categorizations of fish motion are based on which fins are performing the
bending motion and the frequency at which the fins move. In terms of the first category, fish
use their body and/or caudal fin to generate thrust (BCF). Examples include carangiform
and anguilliform such as tuna and eel. Other types of fish use their median and/or paired
fins (MPF). Examples include rajiform and labriform such as batoids. The frequency
of movement of the fish’s body and fins indicates whether the motion is undulatory or
oscillatory. During undulatory motion, the fish’s body performs a wave-shaped pattern,
whereas oscillatory swimming uses only swivel-like motion.

Additional underwater locomotion modes fall outside the previous categorizations [16].
One example is the jet propulsion performed by jellyfish, octopus, and squid. Drag-induced
swimming is exhibited by turtles as they generate thrust by moving their flippers in the
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opposing direction of motion. Friction-based crawling is performed by crustaceans, and
echinoderms such as starfish use adhesive-based crawling.

(a) (b)

Figure 1. (a) The underwater forces acting on the fish during swimming. (b) Fish anatomy showing
the different fins fish use to swim and stabilize.

In terms of assessing swimming performance, one of the most important metrics is
the swimming speed of fish and, in particular, the critical swimming speed (Ucrit), which
is commonly measured in centimeters per second (cm/s) or body lengths per second
(BL/s) [17,18]. One of the main factors that affects fish swimming speed is the tail beat
frequency in Hertz (Hz). It relates to the fish’s velocity through the stride length, which
is the distance traveled by the fish per tail beat, expressed as ratio of the body length
(L) [19,20]. The Reynolds number (Re) and Strouhal number (St) are also important factors
to assess the hydrodynamic performance of the fish’s swimming. Several robotic fish
platforms inspired from actual fish morphology and swimming, such as tuna, use the
same metrics to assess their robots’ performance [13,21–23]. Another important factor is
to analyze the efficiency of fish propulsion. However, it is hard to establish an accurate
measure of propulsive efficiency for real biological fish. In general, efficiency is defined
as the ratio of useful output to total input. For a self-propelled body, the measure of such
work depends on the drag the body needs to overcome to move, which is hard to quantify
as it differs with the shape of the body, as well as the body-propulsor hydrodynamics [24].
It is also challenging to determine input power in fish, which relates to muscle shaft power
and the fish’s metabolism and oxygen (fuel) consumption [25]. A common metric used
to quantify the fitness of fish and their efficiency is the cost of transport (COT), defined
as the energy expended per traveled distance. The COT is a good indication of the fish’s
swimming efficiency, and there have been several attempts to define and normalize COT
for fish propulsive efficiency [24,26–28].

3. Challenges and Potentials of Soft Robots
3.1. Design
3.1.1. Bioinspiration

Since its inception, the field of robotics has drawn inspiration from nature. The main
aspect of nature imitation in robotics is apparent in the design and structure of the robots’
bodies that aim to mimic biological systems. By looking at the knowledge gained through
biomechanics studies, living creatures with mobile abilities are mainly classified into two
groups based on their body structure: vertebrates and invertebrates. Vertebrates include
fish, mammals, birds, amphibians, and reptiles; invertebrates include crustaceans (crab,
lobster), echinoderms (starfish, sea urchin), coelenterates (jellyfish), arachnids, molluscs
(octopus, squid), insects, and worms, among others [29].

The challenge of building robotic systems with motion capabilities similar to those
of these creatures lies in their body construction, which exhibits compliance ranging from
only a few parts such as an elephant’s trunk or mammals’ organs, to completely soft and
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deformable bodies in the case of some invertebrates such as jellyfish. The main contributor
to this compliance is the elastic nature of the building blocks of these bodies such as muscles,
tendons, skin, tissues, and cartilages, as they are known for having low Young’s modulus
(less than one gigapascal) [8].

Some attempts have been made to mimic some of these animals using hard materials.
However, due to the limited degrees of freedom offered by conventional rigid robots com-
pared to the infinite degrees and redundancy of soft bodies, different structures with con-
tinuum deformations had to be implemented. In contrast to conventional non-redundant
rigid robots, discrete hyper-redundant and hard continuum robots offer large to infinite
degrees of freedom, which brings them closer to mimicking vertebrates’ motion [30,31].
Common examples include tendon-driven continuum manipulators [32–34]. One of the
first underwater robots to employ a structure of discrete multiple rigid-link sections ac-
tuated by tendons is the RoboTuna robotic fish [35]; The VCUUV prototype, inspired by
RoboTuna, uses hydraulic actuation to drive an articulated tail [36]. Other serial multi-joint
biomimetic fish robots have been developed to imitate carangiform swimming [37,38].

Despite providing more degrees of freedom than rigid robots, hard continuum robots
still lack the shape adaptability offered by soft robots, which would help bring robots closer
to their bioinspired creatures. The Compliant Robotic Tuna (CRT) [39] is an example of
a biomimetic fish robot having a servo-actuated compliant body and tail and is able to
perform swimming maneuvers. The Soft Robotic Fish (SoFi) [40] is a marine exploration
robot capable of 3D swimming that imitates fish motion. It is driven by a soft fluidic
actuator and has a buoyancy control unit for depth adjustment. Other marine creatures
such as batoids were also mimicked, as in the case of the stingray robot with a soft silicone
outer body and pectoral fins [41].

3.1.2. Design Optimization

Even when taking inspiration from nature, designing soft robots with the desired
mechanical behaviors that allow them to perform specific tasks presents another challenge.
The complexity of such robotic systems, due to their unconventional components from
materials to actuation, makes it hard to use currently known design and simulation tools to
build soft robots [42,43]. Optimization techniques have been proposed to help automate
the design process, and bridge the gap between simulation, fabrication, and the actual
performance of soft robots. The general optimization framework can be summarized as
choosing the design behavior to be optimized, such as crawling or grasping; identifying
the design variables to be optimized, such as the material and the actuation; and defining
the constraints of the system. The optimization process iteratively evaluates the design
candidates using analysis tools and searches for the optimal design.

One approach uses evolutionary optimization algorithms to automate the design and
manufacturing of freeform soft robots. This approach uses voxel-based dynamic simulation
to evaluate the morphology and locomotion of the robot [44]. Voxels are soft cubic blocks
with specific parameters, such as stiffness and Poisson’s ratio, that undergo volumetric
change when forces are applied to them. Another voxel-based method aims to optimize
the morphology to achieve adaptability using the property of criticality, which allows the
robot to perform more diverse tasks [45].

Another conceptual design approach provides a spatial grammar to build soft robots
and optimize their design for locomotion and actuation [46]. The spatial grammar generates
sub-assemblies of interconnected balls based on a set of defined rules. The generated models
are then evaluated and optimized in terms of locomotion abilities.

Performing design optimization for underwater soft robots is an even more challenging
problem, as the effect of the environment on the robot’s morphology needs to be taken into
account. DiffAqua [47], a computational design pipeline, relies on differentiable simulation
to perform gradient-based optimization for the geometry and control of soft underwater
swimmers. The benefits of exploiting the morphology of soft robots and optimizing it to
simplify the control are further discussed in the upcoming modeling and control sections.
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Fabricating and assessing these designs are also challenging processes due to the
traditional manufacturing methods being unsuitable for these unconventional soft material.
Additive manufacturing (AM) is one of the impactful technologies that helped enable this
process [48,49]. One approach is to use AM to only fabricate the mold that would be used to
pour the soft material in them. A more hybrid approach takes advantage of AM techniques,
such as the fused filament fabrication (FFF) method, in addition to molding techniques
to fabricate and assemble complex soft robotic systems. The third approach is the total
additive manufacturing (TAM) approach. It exploits all the benefits of AM to fabricate soft
robots, whether by 3D printing multiple soft parts and assemble them, or manufacturing
the complete soft robot as a whole part. Such advance in 3D printing techniques for soft
materials increased the ability to produce and test different designs of soft robots and
optimize their morphological and material parameters.

3.2. Actuation

The actuation of soft robots poses several challenges due to the large number of
degrees of freedom resulting from the large deformation of the soft materials that consti-
tute them, making them underactuated systems that are harder to control. In addition,
most conventional robotics actuators, such as DC motors, are bulky and rigid, which con-
tradicts the main reason for developing soft robots with high compliance. Nonetheless,
some soft robots use servo motors and gear pumps for fluidic actuation, while others use
more unconventional actuators such as smart actuators, chemical reactions, and stiffness
modulation [50].

One common actuation method is the use of tendon wires that are anchored at several
points in the body of the soft material. These cables are driven by applying tension to them
using electric motors such as servos, causing the connected soft material to deform, resulting
in different motions or shape changes of the soft body. One example is the bioinspired
octopus’s arm [51] made of silicone that is driven using cables. It can perform crawling
motion and grasping similar to actual octopus tentacles. The use of traditional motors
provides a large actuation force, especially in underwater applications where a powerful
enough thrust is needed for locomotion. The shape deformation can be approximately
determined through the displacement of the anchoring points of the cables.

Fluidic Elastomer Actuators (FEAs) is another type of soft actuators that rely mainly
on fluid pressure [52]. The actuators are made from hyperelastic materials with embedded
channels that expand due to the applied pressure. One of the early implementations is
the Pneumatic Artificial Muscles (PAMs), most notably the McKibben artificial muscle
actuator [53,54], which is made from a flexible elastomer tube constrained by a reinforced
fiber to limit its extension but allow it to expand when pressurized, providing considerable
force. Other types of fluidic elastomers use various means of pressurization, including
pneumatic sources using compressed air [55,56], pressurized gas such as CO2 [57–59], or
chemical pressure generation [60,61], as well as hydraulic sources [62–64]. The multigait
crawling robot [55,57] has pneumatic actuators with a Pneu-Net (PN) architecture. The
PNs are composed of a series of extensible chambers that inflate when pressurized and an
inextensible layer that constrains the expansion of the chambers, causing the elastomer to
bend. The geometrical parameters of the chambers and the constraining layer guide the
deformation of the elastomer, affecting its bending and twisting motion. Underwater appli-
cations using fluidic elastomers include a biomimetic autonomous fish with a bidirectional
pneumatic elastomer [59], an extended version of the former fish using a hydraulically
pressurized elastomer instead [63], and an underwater crawling robot having bellow fluidic
actuators as legs [64]. The completely soft Octobot [61] relies on totally soft microfluidic
logic to control gas generation through chemical fuel decomposition, causing actuation. The
use of fluidic actuators is advantageous for obtaining high material deformation and the
ability to arrange actuators in an agonist-antagonist form, similar to muscle pairs. However,
they are slow and have delayed response, and their pressurization units can be hard to
embed inside soft robots.
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Another actuation approach is the use of different types of smart materials. Smart
materials are distinct in their response to external thermal or electric stimuli, causing
deformation or stiffness change to the material. Electroactive polymers (EAPs) use electric
stimuli to deform. Dielectric elastomer actuators (DEAs) are a type of EAPs that comprise
two compliant electrodes that are compressed when high voltage is applied to them [65].
Compression force can be used to induce motion [66,67]. Another type of EAPs used for
soft robots’ actuation is ionic polymer metal composite (IPMC). It is composed of Nafion
polymer and electrodes. Applying voltage to the electrodes causes the polymer to deform
due to the ionization process and the motion of ions between the two electrodes [68–70].
Shape memory alloys (SMAs) are smart materials that react to heat stimuli. When applying
high temperature to the SMA, it deforms into a certain shape and is restored to its original
shape after heat is removed. The heat is usually provided through electrical heating using
high voltage. SMAs are used as actuators in soft robotics, as they can be embedded to drive
a soft material such as polydimethylsiloxane (PDMS) [71,72].

The use of smart actuators is prominent in underwater robotics [73] due to the fa-
vorable operating conditions for smart materials in water. In addition, smart materials
can be directly embedded within the elastically deformable body of the robots, making
them a good option for biomimetic applications. For example, biomimicry of jellyfish was
implemented using DEAs [67] and using SMAs in the case of Robojelly [74]. Manta ray
biomimetic robots were actuated using IPMCs [68] as well as SMAs [75]. A biomimetic
crawling starfish used actuated legs made from embedded SMA wires cast in PDMS [71].
Another group developed a soft robotic arm inspired by octopus tentacles using cables and
SMA springs [72]. The SMA springs help mimic the muscular hydrostat of the octopus’s
arm by providing transversal contraction. Smart actuators provide an advantage in terms
of their compact size and weight, and high actuation biomimicry resembling real fish
swimming modes. However, they require high-voltage sources and are hard to control. The
various soft robotic platforms are shown in Table 1, classifying their biomimetic inspiration,
actuation types, swimming modes, and level of compliance.

Table 1. Classification of various underwater soft robotic systems.

Reference Robot Biomimicry Actuation Swimming Compliance

[37] Multi-Joint Fish Carangiform Fish Electric Actuators
(Servomotors) BCF Undulation Medium

[69,70] Biomimetic Fish Fish IPMC BCF/MPF
Oscillation Medium

[40,59,63] SoFi Fish FEA (Pneu-
matic/Hydraulic) BCF Undulation High

[41] Stingray Robot Stingray Electric Actuators
(Servomotors) MPF Undulation Medium

[51] Octopus Arm Octopus Motor-driven
Cables Crawling High

[72] Octopus Arm Octopus
Motor-Driven
Cables/SMA

Springs
- High

[76] Octopus Robot Octopus Motor-Driven
Cables/SMA Crawling Medium

[66] Cuttlefish Robot Cuttlefish DEA Jet Propulsion Medium

[74] Robojelly Jellyfish SMA Propulsion High
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Table 1. Cont.

Reference Robot Biomimicry Actuation Swimming Compliance

[61] Octobot Octopus FEA (Chemical
Reaction) - High

[64]
Morphing

Underwater
Walking Robot

- FEA (Hydraulic) Walking/Crawling Medium

[67] Jellyfish-Inspired
Soft Robot Jellyfish DEA Propulsion High

[69] Robotic Manta Ray Manta Ray IPMC MPF Undulation Medium

[75] Micro Biomimetic
Manta Ray Manta Ray SMA MPF Undulation Medium

[71] Starfish Robot Starfish SMA Wires Propulsion High

[77] Starfish-Like Soft
Robot Starfish SMA Crawling High

[78] RoboScallop Scallop FEA Jet Propulsion Medium

[79] Eel-like Robot Leptocephalus (Eel
Larva)

Fluid Electrode
DEA (FEDEA) BCF Undulation High

[80]
Morphing Limb

Amphibious Turtle
Robot

Turtle/Tortoise

Variable Stiffness
Material-

pneumatic
Actuators

Drag-induced
Swim-

ming/Walking
Medium

[81] FinRay Robotic
Jellyfish Jellyfish

FinRay Actuators
driven with
Servomotors

Propulsion Medium

[82]
PATRICK: Brittle
Star-Inspired Soft

Robot
Brittle Star SMA Wires Crawling High

[83] Soft Underwater
Starfish Starfish Servo-driven

Tendon Wires Propulsion High

3.3. Modeling

The modeling and control phase is the most challenging part of building functional soft
robotic systems capable of performing complex tasks and intelligently interacting with their
own environment. All the well-established modeling techniques for rigid robots cannot
be applied to soft robots due to their continuum property and their complex non-linear
dynamics inherent from their elastic behavior. As conventional kinematic and dynamic
modeling methods are inapplicable, new approaches for modeling and control of soft
robots are being developed (Figure 2).

These modeling approaches can be separated into two main categories: model-based
approaches and model-free data-driven methods. While the former relies on formulating
either an exactly accurate or a simplified approximate model of a soft robot, the latter tries
to implicitly learn the behavior of the robot using input and output data collected directly
from the actual system.

The main goal of the modeling process is to map the soft robot’s actuation space to the
configuration or task space. Since continuum soft robots are infinite-dimensional systems,
formulating such models becomes highly difficult. Instead, the modeling methods rely on
approximations and assumptions to reduce the system to a finite-dimensional one. The
most commonly used simplification for kinematic modeling is the constant curvature (CC)
method [84]. It assumes that the soft robot has constant strain along its whole length [85].
The piecewise constant curvature (PCC) method is an extended version of the CC that
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assumes the strain to be piecewise constant, with each segment of the soft structure having
a constant strain [86]. A further extension is the variable curvature (VC) [87,88], which
models each section as a CC. The PCC approximation is mainly valid for cable-driven soft
manipulators. However, it cannot capture all the complex dynamics of soft structures, as it
is a steady-state model. Nonetheless, it proves to be an accurate model for control for a lot
of tendon-driven manipulators [89–92]. One group also used a PCC kinematic model of a
multi-segment pneumatic actuator to develop a dynamic motion controller [93].

Figure 2. An overview of the different modeling and control techniques used in soft robotics.

Numerical techniques have also been used for modeling soft robots. The Cosserat
rod theory is one of these numerical methods [94,95], accurately representing the tension,
shearing, bending, and torsion of rods. A different numerical approach for modeling
soft robots is the finite element method (FEM), which yields more accurate results but at
the cost of high computational requirements [96]. The method relies on discretizing the
structure into a large number of nodes, called mesh, and iteratively solving the differential
equations governing the behavior of these nodes, until the model converges. However,
the use of FEM for real-time control is difficult, so control approaches based on real-time
FEM have been proposed [97–99]. An approach combining kinematic modeling using PCC
and Denavit–Hartenberg (DH) parameters with FEM analysis was also used to model a
soft pneumatic actuator (SPA) [100]. The problem with the FEM is the high dimensional
space of the obtained model. A common solution is to reduce the domain of the model in
order to achieve high computational efficiency, without sacrificing accuracy [101,102]. The
reduced-order model can help with the development of low-order controllers and observers
based on a linearized model of the system [103,104]. One group developed a dynamic
simulation tool for articulated soft robots based on numerical simulation methods for
slender structures [105]. Another method uses genetic algorithms for dynamic parameters
estimation of an octopus-inspired robot [106].

Controllers developed from the static kinematic models obtained using the described
methods are considered static controllers that discard the underlying dynamics of the sys-
tem. Developing high-order dynamic models for soft robots is difficult and computationally
expensive for controllers. A first-order dynamic modeling approach is proposed to reduce
the computational space without affecting the controller’s performance [107].
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The model-free methods for modeling soft robots mainly use data-driven machine
learning and deep learning techniques to find a mapping between the inputs and outputs
of the soft system [108]. Input actuation signals and robot states can be obtained by
sensors, either embedded or external visual tracking sensors. The data can then be used
with different supervised learning, unsupervised learning, and reinforcement learning
techniques to develop models and controllers for soft robots. Examples of commonly
used techniques include feedforward neural network (FNN) [109–112], recurrent neural
network (RNN) [113], convolutional neural network (CNN) [114], and echo state network
(ESN) [109], based on the reservoir computing framework. FNNs are widely used for
modeling soft systems. One approach is the use of an FNN to model the work envelope of
an SPA with a variable inclination angle [115]. Another group used FEM-generated training
data to learn the kinematic model of a 3D motion SPA using an FNN [111]. An RNN used
sensory data from cPDMS resistive sensors and a load cell to predict the deformation and
force models of a soft pneumatic finger [113]. A reservoir computing approach with the
ESN architecture was used to model the 2D motion of a bioinspired turtle actuated through
soft pneumatic flippers [109].

Learning-based techniques also proved to be successful in learning the dynamic
models of soft robots. One approach involved using a nonlinear autoregressive exogenous
(NARX) model to develop a dynamic model for a soft manipulator, which was used to
implement a task space controller [116]. A deep neural network (DNN) model learned
the non-linear dynamics for a single degree of freedom inflatable pneumatic robot. The
model was used to implement a model predictive control (MPC) algorithm for pressure
control [117].

3.4. Control

Models of soft robots developed using the discussed approaches are used to develop
kinematic and dynamic control for these complex systems. Model-based controllers rely
on models obtained from analytical kinematic methods such as PCC, whereas model-
free controllers use data-driven techniques [91]. Different control algorithms are used,
depending on the level at which the controller operates. Low-level controllers drive the
actuators, whereas mid-level ones are responsible for the kinematic and dynamic control,
and high-level control involves advanced trajectory and path planning for tasks such as
obstacle avoidance.

The main task of soft robots’ controllers is to manage the whole-body deformation
of the robot; it may also include controlling the exact position and orientation of an end
effector in the case of soft manipulators. One approach uses open-loop control for a soft
manipulator [118]. The implemented open-loop dynamic controller uses a data-driven
model with only mechanical feedback. The swimming eel-like robot [119] was modeled
using the geometrically exact beam theory with a torque control algorithm. A different
approach uses an energy-shaping approach to develop the control law for a soft continuum
manipulator [120]. MPC is another technique that was employed for the control of large-
scale soft robots [121]. The MPC algorithm relies on a PCC model alongside a kinematic
representation for efficient state prediction. A model reference predictive adaptive control
(MRPAC) was also implemented on the same model and showed robustness to model
uncertainties. Closed-loop control methods have also been demonstrated for the position
control of soft robots [122,123].

One of the most promising approaches for the model-free control in the robotics
field, in general, is reinforcement learning (RL), which has been proven successful for soft
robots [124]. RL can be described as an iterative learning process where the agent takes an
action, its new state is observed, and a response in the form of a reward function is given to
it based on the resulting interaction with its environment. When the agent learns a policy to
map appropriate state–action pairs, then the learning is successful. RL can be implemented
regardless of whether a model of the system is known. The use of deep reinforcement
learning (DRL) and imitation learning algorithms in the development of soft robots has
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been shown in several experimental examples. DRL methods are now integrated with
soft robots in various applications such as biomedical and edible robotics. Some research
focused on the deep Q-network (DQN) algorithm, which was used in a soft robotic fish used
for underwater exploration [40]. Other common algorithms are deep deterministic policy
gradient (DDPG), normalized advantage function (NAF), and advantage actor-critic (A2C).
However, problems arise from the differences between the simulation environments where
the robots are trained and the real-world environment. The use of generative adversarial
network (GAN) is a suggested solution to help perform domain adaptation and narrow
the gap between the simulation and real-world environments. Imitation learning is also
beneficial when it is difficult to formulate a reward function to train a DRL model. The
imitation learning algorithms use demonstrations constructed by an expert agent that are
transferred to the soft robot. The most common imitation learning approaches are behavior
cloning, inverse reinforcement learning, and generative adversarial imitation learning. The
future scope is the combination of both deep reinforcement learning and imitation learning
algorithms to benefit from both approaches and train better agents.One example is a soft
artificial-muscle-driven robot mimicking cuttlefish actuated by a dielectric elastomer (DE)
membrane [66]. The robot uses reinforcement learning to provide the actuation. To simplify
the problem, only two actions are considered, with only two voltage amplitudes: 0 and
6.8 kV. The robot is trained through trial-and-error interaction with its environment in order
to find an optimal policy to maximize its reward function, which is the displacement at each
time step. The displacement is monitored using a camera and then fed to the reinforcement
learning algorithm.

Applying reinforcement learning with soft robots is a costly operation due to their
non-linear hyperelastic properties. To overcome this issue, the reinforcement learning
approach used to control the Honeycomb Pneu-Nets Soft Robot ignores the specific prop-
erties of the materials and the structural characteristics of the robot [125], concentrating
only on the geometric model, which simplifies the modeling task. Another challenge
to implementing RL is the lack of accurate simulators for soft robots. To overcome this
problem, researchers performed the training process on both the simulation as well as the
physical hardware to obtain a more realistic control policy that works well with the actual
robot. The reinforcement learning framework consists of two parts: formulating the set
of representations for the robot’s states and actions, and the training process to search for
accurate results in the problem space. The physical hardware uses air pumps and valves
to achieve the actuation needed and uses the OptiTrack motion capture system for visual
sensing to determine the actual state of the robot. Two methods of control were used to
execute the learned RL policy: open-loop and closed-loop. The closed-loop method obtains
the actual robot state from the sensor as the input to the trained control policy function,
while in the open-loop method, the robot’s state is obtained from the simulator, leading to
some errors.

Despite providing a good solution in many cases, RL may be impractical to implement
when the reward function canonot be clearly defined. Imitation learning solves this issue
by using demonstrations performed by an expert agent. One group used imitation learning
to perform motion control and trajectory planning for soft continuum robots [126]. They
proposed the learning from demonstration (LfD) approach and implemented it on the
Bionic Handling Assistant (BHA) robot, which resembles an elephant trunk. One of the
simplest methods to implement LfD is kinesthetic teaching, which is achieved by directly
recording demonstrations on the target robot to collect the position and orientation data
of the end effector. The problem of using kinesthetic teaching with soft robots arises from
the dynamic complexity of non-linear elasticity associated with these soft materials. They
proposed an active compliant control to record the demonstrations during kinesthetic
teaching, then encoded the recorded data with a task-parametrized Gaussian mixture
model (TP-GMM).

A similar approach was used with the soft cylindrical robot arm STIFF-FLOP [127].
However, the researchers worked on transferring the movement patterns of an octopus
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arm to the STIFF-FLOP. The octopus arm movements were obtained from a database of
the cartesian position of several octopuses’ arms with an average of 100 points along the
arm. They exploited several methods for the representation of the octopus reaching motion
to help transfer the arm movements to the soft robot. They considered spatiotemporal
representation and dynamical movement primitives to allow for a more robust movement
transfer. They then used Gaussian mixture regression (GMR) for encoding, and applied a
self-refinement algorithm with a weighted reward function according to different tasks.

Following a similar thought process to imitation learning, a trending new paradigm
called morphological computation aims to learn from living creatures, but on the level
of morphology instead of the locomotion level. Morphological computation is a process
related to embodied intelligence, where some of the computation needed for actuation and
perception is conducted automatically by the body of the living creature instead of sending
sensory information to the brain and waiting for a control signal [128]. Morphological
computation can be exploited in the context of soft robots to offload some of the control
to the body. This process is possible owing to the adaptable compliance exhibited by soft
materials, which act as a reservoir computer that can process inputs from its environment
and take appropriate actions.

A morphological computation framework with a mathematical realization was pro-
posed using a reservoir of recurrent non-linear mass-spring systems, which is a model
for actual physical soft bodies [129]. The model demonstrated the ability to learn the
end-effector trajectory of a robotic arm. The group also showed that adding feedback to
the morphological computation system allows it to perform autonomous periodic patterns
such as the ones responsible for locomotion [130].

4. Prospective Directions

Soft robotics is still a new field with many challenges and obstacles, but shows promis-
ing potential. Current research is aimed toward the establishment of a unified foundation
and framework for the process of building complete and functional soft robots, the same as
the basis available for conventional rigid robots.

One promising approach is the attempt to automate and optimize the various aspects
of soft robots’ development, including the design, manufacturing, choice of actuation,
and sensing components. The exploration of new soft materials with variable controlled
stiffness, suitable for different environments, and the exploitation of their morphology in
actuation, sensing, and control may provide several solutions to the current challenges.
The use of rapid design and manufacturing processes and of the technological advances
in additive manufacturing is needed to allow the development of complex soft robotic
systems. Another approach is to develop completely soft robots, void of any type of rigid
elements. All actuators, sensors, and processing units will need to be implemented using
completely soft materials. In addition, the development of general modeling and control
techniques that can be used for all types of soft robots would strongly boost advances in
the field.

Embodied intelligence provides a possible solution for building soft robots that are
close to their biological inspirations. Similar to the connection between the brains and
bodies of living creatures, where the morphology of the body takes part in the interaction
with the environment, soft robotic systems may be built to exploit their compliance in
the computation and processing of data they receive while navigating and adapting to
their surroundings. Another potential direction is the investigation of using organic living
tissues to help build soft robotic systems. Since soft robots try to mimic actual living
creatures, the use of organic parts to fabricate soft robots would be beneficial. These living
tissues may be embedded in soft robots to exploit their biological actuation and sensory
features. In addition, it is important to develop soft sensors that can easily be embedded
within the structures of soft robots, without significantly affecting their compliance. This
would enable proprioceptive sensing of the robots’ deformation, allowing better control
and more interaction with the environment. Finally, taking more inspiration from biological
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systems while developing soft robots, by integrating all the robotic components from brain
to morphology, to actuation, and sensing, into homogeneous entities may help with the
development of more biological-like systems.
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