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Abstract: Standard DEP theory, based on the Clausius–Mossotti (CM) factor derived from solving the
boundary-value problem of macroscopic electrostatics, fails to describe the dielectrophoresis (DEP)
data obtained for 22 different globular proteins over the past three decades. The calculated DEP
force appears far too small to overcome the dispersive forces associated with Brownian motion. An
empirical theory, employing the equivalent of a molecular version of the macroscopic CM-factor,
predicts a protein’s DEP response from the magnitude of the dielectric β-dispersion produced by its
relaxing permanent dipole moment. A new theory, supported by molecular dynamics simulations,
replaces the macroscopic boundary-value problem with calculation of the cross-correlation between
the protein and water dipoles of its hydration shell. The empirical and formal theory predicts a
positive DEP response for protein molecules up to MHz frequencies, a result consistently reported by
electrode-based (eDEP) experiments. However, insulator-based (iDEP) experiments have reported
negative DEP responses. This could result from crystallization or aggregation of the proteins (for
which standard DEP theory predicts negative DEP) or the dominating influences of electrothermal
and other electrokinetic (some non-linear) forces now being considered in iDEP theory.

Keywords: Clausius–Mossotti function; dielectric beta-dispersion; dielectrophoresis; electrokinetics;
Lorentz cavity; Maxwell cavity; molecular dynamics simulations; proteins

1. Introduction

The subject of protein dielectrophoresis (DEP) is at an important stage where a maturing
theory, supported by molecular dynamics (MD) simulations of solvated proteins [1] has
clarified aspects that have largely remained unresolved since the pioneering studies reported
in 1994 by Washizu et al. [2]. In particular, the applied electric fields and field gradients
are in many cases far too weak to generate DEP forces capable of overcoming the thermal
(Brownian) force acting on a protein molecule [3–5]. There have also been inconsistencies
regarding the polarity (positive or negative) of the observed DEP response for the protein
most commonly studied (bovine serum albumin) [4]. These aspects have implications for
the general field of molecular DEP. Are there generic lessons to be learnt from the evolving
theory for proteins that can be applied to the DEP of small DNA fragments or ribosomal
RNA, for example? Or perhaps each class of biomolecule will present its own particular
challenge? Based on an empirical theory, it was proposed that the DEP response (including
the DEP cross-over) of a globular protein can be predicted from the magnitude and frequency
profile of its dielectric β-dispersion, which reflects the protein’s squared dipole moment and
its relaxation time [4]. Support for this proposal is given by MD simulations for lysozyme
and ubiquitin, which show that the β-dispersion also encompasses cross-correlations of
the protein dipole with its hydration shell [1]. The corresponding protein–water Kirkwood
correlation factor is found to be close to unity. This implies little correlation, in line with
an earlier assumption for myoglobin [6], but is impossible to prove using conventional
dielectric spectroscopy.
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Figure 1 serves to identify the two ‘Clausius–Mossottis’, [CM]macro and [CM]molecular, of
this article’s title and to indicate that the new theory holds the key for them both [1]. This
figure also prompts clarification of the assertion that [CM]macro should not be employed
to analyze the DEP responses of proteins and other biomolecular particles that possess a
permanent dipole moment [3]. On account of the Janus nature of the DEP susceptibility
factor derived by Heyden and Matyushov for proteins [1], this question is relevant and can
be answered as follows.

Figure 1. Standard DEP theory employs macroscopic electrostatics to calculate an induced dipole mo-
ment and the Clausius–Mossotti factor, [CM]macroscopic. The DEP of particles possessing a permanent
dipole moment is better formulated within the context of the Clausius–Mossotti law of molecular
dielectrics ([CM]molecular). The new theory [1] holds the key to transitioning between the two [CM]s,
whose origins trace back to Green [7], Faraday [8], Mossotti [9] and Clausius [10].

The word ‘dielectrophoresis’ (DEP) implies a particle being carried (i.e., moved) by a
dielectric force. As taught in early texts, this is referred to as the action of a ponderomotive
force (able to move an object of mass) and is defined in terms of the gradient of the particle’s
potential energy U when placed in an electric field gradient [11,12]:

FP = −∂(U −U0)

∂r
= −∇UP (1)

The force Fp thus drives the particle towards places of field strength where the particle’s
free energy (chemical potential) is reduced. Although this relationship can be used to
analyse the DEP of a particle possessing both an induced and a permanent dipole moment,
standard DEP theory defines this in terms of the force acting on its moment m in an electric
field gradient ∇Em [13,14]:

FDEP = m·∂Em

∂r
= (m · ∇)Em (2)

Equations (1) and (2) are equivalent because the potential energy of a rigid dipole (i.e.,
unable to rotate) is given by the following relationship [15]:

U = −(m·Em) (3)

This equivalence provided by Equation (3) is restricted to where the dipole’s polar
angle of orientation θ with respect to the applied field remains fixed. A change of θ results
in a change of U and produces a restoring torque T = − ∂U

∂θ that acts on the moment. The
work done (i.e., energy gained) is the product of force applied over a distance, so that for a
rigid dipole Equations (1) and (2) are connected through the relationship UDEP = −

∫
FDEP.

This predicts that if the electric polarizability of the particle exceeds that of the fluid medium
it has displaced, it will minimize its potential energy by seeking a region of high field



Micromachines 2022, 13, 261 3 of 32

strength near an electrode. Work must be done on the particle to move it away, against the
field, from an electrode (i.e., the field does negative work). By convention this is termed
positive DEP. Negative DEP corresponds to where a particle of lower polarizability than its
surrounding medium moves to a local field minimum and away from the electrodes. In
practical applications, such as the selective separation of a target particle from a mixture,
it is important to know how the DEP force depends on the frequency of the applied field.
In standard DEP theory for macroscopic particles (e.g., cells, bacteria or polymer beads)
this information is carried by the macroscopic Clausius–Mossotti factor [CM]macro. This
theory has worked well for DEP studies that have progressed from the micron-scale of
mammalian cells, microalgae and bacteria, down to the submicron-scale of virions and
small vesicles [16]. These particles do not carry a permanent dipole moment. Replacing
the moment m of Equation (2) with the known value of the permanent dipole moment of a
protein does not solve the problem as to how the DEP force can overcome the energy kT of
thermal ‘noise’ and Brownian motion (Boltzmann constant k and absolute temperature T) [4].
The aspect absent from Equations (2) and (3) is the fact that globular proteins are usually
free to ‘tumble’ in a medium such as water. It is now clear that an essential aspect of DEP
theory, for particles possessing a permanent dipole moment that can rotate, is to replace
the rigid dipole moment m of Equation (2) with its time-averaged, field-oriented moment
proportional to (m2/3kT)Em [1].

Pohl in his research articles and book [13] does not adopt the [CM] factor. Herman
Schwan, a pioneer of electrical bioimpedance, is probably responsible for its use in electroro-
tation theory, where he refers to it as ‘effectively a macroscopic application of the Clausius–Mossotti
factor’ [17]. Later, Jones [14] adopts the ‘Clausius–Mossotti function’ in the theory for DEP.
However, this practice is not to be confused with application of the Clausius–Mossotti
law [10]—identified in Figure 1 as [CM]molecular. This law relates the relative permittiv-
ity of a dielectric material to the number density of polarizable elements in its molecular
structure—of which tumbling molecular dipoles are particularly important elements [18,19].
The genesis of [CM]molecular differs significantly from that of [CM]macro.

The theoretical foundations of [CM]macro and [CM]molecular, are Green’s theoretical
formulation of electrical potential [7], Faraday’s discovery of specific inductive capacity
(i.e., relative permittivity εr) [8], and Mossotti’s hypothesis that the electric fluid residing
in a “corpuscle” within a dielectric is displaced under the action of a local field to form
an electric doublet (i.e., induced dipole) [9]. Green derived the electric force exerted by
a charged spheroid (electrical density ρ), on a volume element at a distant point r, in
terms of a potential function V =

t ( ρ
r
)
dυ. Outside the spheroid ∇2V = 0 (Laplace’s

equation) and inside it ∇2V = −ρ/ε0 (Poisson’s equation), given here in SI units with ε0
the permittivity of vacuum. Clausius used these concepts to derive his eponymous factor
[CM]molecular [10]. Mossotti’s hypothesis influenced Maxwell’s concept of the displacement
current density, D = εoεrEm [20]. The derivation of [CM]macro is obtained by solving Laplace’s
equation [3], using boundary rules for Green’s potential function (it must be continuous)
and for Maxwell’s displacement current density (its normal component must be continuous)
at the interface between different dielectric materials. An important innovation of the new
theory is to identify that, for protein DEP theory, these boundary rules of macroscopic
electrostatics should be replaced by calculation of cross-correlations of the protein dipole
with water dipoles in its hydration shell [1]. The new theory also takes into account the
polarization of the protein’s hydration shell induced by the protein’s permanent dipole
moment. These should be considered as generic aspects for molecular DEP, and highlight
the importance of dielectric spectroscopy and MD simulations going forward.

Finally, aspects of ‘Something Else’ included in this article’s title address experimental
issues such as control of protein and suspending medium stability, together with determi-
nations of the magnitudes of the applied field and field gradient. Experimental guidelines
for protein DEP were set by Washizu et al. [2], such as an upper limit for protein concen-
tration (0.1 µg/mL) and solvent conductivity (1 mS/m). Researchers engaged in eDEP,
where conductive electrodes generate the required field gradient, have tended to follow
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these guidelines. In such cases, there are consistent reports of a positive DEP response
observed for the 22 different proteins so far studied [4], in line with the new theory plus MD
simulations [1] and as predicted by the empirical theory [4]. Experimenters who employ
insulating structures to create the field gradients (iDEP) have sometimes stretched these ex-
perimental guidelines to explore new opportunities for exploiting protein DEP. For example,
protein concentrations of 1 gm/mL and solvent conductivities of 100 mS/m have been used.
In such cases, negative rather than positive protein DEP has been reported (e.g. [21–23]). As
indicated in Figure 1, and discussed in Section 2, the theory underpinning [CM]macro employs
the Maxwell cavity field, with the limitation of a minimum cavity size below which the rules
of classical electrostatics theory may not hold. For the Lorentz cavity field employed in the
derivation of [CM]molecular, there is a maximum cavity size above which cavity field theory
breaks down. This interesting situation [24] could provide an experimental approach to
determining and controlling a threshold for the particle size above which protein DEP is
governed by [CM]macro rather than [CM]molecular. For example, in an assessment of future
protein-based drug carriers, standard DEP theory correctly predicts the reported separa-
tion by negative DEP of micron-sized designer protein particles according to their size and
shape [25]. Whilst, for BSA assumed to be in its monomolecular form, positive iDEP is
observed at a concentration of 7 nM [26,27] and negative iDEP at a concentration of 0.15
mM [21]. As discussed in Section 5, these conflicting results were obtained using direct
current (DC) iDEP experiments, where non-linear electrophoretic and electroosmosis effects
can overcome DEP. Finally, the phenomenon of pearl chaining, where particles aggregate
under the influence of an applied field, was identified and experimentally avoided as a
possible confounding issue for molecular DEP by Washizu et al. [2]. The possibility that
field-driven protein aggregation can occur at a threshold of protein concentration, which
may provide new opportunities of exploitation, also merits further consideration under the
category of ‘Something Else’.

2. Limitations of Macroscopic Electrostatics with Respect to Protein DEP
2.1. The Maxwell Cavity Susceptibility and [CM]macro

[CM]macro is derived from calculation of the field inside a particle (relative permittivity εp)
residing within a dielectric medium (relative permittivity εm) in which a uniform field Em
has been established. Charges are created at the dielectric discontinuity represented by the
particle–medium interface, to produce an interface dipole moment, Mint. The polarization
of the particle, Pp, expressed as the induced dipole moment per unit volume, is given by:

Pp =
Mint

Vp
=
(
εm − εp

)
ε0Ei = χpεoEi (4)

where χp is termed the electric susceptibility of a volume of a material. As described in
Section 3, dielectric theory often employs the susceptibility rather than the permittivity
of a material. In standard DEP theory, the induced interface dipole moment, Mint, of
Equation (4) is the moment m required in Equation (2). Equation (4) is obtained by solving
Laplace’s equation and involves applying the boundary rules mentioned in the Introduction.
The field Ei created within the particle is uniform and directed along the same axis as Em
(but opposes it for εp > εm) and is given by [3,28]:

Ei =
3εm

2εm + εp
Em (5)

A central aim of molecular dielectrics is to understand the response of a single dipole
moment to an external field. Maxwell’s approach is to carve out an evacuated cavity inside
a dielectric [20]. The field inside an evacuated spherical cavity (i.e., εp = 1) is known as the
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Maxwell cavity field. The susceptibility χMc of the Maxwell cavity is defined as the ratio of
this field and the applied external field, so that from Equation (5):

χMc =
3εm

2εm + 1
(6)

The mathematical derivation of Pp in Equation (4) is obtained by solving Laplace’s
equation, which assumes that no free charges already exist at the interface. Macroscopic
particles usually carry a net surface charge, but if uniformly distributed over their surface
this charge does not contribute a component to be added to Pp [3]. The time taken for Mint

to fully develop is typically around 100 nanoseconds, dictated by the relaxation time of
the interfacial charges. This, in turn, depends on the permittivity and conductivity of the
particle and surrounding medium, but does not depend on particle size [3,16]. For a sphere
of radius R, then from Equations (4) and (5):

Mint = VpPp = 3Vpε0εm

[
εp − εm

εp + 2εm

]
Em = 4πR3ε0εm[CM]macroEm (7)

The term in square brackets, [CM]macro, is limited to the range −0.5 < [CM]macro < 1.0.
To accommodate the phase difference between dielectric displacement and ohmic con-
duction currents, complex dielectric parameters (i.e., with real and imaginary compo-
nents) are used in this definition. This modification of Maxwell’s original DC model is
known as Maxwell–Wagner polarization, with the real component of [CM]macro required
in Equation (7) [13,14,16]. Displacement currents tend to dominate above ~50 kHz, so that
the relative permittivity values, εp and εm, are used directly in Equation (7), to be replaced
with conductivity parameters σp and σm below ~1 kHz.

Equation (7) describes a spherical particle, but ~75% of globular proteins take the form
of prolate spheroids, with ~25% being oblate [29]. The following general result for Mint

aligned along an axis parallel to the direction of Em can be applied [15]:

Mint =
4πabc

3
ε0εm

[
εp − εm

εm + A
(
εp − εm

)]Em (8)

where a, b, c, are the spheroid’s semiaxes. The factor A quantifies the shielding of the
particle’s interior from Em by the induced interfacial charges. For a sphere A = 1/3, whilst
for a prolate spheroid tending towards the shape of a long thin cigar, with its axis parallel
to the external field, A tends to zero (i.e., the internal and external fields are similar). For an
oblate spheroid tending towards a thin platelet, with its major axis perpendicular to the
field, A approaches 1.0 (the internal field is reduced by the factor εp/εm).

In modeling the polarization of spheroids, there are advantages to retaining volume Vp
of Equation (7) as an independent parameter [30]. The DEP force can then be defined in
terms of a susceptibility factor χDEP that scales linearly with particle volume [1]:

FDEP = ε0χDEP∇E2
m (9)

For a spherical particle (a = b = c = R), application of Equations (2) and (6), together
with the vector transformation 2(E·∇)E = ∇E2, gives:

χDEP =
3
2

Vpεm

{
Re

[
ε∗p − ε∗m

ε∗p + 2ε∗m

]}
=

3
2

Vpεm Re[CM]∗macro (10)

where the asterisks indicate complex permittivity values and Re the real component. An
important application of DEP is the selective separation of a target particle from a mixture
based on its characteristic ‘cross-over’ frequency f xo (Hz). The frequency-dependence of
the Clausius–Mossotti factor in a range that encompasses f xo is given by [16]:
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Re[CM( f )]∗macro ≈
f 2 − f 2

xo
f 2 + 2 f 2

xo
(11)

For frequencies of the applied field less than f xo the DEP force acting on the particle is
negative. As the frequency f is increased above f xo, a transition from negative to positive
DEP occurs. Different proteins exhibit different values of f xo [16,24], so there is the expecta-
tion that this procedure, already proven for the selective separation and manipulation of
cells and bacteria, for example, can be used to selectively enrich target proteins from other
proteins or biomacromolecules.

Based on common aspect ratios for prolate and oblate proteins [29], the depolarization
factor of relevance has limits 0.2 < A < 0.8. Provided that the protein sample is large enough
for it to be characterized using macroscopic electrostatics then, from Equation (10), the
corresponding DEP susceptibilities related to their induced moments are:

χDEP = 3
2 Vpεm

[
5(εp−εm)
εp+4εm

]
(prolate spheroid : A = 0.2)

χDEP = 3
2 Vpεm

[
5(εp−εm)
4εp+εm

]
(oblate spheroid : A = 0.8)

(12)

These relationships indicate that the free energy per unit volume -(M·Em), where M is
the vector sum of its constituent dipole moments, depends on the shape of a macroscopic
particle. This indicates that, even for macroscopic distances, interactions between the
constituent dipole moment fields should be taken into account. However, an accurate
calculation of the interaction of a specific dipole with all the other dipoles in the sample
would be difficult to achieve. The common procedure in dielectrics theory [19] is thus to
consider the dipole in question to be at the centre of a sphere containing a finite number of
other dipoles, beyond which there is a homogeneous continuum of the dielectric medium.
For this model to represent a good approximation, the quantity of the other dipoles in the
spherical volume should be sufficient that the ‘law of large numbers’ [28] is applied to
‘smooth-out’ the influence of random polarizations and so lend to the sphere an effective
permittivity equal to that of a macroscopic sample. This is of relevance to the dielectric
models discussed in Section 3.

To overcome Brownian disruptive effects, the DEP force should exceed the thermal
energy (3kT/2) of the protein’s translational degrees of freedom. From Equation (9) the
threshold value of ∇E2

Th, above which FDEP can overcome thermal disruption, is given by:

∇E2
Th =

3kT
2ε0χDEP

(13)

Threshold values for ∇E2
Th are shown in Figure 2 for T = 295 K as a function of

effective particle radius, employing values for χDEP given by Equation (12) with εp = 25,
εm = 78. The value εp = 25 is obtained from a molecular dynamics (MD) simulation of
cytochrome-c in a water droplet of 2.4 nm radius [31], and considered to be consistent with
hydration-dependent dielectric properties of protein powders [32]. Also shown in Figure 2
are values of the factor ∇E2

m reported to have been used in protein DEP experiments. It
appears [4] that for only two cases [22,33], involving bovine serum albumin (BSA) and
immunoglobulin G (IgG), does the experimental magnitude of ∇E2

m exceed the threshold
required to overcome thermal randomization. For two cases involving the prolate proteins
BSA and IgG [34,35] the threshold is close to being met. For the other cases [26,27,36–39]
shown in Figure 2, experimental values of the field gradient factor ∇E2

m fall orders of
magnitude below that required (according to standard theory) to observe DEP if proteins
of monomolecular form had been studied.
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Figure 2. Reported values of ∇E2
m employed in DEP experiments mapped against the effective (hy-

drodynamic) radius of the test protein molecule. The straight-line plots show the predicted threshold
values of ∇E2

Th required to overcome Brownian forces, derived using Equation (13) for prolate and
oblate spheroids. (BSA: bovine serum albumin; CHY: chymotrypsinogen; IgG: immunoglobulin G.)

As discussed in Section 3, solvated proteins are free to tumble and possess an orienta-
tional polarizability, m2

p/3kT, associated with its permanent dipole moment mp [18]. From
Equations (2) and (9) the DEP susceptibility, χdDEP, associated with such a dipole is given as:

χdDEP =
FDEP

εo∇E2
m

=
1

εo∇E2
m

(
m2

p

3kT
Em·∇

)
Em =

m2
p

6εokT
(14)

The following gives the contribution to the DEP force of a rigid dipole moment relative
to that of an induced moment:

FdDEP(rigid dipole)
FDEP(induced)

=
m2

6kTε0χDEP
(15)

As shown in Figure 3, standard DEP theory based on Equation (2) predicts that a
rigid dipole moment will experience roughly the same DEP force as an induced moment
under the same experimental conditions. This confirms an earlier conclusion [4], based on
an analysis only for BSA, that the problem regarding the apparent absence of Brownian
disruption for protein DEP is not solved by inserting the magnitude of the permanent
dipole moment value into Equation (2). A DEP theory based on molecular dielectrics is
required—not one based on macroscopic electrostatics.
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Figure 3. The contribution to the DEP force that a rigid dipole moment makes relative to that of
the induced moment is shown for various proteins, as calculated using Equation (15). Values of the
hydrodynamic radii were derived using an empirical relationship between protein size and molecular
weight (Malvern Panalytical®—Zetasizer Nano ZS) and permanent dipole moment values were
derived from the literature [4,24].

Aqueous solutions of proteins, when examined by dielectric or impedance spec-
troscopy at room temperature, typically exhibit a frequency-dependent relative permittivity
as shown in Figure 4. Of particular significance for protein DEP is the β-dispersion, bounded
by lower and upper frequency permittivity values of ε(βlf) and ε(βhf), respectively, with a
dispersion strength given by ∆ε(β) = [ε(βlf) − ε(βhf)]. The mid-point, [ε(βlf) − ε(βhf)]/2,
of this dispersion occurs at a frequency 1/(2πτ), where τ is the characteristic relaxation
time. This is the time required for 1/e of the permanent dipoles of an ensemble to return to
random orientation after the polarizing field has been removed. For suspensions of cells
and other particles of sufficiently low volume concentration, cv, the magnitude of ∆ε(β) is
given by [3,4,16]:

∆ε(β) = 3cvεm[CM]macro (16)

Figure 4. Protein solutions exhibit dielectric dispersions ∆ε, designated α, β, δ and γ, due to
relaxations of the protein’s electrical double-layer; permanent dipole; hydration shell; bulk water
dipoles, respectively [16]. The magnitude of ∆ε(β), unlike ∆ε(δ), greatly exceeds that predicted by
Equation (16) [4]. ∆ε(γ) exhibited by pure water arises from correlations of its dipole moments
(Kirkwood factor gk = 2.67), where gk = 1 corresponds to no correlation.
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However, as indicated in Figure 4, whereas the δ-dispersion associated with a protein’s
hydration shell appears to satisfy this relationship, the β-dispersion does not. Equation (16)
is derived from the ‘effective medium’ theory of dielectric mixtures [24]. This theory
assumes that the addition of a small number of ‘impurity’ particles to a homogeneous
dielectric medium can be homogenized, so that after this process the mixture exhibits the
same polarization response as the pure solvent. In effect, the ratio of the average electric
displacement and average electric field 〈D〉/〈E〉 is assumed to remain unchanged. The
fact that the theory fails for the β-dispersion exhibited by a protein–water mixture implies
that it is not a ‘passive’ mixture—an interaction occurs between the protein and water
dipoles. The magnitude of the γ-dispersion observed at ~20 GHz, shown in Figure 4 and
due to orientational relaxation of the water dipoles, was understood after introduction
into dielectrics theory of the Kirkwood water dipole–dipole correlation factor. An obvious
matter to raise is the extent to which the magnitude of the β-dispersion might be influenced
by protein–water cross-correlations of dipoles. As discussed here in Sections 3 and 4,
this concept had evaded analysis with standard dielectrics theory, but is an important
component of the new theory and MD simulations [1].

2.2. The β- and δ-Dispersions Associated with Protein Hydration

It is the custom to identify a dielectric dispersion, using the Greek alphabet, in the
order of location on the frequency axis of the applied field frequency. The designation of a
particular Greek letter does not specify a specific physico-chemical mechanism responsible
for that dispersion. Figure 5 shows the β-dispersion exhibited by solvated BSA [40,41],
together with an aqueous suspension of phospholipid nano-vesicles [42].

The dispersion for the vesicles is characterized by a relaxation time τ corresponding to
that required for 1/e of the total induced interfacial charges to disappear after the polarizing
field has been removed. The magnitude of the β-dispersion, as a function of vesicle volume
fraction, p, is given by the linear relationship ∆ε(β) ≈ 143p [42]. From Equation (16) this
gives [CM]macro = 0.61 [42], a value within the permitted range −0.5 < [CM]macro <1.0.
However, an equivalent interpretation is not forthcoming for the β-dispersion shown in
Figure 5 for a 12 g/L (0.18 mM) BSA solution [40]. Based on its molecular mass of 66 kD and
mass density 1.41 g/cm3 [43], BSA has a molecular volume of 4.68 × 104 cm3/mol. This
corresponds to the protein occupying 8.42 cm3/L in a 12 g/L mixture, so that p = 8.4 × 10−3.
Thus, the β-dispersion for BSA exhibits a significantly larger dispersion strength than the
vesicles, with ∆ε(β) ≈ 2500p and a corresponding value for [CM]macro well above the
maximum of 1.0 permitted by the standard theory.

Figure 5. The β-dispersion exhibited by a 0.18 mM (i.e., p = 0.0084) BSA solution [40] is shown, together
with that of a suspension of phospholipid vesicles (radius 13.5 nm, volume fraction p = 0.14) [42]. The
δ-dispersion is associated with the protein hydration sheath [41,44,45]. Positive DEP can be expected
for both particle types in the frequency range where their relative permittivity, εr, exceeds that (~78) of
pure bulk water.
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The δ-dispersion, typically occurring around 70 MHz, is attributed to relaxations
of water molecules close to the protein surface [41,44,45]. Two kinds of such water have
been identified: (i) water attached directly to the protein surface via H-bonding to oxygen,
nitrogen and polar groups; (ii) water, amounting to ~0.36 g water/g protein, that forms
a hydration shell around the protein molecule. The magnitude of the δ-dispersion, ∆ε(δ),
is found to be directly proportional to the molecular weight and hence surface area of
the protein molecule, whereas the value of its characteristic relaxation time (~2 ns) is
relatively independent of protein size [45]. The number of bound water molecules can
be estimated from ∆ε(δ) using a simple mixture theory [16,44]. For small proteins, such
as cytochrome-c or ribonuclease-A, the number of bound water molecules amounts to
~50 per protein, increasing to 135~150 for larger proteins such as hemoglobin and BSA [44].
Based on measurements of the β-, δ- and γ-dispersions exhibited by lysozyme solutions,
Wolf et al. conclude that the dynamics of water molecules in the hydration sheath is
influenced by interactions with polar residues on the protein surface and less so with the
bulk water [45]. This implies that the δ-relaxation is strongly coupled to the β-relaxation of
the protein molecule and its H-bonded water molecules but is not strongly influenced by
structural fluctuations of the bulk solution (i.e., the γ-dispersion). It is also noteworthy, as
indicated in Figure 4, that the magnitude of the dielectric increment ∆ε(δ) corresponds to
a realistic value for [CM]macro—unlike the case for ∆ε(β). For example, a 5 wt.% aqueous
solution of myoglobin (equivalent to p = 0.034) has a measured ∆ε(δ) = 2.37 at 25 ◦C [44].
From Equation (16) this gives [CM]macro = 0.3, which lies within the permitted range
−0.5 < [CM]macro <1.0. This conclusion also holds for nine other globular proteins of similar
concentration investigated by Miura et al., who reported ∆ε(δ) values in the range 1.51 to
5.05 [44]. These dispersion strengths correspond to [CM]macro values in the range 0.19 to
0.63. This implied compliance with classical macroscopic electrostatics is matched by the
characteristic relaxation time being independent of protein size. As stated with respect to
Equation (5), the relaxation time of induced interfacial charges associated with the Maxwell
cavity field depends on the permittivity and conductivity of the particle and surrounding
medium, but not on particle size [14,45].

2.3. User-Friendly, Empirical, Theory for Protein DEP

A practical and user-friendly application of Equation (16) arises because ∆ε(β) contains
information for predicting the frequency profile of the DEP response, and where a transition
from positive to negative DEP might be expected. For proteins whose β-dispersion is well
characterised, and for a protein concentration in the range where a linear relationship
between ∆ε(β) and Cv is found, the variation of permittivity of the aqueous mixture as a
function of frequency (Hz) is of the form [18]:

εm( f ) =
∆ε(β)

1 +
(

f / fβ

)2 + ε
(

βh f

)
(17)

where fβ is the frequency marking the inflexion (mid-point) of the β-dispersion and ε(βhf)
is the high-frequency boundary where the dispersion ends. The dispersion exhibits a
dielectric increment in the frequency range where ε(βhf) exceeds the experimental value
of 78.4 for pure water [3]. This corresponds to where the polarizability (dipole moment
per unit volume) of the solvated protein exceeds that of the medium it has displaced. The
transition to the dielectric decrement occurs at the cross-over frequency, f xo, where εm falls
below 78.4. The polarizability of the solvated protein is now less than that of the medium it
has displaced, and a transition from positive to negative DEP can be expected. For the BSA
dispersion of Figure 5: ∆ε(β) = 21; ε(βhf ) = 72.4; f β ≈ 1 MHz; f xo ≈ 2 MHz.

Equation (16) is derived from the ‘effective medium’ theory of dielectric mixtures. For
a mixture of protein and water this theory can be applied to analyse the δ-dispersion of
Figure 4, but fails for the β-dispersion. This theory assumes that, after the addition of a
small number of impurity particles, the mixture can be homogenized so that it exhibits the
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same polarization response as the pure solution. In effect, the ratio of the average electric
displacement and average electric field 〈D〉/〈E〉 is assumed to remain unchanged. For
particles of permittivity εp and total partial volume vp dispersed in a medium of permittivity
εm, the following relationship is derived [46]:(

εe f f − εp

)
vp
〈Ei〉
Em

+
(

εe f f − εm

)
(1− vp)

〈Em〉
Em

= 0 (18)

where 〈Ei〉 and 〈Em〉 represent the statistical averages of the electrical field in the interior of
a dispersed particle and in the bulk medium, respectively. The field Ei inside each particle
is taken to be the Maxwell cavity field given by Equation (5), and substitution of this into
Equation (16) gives:

εe f f − εm

εe f f + 2εm
= vp

εp − εm

εp + 2εm
= νp[CM]macro (19)

This Equation provides a valuable tool, known as multi-shell modelling, to predict
and understand the DEP responses of cells and bacteria [16,47]. It was used by Schwan
et al. [42] to derive the lipid bilayer capacitance of the phospholipid vesicles from its
β-dispersion shown in Figure 5, and to analyse the δ-dispersion exhibited by solvated
BSA [41]. Equation (16) is derived from Equation (19) by assigning (εeff − εm) = ∆ε(β), vp = p,
together with the assumption that vp is small enough to give εeff +2εm ≈ 3εm. An empirical

replacement for [CM]molecular of Figure 1, namely [CM]empirical , is derived by assigning vp as
a mole volume fraction Cp and inserting εeff = κεm into the denominator of the left-hand side
of Equation (18) [4]:

(κ + 2)[CM]empirical =

(
∆ε(β)

εm

)(
Cwρp

Cpρw

)
(20)

Based on known values for ∆ε(β)/Cp and protein mass density [4] this relationship
produces values for [CM]empirical that vary greatly in magnitude (e.g., ~1110 for BSA;
~37,000 for carboxypeptidase; ~190 for phospholipase) with no apparent dependence on
protein molecular weight. Selected examples are given in Figure 6.

Figure 6. The frequency-dependence of the empirical factor (κ + 2)[CM]empirical derived from
Equations (17) and (20) for selected proteins. The frequency, f xo, marking the transition between
the dielectric increment and decrement of the β-dispersion is also given.

If the values for f xo in Figure 6 indicate where transition from positive to negative
DEP occurs, a protocol for separating a mixture of cytochrome-c and the other proteins can
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be devised. By setting the DEP voltage frequency at ~15 MHz, cytochrome and ubiquitin
would be attracted to an electrode array by +ve DEP, with the other proteins repelled by -ve
DEP into the (flowing) bulk medium. By adjusting the frequency to ~30 MHz, separation
of cytochrome and ubiquitin could result.

The DEP susceptibility profiles shown in Figure 6 also provide a possible explanation
for DEP cross-over events reported in the MHz range for BSA [33], avidin [48] and prostate
specific antigen [49]. This data is shown in Figure 7.

Figure 7. BSA, avidin and prostate specific antigen (PSA) have been reported to exhibit a DEP
cross-over at MHz frequencies. This is consistent with the permittivity of the protein solution falling
below the value εr = 78 for pure water, as shown here for BSA (from data of Figure 6).

The generic expression for the DEP susceptibility is given as

χDEP =
3
2

Vpεm (κ + 2)[CM]empirical (21)

The parameter κ can assume two values, either κ = 1 or κ >> 1. The case κ = 1 is
given where the particle concerned does not possess a permanent dipole moment, so that
χDEP is given by Equation (10). The β-dispersion it exhibits, when suspended in a fluid,
is capable of being analysed in terms of Equation (16) and the DEP force it experiences is
given by Equation (9). For protein DEP and other cases of molecular DEP where the sample
macromolecule possesses a permanent dipole moment, then χDEP is given by:

χDEP =
3
2

Vpεm

[
(κ + 2)[CM]empirical

]
=

3
2

Vpεm

[(
∆ε(β)

εm

)(
Cwρp

Cpρw

)]
(22)

The frequency dependence of the DEP force now assumes a modified version of
Equation (9), based on Equation (17):

FDEP( f ) =
3
2

Vpε0εm( f )
[(

∆ε(β)

εm

)(
Cwρp

Cpρw

)]
∇E2

m (23)

The dielectric relaxation time, τ, for a macromolecule is proportional to its volume [16]
and so we can expect the β-dispersion for a protein dimer to be shifted to a frequency
that is lower than its monomer counterpart, and also possibly exhibit a larger dispersion
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strength because of an increased effective dipole moment. Moser et al. [40] investigated
the β-dispersion exhibited by monomer and dimer BSA. The characteristic frequency, fβ,
of Equation (17) was determined to be ~400 kHz at 25 ◦C for the dimer, compared to
~1 MHz for the monomer. The dispersion strength ∆ε(β) exhibited by the dimer was also
determined to be ~14% larger than that for the monomer. This offers the possibility that
DEP can be used to separate the polymeric forms of a protein.

3. Summary of Dielectric Theory of Relevance to Protein DEP

Although the term ‘dielectrophoresis’ implies that dielectric theory already underpins
the theory and practice of DEP, the extent of this is actually limited to narrow aspects
of macroscopic electrostatics. New concepts for molecular DEP, and for protein DEP in
particular, have been introduced by Heyden and Matyushov [1], and they highlight the
importance of MD simulations as a complimentary tool to dielectric spectroscopy. This
summary is to help establish, primarily for members of the DEP community not trained in
dielectrics, what is new to established theory and as a guide to the key literature.

Standard DEP theory lacks the ability to adequately deal with particles that possess
a permanent dipole moment. The primitive depiction in Figure 8a of a globular protein
molecule illustrates that significant contributions to its permanent dipole moment are its
ionized acidic and basic peptides located on its surface. An estimate of the moment is
calculated from the algebraic summation of the moment vectors, qiri, directed towards
the protein’s centre of mass. X-ray diffraction data provide the ‘resting’ locations of these
charged groups. A more accurate value is obtained by including peptide moments and
those formed by α-helixes [16]. A key innovation [1] is to replace the ‘boundary problem’
of macroscopic electrostatics with calculation of the cross-correlations of the protein dipole
and neighbouring water dipoles that, in the inner hydration shell, are located close to the
hydrophilic polar and charged side groups on the protein’s surface.

For the case shown in Figure 8b, dipole–dipole interactions enhance the effective
dipole moment of the solvated protein. As explained in this section, this corresponds to
a Kirkwood correlation factor, gk, larger than unity. If anti-correlation occurs, then gk is
less than unity. The fluctuations of the moment shown in Figure 8c should fit a Gaussian
distribution about its mean value. MD simulations for lysozyme and ubiquitin give mean
dipole moment values of 145 D and 218 D, respectively, with Gaussian widths of 29 D and
37 D, respectively [1]. Thus, for these proteins, calculations that neglect modulations of the
protein dipole moment by conformational fluctuations (i.e., assumes M2

p ≈
〈

M2
p

〉
does not

introduce an error exceeding 4%.
The theory of linear response and susceptibility is important. The susceptibility χ(ω)

of a system, when a sinusoidal force F of angular frequency ω is applied to it, is given as
χ(ω) = R/F, where R is the response of the system. The interaction energy between F and R
is equal to the negative dot product -F·R. This is the vector notation for -FR cos θ, where
θ is the polar angle between F and R. In dielectrics theory, F is the applied field and R is
the resulting dipole moment MT of the system. The dielectric susceptibility of a material is
equal to

〈
M2

T

〉
0/3kT where

〈
M2

T

〉
0, as shown in Figure 8d, corresponds to the moment’s

mean square fluctuation without application of the force field. Linear response theory
connects the production of spontaneous thermal fluctuations of a system to the dissipation
of excess energy produced by externally applied perturbation. Provided that a system of
dipoles is at equilibrium when an external (relatively weak) electric field is applied to it,
the temporal response of this system to the field can be determined in terms of

〈
M2

T

〉
0.

Applications of this theory extends to other topics, such as magnetism and elasticity. For
example, by examining the spontaneous microscopic fluctuations of a spring-balance with
no mass attached to it, a prediction can be made of the extent it will stretch if a specified
mass is attached!

Figure 8 depicts important ingredients of protein DEP theory. What follows adds
substance to this.
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Figure 8. (a) Major contributions to the permanent dipole moment Mp of a protein are its peptide
groups that carry a charge q. (b) H20 dipoles near charged groups can act to enhance Mp, corre-
sponding to a correlation coefficient gk > 1. Reversal of the polarities shown for the water dipoles
gives anti-correlation, with gk < 1. (c) Brownian (kT) changes of location and magnitude of q produce
fluctuations with time of Mp about its mean value

〈
Mp
〉
. The dashed red line indicates the mean

square
〈

M2
p

〉
of these fluctuations. (d) Without an applied electric field, orientations of the dipoles in

a sample of polar fluid are random. The mean value, 〈MT〉0, of the total moment of these dipoles

is thus zero. However, due to random fluctuations, its mean square value
〈

M2
T

〉
0 is finite and

corresponds to spontaneous polarization.

3.1. The Clausius–Mossotti Law, Lorentz Cavity Field and Debye’s Orientational Polarization

Based on Green’s electric potential function [7] and Mossotti’s hypothesis [9] that the
electric fluid residing in each conductive ‘corpuscle’ of a dielectric is displaced under the
action of a local field to form an electric doublet (i.e., dipole), Clausius derives the following
relationship (known as the Clausius–Mossotti law) linking Faraday’s concept of a specific
inductive capacity (i.e., the static dielectric constant) to a simplifying factor g that relates the
induced moment of an individual corpuscle to the total polarization of the dielectric [10]:

εm = (1 + 2g)/(1− g) (24)

The key steps to the derivation of this relationship are described elsewhere [24]. It is
implicit that g is proportional to the packing number density, N, of corpuscles and is thus
proportional to the mass density ρ of the dielectric. The following is an alternative and the
usual way to express the Clausius–Mossotti law:(

εm − 1
εm + 2

)
1
ρ
= constant (25)
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This masks, but does not remove, the implied issue of the factor g approaching a value
of unity, where either a small perturbation of temperature or applied field could result in
infinite polarization and a ferroelectric transition. This is addressed in Section 3.3. Although
Clausius postulates that each corpuscle could possess a permanent dipole moment, he
describes their polarization as an induced elastic displacement of internal charges [10]. This
is now known as atomic distortion polarizability, comprising the two distinct contributions
of electronic and atomic polarizability. The number density N is equal to NAρ/MW, with
NA the Avogadro constant, so that the polarization (induced moment per unit volume) Pm
is given in terms of the local field EL as:

Pm = NαEL (26)

Lorentz evaluates EL by placing a polarizable particle inside a virtual spherical cavity
“whose dimensions are infinitely small in a physical sense” [50]. All the atomic matter,
apart from the point charges forming the dipole, are removed from this imagined cavity.
The distributed charge induced at the cavity’s outer surface creates a cavity field EL of
magnitude Em + Pm/(3εo). The atomic matter that had been removed is now returned,
which adds another component sPm/εo to the cavity field, to give:

EL = Em +

(
1
3
+ s
)

Pm

εo
(27)

Lorentz shows, for a cubic lattice of polarizable particles, that s = 0, and states that
otherwise this “is a constant that will be difficult exactly to determine” [50] (pp. 138, 303).
This result also holds for an isotropic lattice, provided that no short-range interactions
occur between the induced dipole fields. Substituting into Equation (27) the value for Pm
given by Equation (4) and assigning s = 0, EL has the value:

EL =
εm + 2

3
Em (28)

This is known as the Lorentz field (sometimes called the Clausius–Mossotti field). The
susceptibility of the Lorentz cavity field, equal to the ratio EL/Em, is thus:

χLc =
εm + 2

3
(s = 0) or χLc =

[
1
3
(εm + 2) + s(εm − 1)

]
(29)

Equation (29) indicates that the Lorentz cavity field, unlike the Maxwell cavity field of
Equation (5), is always larger than the applied macroscopic field Em. This arises because
the Lorentz cavity, being virtual and without a physical boundary between it and the
surrounding dielectric, does not experience the field-shielding effect of induced interfacial
charges as produced for the Maxwell cavity. From Equations (4), (26) and (28) the following
relationship is obtained:

εm − 1
εm + 2

=
Nα

3εo
(30)

Lorentz recognizes that this relationship corresponds to the law formulated by Clau-
sius as given by Equation (25). It can be used to derive good estimates of a dielectric’s
refractive index n (n2 = εm). Debye extends its relevance to polar solutions, by adding
the orientational polarization of a molecular dipole of moment m to the atomic distortion
polarization [18]:

εm − 1
εm + 2

=
1

3εo
∑

i
N

(
αi +

m2
i

3kT

)
=

1
3εo

∑
i

NAρ

Mw

(
αi +

m2
i

3kT

)
(31)

The polar molecule is regarded as a sphere undergoing rotational Brownian motion,
whilst experiencing the Lorentz cavity field inside a spherical cavity within the dielectric.
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The summation Σi includes all types of polarizable molecule within the dielectric. In the
absence of an applied electric field Em, the direction of orientations of an ensemble of dipoles
will, on average, be distributed with the same probability over all directions in space. On
applying a field, each dipole gains potential energy U = −mEm cos θ, where θ is the polar
angle between the direction of the dipole and the applied field. Using classical Boltzmann
statistical mechanics and a method resembling that of Langevin for gas molecules carrying
a permanent magnetic moment [51], Debye obtains the following value for the average
moment per dipole oriented along the applied field’s direction [18]:

〈m〉E = m〈cos θ〉 =
(

m2

3kT

)
Em (32)

Computer modelling of the dielectric properties of a solvated protein employs a lattice
of such Langevin dipoles [52,53]. The value of 〈cos θ〉 is given by the Langevin function,
L(x) = coth x − 1/x, and is shown in Figure 9 [18,19].

In dielectric spectroscopy measurements the fields are usually less than 105 V/m,
so for many kinds of polar molecules (e.g., water) L(x) ≈ x/3 and values for 〈cos θ〉 are
appreciably smaller than unity (typically < 10−4). This indicates that very little change to
the directions of the polarized dipoles has occurred compared with their random directions
with no field applied. The magnitude of the orientational polarizability for each dipole is
thus

(
m2

3kT

)
, and is incorporated as such in Equation (31). For protein iDEP experiments the

applied fields are typically of the order ~106 to 107 V/m [4,5]. For many classes of polar
molecule (e.g., water with m = 1.8 D), even with such high fields, the interaction energy,
m·Em, is much less than the thermal energy kT. However, globular proteins possess dipole
moments several hundred times larger than many other types of polar molecule [16,24]. As
shown in Figure 9 for BSA (m = 710 D [54]) the linear relationship given by Equation (32) is
no longer applicable and saturation of the orientational polarization is approached. With
increasing field strength, 〈cos θ〉 approaches unity, indicating that on average the protein’s
permanent dipole moment is almost aligned with the field.

Figure 9. The average orientation of a single dipole along the direction of an applied field is given by
the Langevin function (L(x) = coth x − 1/x) [18,19]. Fields of ~106 to 107 V/m are used in protein
DEP experiments [4,5]. Polar molecules typically have dipole moments less than 5 debye units
(e.g., 1.8 D for H2O) so that x << 1. Globular proteins have large dipole moments and as shown for
BSA (m = 710 D [54]) saturation of its polarization can occur in DEP studies.

3.2. Maximum Size of a Lorentz Cavity

Ramshaw offers a basis for defining the maximum size permitted for a virtual Lorentz
cavity [55,56]. He makes the interesting observation that in Equation (4) both Pm (dipole
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moment per unit volume) and Em (the macroscopic Maxwell field) can be defined at any
location within a dielectric, regardless of whether εm exists as a real concept. Thus, the
existence of εm cannot be guaranteed, by definition. What does this mean within the context
of the Lorentz cavity? Ramshaw [55] addresses this by expanding the Clausius–Mossotti
function of Equation (25) into powers of the number density, N, of polar molecules, keeping
the material’s specific density ρ constant. This is equivalent to finding the virial coefficients
for a gas [18]. Ramshaw makes no assumption regarding εm and also eliminates Em from
his analysis by considering both short-range and long-range orientation correlations of
pairs of dipoles. The total correlation between two dipoles, in zero applied field, is regarded
as the sum of a direct and an indirect effect that is transmitted by chains of direct effects
between intermediate molecules. Beyond a certain total chain length d, where dipole–dipole
intermolecular potential energies fall below kT, thermal disruption overcomes coherent
correlations of dipole pairs. If a cavity’s diameter is smaller than d, εm can be considered as
well-defined and the cavity field is the Lorentz field, EL, given by Equation (27). Above this
cavity size, no such assumption may be made [55,56].

3.3. Onsager’s Reaction Field [57] and Kirkwood’s Correlation Factor [58,59]

Onsager, a PhD student of Debye, decided to learn ‘about the dielectrics that Debye
had done’. He was ‘too lazy to go to the libraries and sat down and worked it out and lo and
behold it came out quite different!’ [60]. Onsager replaces the cavity used by Lorentz and
Debye with a much smaller one, of the same radius, R, as the polar molecule of interest. The
effect is considered of introducing a rigid point dipole of moment mo into this cavity, with
no external field applied. The thermal average <mo> of this dipole moment is calculated to
seamlessly match it to the known number density of dipoles in the surrounding medium.
The point dipole polarises the surrounding homogenous medium, creating interfacial
charges and a reaction field inside the cavity. Matyushov considers the physics of this as
two charged lobes, at the opposite sides of the void containing the point-dipole, visualized
as oriented dipoles of the medium cut through by the dividing surface [28]. Adopting
Matyushov’s nomenclature, the interface dipole created by the reaction field is:

Mint = −2
[
(εm − 1)
(2εm + 1)

]
mo (33)

The minus sign signifies that the reaction field acts against the field created by the
fixed dipole moment, mo, and almost cancels it out for polar media of high permittivity [28].
Onsager’s introduction of the reaction field removes the potential problem of the factor g
approaching a value of unity in Equation (19).

The Kirkwood correlation factor, gk, quantifies the deviation from randomness of
the orientation of a dipole, with respect to its neighbours, in a liquid composed of polar
molecules. If N is the number of dipoles, each of moment m, in an ensemble of dipoles,
then gk is given by:

gk =

〈
M2
〉

Nm2 (34)

where
〈

M2
〉

is the mean square value of the ensemble’s total dipole moment, M. The
significance of gk is demonstrated in Figure 4, where it addresses the fact that Equation (31)
incorrectly predicts water at room temperature to possess a static permittivity, εm ≈ 31,
instead of the experimental value, εm ≈ 78. In its condensed phase, moment m (correspond-
ing to that of an isolated H2O molecule) is enhanced due to its orientational fluctuations
being amplified through coordinated rotations of dipole neighbours to which it is hydrogen
bonded. Kirkwood replaces Σm2 in Equation (31) with the summation Σ<mo·m> (i.e.,
Σ mom cos θ) with θ being the angle between a target dipole, mo, and a neighbouring
dipole, m. The correlation factor gk is defined as the average of cos θ between this target
dipole and all the dipoles (including itself) within a volume of polar liquid surrounding
it [58,59]. The summation thus includes <mo·mo>, which is given the value of unity (θ is
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effectively zero, so cos θ = 1). If there is no correlation at all between the dipoles, then
<cos θ> = 0 and gk = 1.0. Hydrogen bond links between neighbouring dipoles in bulk water
leads to correlation. For a perfect and rigid tetrahedral coordination of the H-bonds, about
which free rotations are permitted but no bond bending, gk is given as

gk = 1 + zcos2 θ

2
(35)

where θ is the H-O-H bond angle and z is the coordination number. Based on coordination
numbers (z = 4 for a perfect tetrahedron) and inter-molecular distances obtained from X-ray
scattering data for water, the value gk = 2.67 was obtained, to give εm = 78.2 [61].

Based on these contributions by Onsager [57] and Kirkwood [58,59], Equation (31)
evolves to the general form [16]:

(εm − ε∞)

εm

(2εm + ε∞)

(ε∞ + 2)2 =
1

3εo
∑

i
N

(
αi +

gkm2
i

3kT

)
(36)

where εm is the static or ‘equilibrium’ permittivity value (corresponding to where the system
of dipoles has attained a constant value of polarization with a constant applied field), and
ε∞ is the square of the refractive index at high frequencies ~1013 Hz [20]. Typically, for pure
polar liquids, εm � ε∞ with ε∞ ≈ 1, so that for cases where only the dipole polarization
is of interest (i.e., the atomic distortion polarizability αi is not included) Equation (36) is
usually presented as

(εm − 1)(2εm + 1)
9εm

= Ndipgk (37)

where Ndip is the dipole polarizability density given by

Ndip =
Nm2

9ε0kT
(38)

with N being the number of polar molecules per unit volume. Equation (37) applies to the
static case. If we wish to consider an orientational dipole dispersion, ∆ε, occurring between
a low and high frequency limit, the static permittivity, εm, is replaced by the complex per-
mittivity, ε(ω) = ε′ − iε′′ , of the polar liquid at frequencyω/2π. On applying a sinusoidal
field, E(ω) = Epk exp(iωt), to the system of dipoles, the variation of the permittivity as a
function of frequency is given through the Laplace transform [62]:

[ε(ω)− 1][2ε(ω) + 1]
9ε(ω)

=

{
[εm − 1][2εm + 1]

9εm

}
L{−ϕM(t)} (39)

The Laplace transform is defined as [63]:

L{ f (t)} =
∫ ∞

0
f (t) exp(−iωτ)dt (40)

and in this case −ϕM(t) is the autocorrelation (decay) function of the permanent dipoles.
This represents a combination of the superposition theorem with Onsager’s theory that mi-
croscopic fluctuations created by thermal energy obey the same law of decay as macroscopic
perturbations produced by an applied field [62]. According to Onsager’s proposal [64] the
following auto-correlation functions are equivalent:

ϕM(t) = 〈M(t)〉o
〈M(0)〉o

(Decay function of a macroscopic moment);

ϕM(t) = 〈M(t)·M(0)〉0
〈M(0)·M(0)〉0

(Correlation function of moment fluctuations)
(41)
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If these are expressed through a sum of exponential terms
n
∑

i=1
ai exp

(
− t

τi

)
, the Laplace

transform is the sum of equivalent Debye terms:

L{−ϕw(t)} =
n

∑
i=1

ai
(1 + iωτi)

(42)

where ai is the amplitude, ∆ε(i), and τ is the characteristic dipole correlation time for each
dispersion. ∆ε(i) is the difference of real components of ε(ω), so that each dispersion is
characterized by the frequency variation of Ndip of Equation (38), namely:

Ndip(ω) =
Ndip(

1 + ω2τ2
i
) (43)

This is the origin of the frequency dependence given for εm(f ) in Equation (17).

3.4. Fröhlich’s Theory Relating Permittivity and Spontaneous Polarization

This theory is used in molecular dynamics (MD) simulations of solvated proteins.
Fröhlich [19] (p. 37) considers a macroscopic spherical region of volume V, within an
infinite homogeneous dielectric medium. Volume V is large enough to exhibit the same
static permittivity, εm, as the surrounding homogeneous medium (refer to discussion after
Equation (12)). The volume’s surface can deviate, so that no molecule is cut by the sur-
face, and encloses an ensemble of dipoles. Each dipole is represented as an elementary
charge that can be thermally activated to ‘hop’ between two adjacent potential energy
wells (see [24] for a schematic). The position of each charge is described as the vectorial
displacement from the position it would have in the lowest energy level (ground state)
of the whole system, and given according to the rules of Boltzmann statistical mechanics.
However, the medium outside the sphere is treated as a continuous dielectric described
by its macroscopic permittivity. Except at the absolute zero of temperature, the ensem-
ble of charges inside the sphere will not retain a fixed positional configuration—even if
macroscopically it is in equilibrium. Owing to thermal fluctuations there is a probability
of finding this ensemble with any set of displaced space elements. This means, despite
the average moment, 〈M〉0, of the ensemble in the absence of a field being zero, its mean

square value,
〈

M2
〉

0, in the absence of a field, has a finite value (see Figure 8d).
Fröhlich adopts the Onsager reaction field as the ‘self-field’ of the spherical volume

and then adds to this the Maxwell cavity field produced by an external field E. The external
field is considered to be sufficiently weak that the non-linear (saturation) polarization
region shown in Figure 9 is avoided, so that (M·E)/kT � 1. Furthermore, Onsager’s ‘self-
field’ is shown by Equation (33) to be the dominant component of the local field. Fröhlich’s
conclusion that the static permittivity of a sphere of a dielectric embedded in a large
specimen of the same material can be expressed in terms of its spontaneous polarization, can
thus be anticipated. He derives the following expression for the dielectric’s susceptibility:

(εm − 1) =

〈
M2
〉

o

3kTεoV

[
3εm

(2εm + 1)

]
=

〈
M2
〉

o

3kTεoV
χMc (44)

where
〈

M2
〉

o indicates the Boltzmann average in the absence of a field, and from Equation (6)
the susceptibility, χMc, of the Maxwell cavity field is identified.

Fröhlich generalizes his model by permitting the immersed spherical volume to have
an arbitrary static permittivity εp. For this ‘mixture’ model, he obtains the following
result [19] (p. 177):
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(
εp − 1

)
=

〈
M2

p

〉
o

3kTεoVp

[(
2εm + εp

)
(2εm + 1)

]
=

〈
M2

p

〉
o

3kTεoVp
χMcp (45)

where the Maxwell cavity susceptibility, χMcp, is given by Equation (5). The fact
〈

M2
p

〉
o

occurs in the absence of an applied field indicates that the macroscopic sample of volume
Vp can be of arbitrary shape. Matyushov expresses this as an ‘invariant of rotations of
the laboratory frame’ [28]. Simonson adopts Equation (45) in a molecular dynamics (MD)
simulation at 295 K of a solvated cytochrome-c molecule contained within a 2.4 nm radius
sphere of water [31]. His conclusion that εp ≈ 25 was used to give the ∇E2

Th values shown
in Figure 2.

3.5. South and Grant’s Theory of Protein Dipole Relaxation

South and Grant [65] apply Fröhlich’s model to a sphere of permittivity ε∞w and
volume V containing Nw water molecules and Nm protein molecules. Each molecule is
represented as a point dipole, mw for the water and mp for the protein, suspended in a
‘background’ medium of effective permittivity, ε∞w. This ‘background’ is responsible for
spontaneous fluctuations of induced moments. The sphere is immersed in an infinite
continuum of permittivity εmix, i.e., the same as the effective static permittivity of the sphere
itself. The spontaneous fluctuations of induced and permanent dipoles are assumed to
arise from independent mechanisms [66]. The short-range protein–water and water–water
correlations are represented by Kirkwood factors gkp and gkw, respectively, and are assumed
to be insensitive to protein concentration. Because each molecule is represented as a
point dipole, no account is taken of the fact that a globular protein molecule is several
thousand-times larger than the water molecules. South and Grant take this into account
by representing the water as a continuum, thus removing the water dipoles from their
model but retaining their influence by replacing the background medium by one whose
permittivity is the static value permittivity, εsw, of pure water.

The following relationship is derived for the model of a central sphere of effective
permittivity ε∞w and volume V containing Np protein molecules, each of effective dipole
moment mp and surrounded by a hydration shell of permittivity εmw, in an infinite contin-
uum of static permittivity εmix:

(εmix − εsw) =
Npgkpm2

p

3kTεoV

[
3εmix

(2εmix + εsw)

]
(46)

It is assumed that gkp ≈ 1 for the situation where the overall short-range interactions
of a protein with water molecules are nearly spherically symmetrical.

Following the procedure leading to Equation (39), the magnitude of the β-dispersion
exhibited by a dilute protein solution is [65]:

∆ε(β) =
hNACp

ε0MwkT
gkpm2

p (47)

where the number density Np/V has been replaced by NACp/MW, with NA the Avogadro
constant, MW the protein’s molecular weight and Cp its concentration (g/mL). The value
of h is 1

2 when the solvent is considered to be an assembly of point dipoles, and h = 3/4
when the continuum approximation is made [65]. This result can be compared with the
following semiempirical relationship formulated by Oncley [67]

∆ε(β) =
bNACp

9εo MwkT
m2

p (48)

The parameter b is calibrated by Oncley to be 5.8, based on dipole moment values
obtained for simple amino acids by determination of the separation distance of the positive
and negative charges carried by their amino and carboxyl groups. However, Takashima
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and Asami [68] found that a value for b = 4.5 gives better agreement between the calculated
and experimental dipole moment for a solvated protein, if a linear relationship between
∆ε(β) and Cp is found. Based on b = 4.5, from Equations (47) and (48) estimates for gkp of
1.0 (h = 1/2) and 0.67 (h = 3

4 ) arise.
Values for gkp less than unity imply anticorrelation of the protein and water dipoles of

hydration, and from MD studies this was concluded to be the case for the inner population
of water dipoles around ubiquitin and apo-calbindin [69,70]. The inner population of water,
less than 0.35 nm from the protein surface, consists of water patches around polar and
charged amino side-groups, whereas almost no waters are found this close to the hydropho-
bic groups [69]. Water molecules in the outer hydration shell (0.35~0.6 nm from the surface)
either form hydrogen bonds with the inner bound waters or cover the hydration ‘holes’
about the non-polar and uncharged areas of the protein surface. In the MD simulations,
ubiquitin was found to slow down the dynamics of bulk water molecules located as far
away as 1.35 nm from its surface [69].

4. Heyden and Matyushov’s Theory and MD Simulations
4.1. The Theory

This builds on foundations laid down by Matyushov and co-workers [71–74]. A key
aspect is to replace the dielectric boundary-value problem of macroscopic electrostatics
by calculation of the cross correlation of the protein’s permanent dipole moment with its
polarized hydration shell. The result is replacement of Re[CM]macro with the factor K, so
that Equation (10) now takes the form:

χDEP =
3
2

Vpεm Re[K] (49)

As depicted in Figure 1, K holds the key to making the transition from the standard
DEP theory to the new one, (from [CM]macroscopic to [CM]molecular), and is given by:

K = εmχHM
c

Ndip

3
+

3εm

2(εm − 1)

(
χHM

c − χLc

)
(50)

The susceptibility factor χHM
c is new to dielectric theory (where the superscript ‘HM’ sig-

nifies its genesis) and effectively replaces Oncley’s empirical parameter, b, of Equation (48).
χLc is the Lorentz cavity field susceptibility of Equation (6) and Ndip is the static dimension-
less number density of Equation (36). For a particle without a permanent dipole moment,
then Ndip = 0 and K is equivalent to [CM]macroscopic. For the case where Ndip is finite and K
effectively acts as [CM]molecular, calculation of χHM

c is required and is given by [1]:

χHM
c = χHM

c (α)
(〈

Mp·Mt
〉
/
〈

M2
p

〉)
=
{(〈

M2
p +

〈
Mp·Mw

〉〉)
/
〈

M2
p

〉}
(51)

This calculation, performed in the MD simulation, derives the direct correlation
between the dipole moment of the protein and its hydration shell, Mp, and the dipole
moment, Mw, induced in the surrounding aqueous medium. This contains the self-variance,〈

M2
p

〉
, and the cross-correlation,

〈
Mp·Mw

〉
, between the hydrated protein and bulk water

dipoles. χHM
c is given by

χHM
c (α) = χLc − α

(
2(εm − 1)2

3εm(2εm + 1)

)
(52)

The factor α can be assigned two values, namely zero or unity. For α = 0, χHM
c is

equal to the Lorentz cavity susceptibility, χLc. The surface between an inner and outer
volume of dielectric does not produce the interfacial dipole moment Mint of Equation (4).
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The assignment of α = 1 brings with it a physical interface and creation of Mint, with
Equation (52) now given by:

χHM
c (α = 1) =

3
(2εm + 1)

(53)

In this case, χHM
c represents the susceptibility of the Maxwell cavity. For reasons

clearly explained [1], in deriving Equation (53) from Equation (5), the Maxwell field Em
is E0/εm, where E0 is the vacuum field. As indicated in Equation (51), calculation of not
only the self-variance,

〈
M2

p

〉
, of the protein’s moment is involved, but also that of the

cross correlations between Mp and the total moment, Mt, of the water dipoles comprising
the surrounding dielectric continuum. Of particular importance is the cross correlation
involving the moment, Mint, associated with polarization of its hydration shell [1]. The
standard macroscopic boundary conditions of macroscopic electrostatics, used to derive
the DEP susceptibility values given by Equations (6) and (10), apply only for the case where
the influence of a particle’s induced moment dominates over that of its permanent dipole
moment (should it possess one).

The following equation is derived for the collective dielectric dispersions of a pro-
tein solution:

∆εmix(ω) =

(
9
2

)
νpNdip(ω) + 9νpNdip(ω)

[
χHM

c (ω)− 1
]
+
(
1− νp

)
∆εw(ω) (54)

with vp the volume fraction of the protein and Ndip(ω) given by Equation (43).
The first term in Equation (54) is the β-dispersion, ∆ε(β), produced by protein tumbling,

followed next by the δ-dispersion, ∆ε(δ), that is assumed to be associated with the protein
hydration sheath (see Section 2.2). The magnitude and frequency dependence of ∆ε(β)
is in line with standard dielectric theory, but the expression given for ∆ε(δ) is new. The
last term in Equation (54) is the γ-dispersion for the relaxation of bulk water dipoles and
is attenuated by the factor (1-vp) representing the partial volume of low polarizability
occupied by the non-relaxing proteins and their hydration shells. It is interesting to note
that if χHM

c = 1, corresponding to no correlations between the protein dipole and water
dipoles in its hydration shell, then ∆ε(δ) vanishes. Written in terms of dipole moments of
the protein and water, the ∆ε(δ) term in Equation (54) becomes

9νpNdip

(
χHM

c − 1
)
= νp

[(
Mp·Mw

)(
Vpε0kT

) ] (55)

The dispersion strengths ∆ε(β) and ∆ε(δ) are given by

∆ε(β) =
9
2

νpNdip (56)

∆ε(δ) = 9νpNdip

(
χHM

c − 1
)

(57)

to give

χHM
c = 1 +

(
∆ε(δ)

2∆ε(β)

)
(58)

Based on experimental values reported for the magnitudes of the ∆ε(β) and ∆ε(δ)
dispersions [4,24,44,68], as well as inspection of Figure 5, it is apparent that the term in
brackets is small, indicating that χHM

c ≈ 1. In other words, the protein–water Kirkwood
correlation factor is close to unity, implying very little correlation, in line with South and
Grant’s assumption [65].
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The DEP response of a solvated protein as a function of frequency, as depicted in
Figure 5 for BSA, is primarily related to ∆ε(β) and thus through Equations (36) and (56)
depends on Ndip(ω). The following relationship to connect K and ∆ε(ω) is derived [1]:

K(ω) =
2
9

ε(ω)

{
∆ε(ω)

νp
+ ∆εw(ω)

}[
χHM

c (ω)(
2χHM

c (ω− 1)
)] (59)

From the MD simulations, the value of the term in square brackets is estimated to be
close to unity. For dilute protein concentrations, as vp tends to zero, the term ∆ε(ω) can
also be neglected, so that to a good approximation:

K(ω) =
2
9

ε(ω)

{
∆ε(ω)

νp

}
(60)

The DEP frequency response is given by Re[K] in Equation (49) and is shown in
Figure 10 for lysozyme and ubiquitin as calculated from Equation (60) and based on the
MD simulations [1]. Included in this figure are the empirical factors (κ + 2)[CM]empirical

derived elsewhere for these two proteins [4] (see Figure 6 for estimated DEP cross-over
frequencies). When normalized, the calculated and empirical results for ubiquitin are
similar, reflecting a close correspondence of the MD simulation [1] and the experimental
spectroscopy data [75] used to derive (κ + 2)[CM]empirical [4]. The difference shown for the
high-frequency tail of lysozyme results from a disparity of the experimental data [44] and
the MD simulation—indicating the importance of the latter to molecular DEP studies. The
difference in magnitudes shown for ubiquitin is related to the new theory [1] replacing
Oncley’s empirical factor (b = 4.5) of Equation (48) with the susceptibility factor χHM

c of
Equation (51), together with the fact that the empirical theory [4] employs mass density
values for the protein [4] and experimental values for ∆ε(β)/vp.

Figure 10. Frequency dependence of the DEP susceptibility factor Re[K] for ubiquitin and
lysozyme [1], together with plots for their empirical factors (κ + 2)[CM] [4].

4.2. Molecular Dynamics Studies

In brief, the goal of the MD simulations of ubiquitin and lysozyme is to determine the
cavity susceptibility given by Equation (51), relating the combined dipole moment, Mp, of
the protein and its hydration shell to the dipole moment induced in the surrounding solu-
tion. When this equation is applied to the simulation trajectories, Mp is calculated within a
sphere of cut-off radius, rc, drawn around the protein. A correction factor, previously found
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to be independent of rc [71], is applied to account for the fact that at each configuration
along the simulation trajectory the outside solution is polarized by the dipole Mp.

Two features of these MD simulations are noteworthy and represent clear advances,
namely their timescales and the atomic contents of the simulation cells. Simulations with
integration steps of either 1 or 2 femtoseconds were performed for run times of 1 and
10 microseconds. In the frequency domain, a simulation run of 10 µs at steps of 1 fs
corresponds to the range from 105 to 1012 radians/sec (i.e., 16 kHz to 160 GHz). This permits
analyses to be made of the β, δ and γ relaxations exhibited by medium-sized proteins of
molecular weight up to 100 kD (see Figure 4). By comparison, with the computer power
available to them at the time, Boresch et al. [76] were limited to simulation runs of 5 ns at
2 fs steps in their pioneering MD simulation of ubiquitin. With such run times, adequate
characterization of the δ-dispersion exhibited by globular proteins is possible, but only for
proteins of low molecular weight (e.g., ubiquitin, cytochrome-c, lysozyme and myoglobin)
is partial investigation of the β-dispersion achievable. Even so, these simulations were
able to clarify which mechanisms (self- or cross-correlation) are responsible for the β- and
δ-relaxations [76–78]. In subsequent MD simulations extending to 15 ns [69,70], ubiquitin,
apo-calbindin D-9K, and the C-terminal SH2 domain of phospholipase C were studied to
represent the structural variability found in medium-sized proteins. Two hydration shells
were clearly discerned about charged and polar amino acids, and it was concluded that
the protein molecule slows down the dynamics of water molecules located as far away as
1.35 nm [70]. The extension from MD run times of 15 nanoseconds to 10 microseconds [1]
represents a significant advance. It also permits a significant increase in simulation cell size
and content to be made.

The simulation cell (a cube of sides 12.5 nm) contained atomic copies of the proteins,
based on high resolution x-ray crystal structures, together with 64,139 and 64,155 wa-
ter molecules for ubiquitin and lysozyme, respectively, that included those resolved in
their crystal structures [1]. The ionization (protonation) states of the titratable amino acid
sidechains were determined for pH 7. The resulting total charge of ubiquitin was zero, and
the charge (+8) of lysozyme was neutralized by a uniform counter charge. As a starting
point for a 1 microsecond MD simulation, the energy of each system was minimized to
a local minimum to avoid clashes between the protein and added water molecules, and
then equilibrated at 300 K and 1 bar for 0.2 microseconds. These MD simulations require
massive computing power. As an estimate, a simulation run of 1 microsecond at steps of
1 femtosecond, where the movements of around 200,000 atoms are determined, requires in
excess of 1014 calculations to be made!

5. Something Else?

DEP experimentation and protein sample preparation fall under this heading. The
published protein DEP data has mainly been obtained using either microfabricated metal
electrodes to create the field gradients, referred to as eDEP, or iDEP where insulating
microstructures are employed for this purpose. The eDEP experiments have reported
results in line with those expected of the empirical [4] and formal theory [1]. However,
inconsistent results (even for the same protein) have occurred for the iDEP experiments, and
it is here where interesting and potentially exploitable examples of ‘Something Else’ exist.
Some of these inconsistencies may be associated with iDEP departing from experimental
guidelines commonly adopted for eDEP.

5.1. eDEP

The first eDEP experiments (and use of the term ‘dielectrophoresis’) were performed
on macroscopic particles and employed metal electrodes in the form of tungsten wire and
tinfoil, for example [13]. In early eDEP studies using microfabricated metal electrodes to
study bacteria and cells [79–83] the following electrokinetic and related phenomena were
observed and reported:
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• Below ~1 kHz the DEP response of bacteria is dominated by a surface conductivity
related to mobile ions in their surface electrical double layer [79,80].

• Electrothermal fluid motion can disrupt DEP at frequencies below ~10 KHz [80].
• Below ~1 kHz electrode polarization should be taken into account [81].
• Below ~100 Hz the electrophoresis and DEP of bacteria are superimposed and enhance

positive DEP [81].
• Below ~100 Hz the DEP of mammalian cells rises rapidly with decreasing frequency.

Neuraminidase treatment confirms this is associated with cell surface charge [82].
• Below ~500 Hz particles undergoing negative DEP are driven onto the surface of

planar electrodes [83]. This is later shown to be caused by AC electroosmosis [84,85].

It is instructive to examine the procedures adopted for the first report of protein DEP
by Washizu et al. [2]. They observed positive DEP of fluorescently labelled proteins (avidin,
chymotripsinogen, concanavalin and ribonuclease) using microelectrodes fabricated from
either aluminium or platinum. Measurements in the frequency range 1 kHz–10 MHz
were performed, with the proteins suspended in their dialysis media of conductivity
around 0.3 mS/m. Gel chromatography was used to verify that the samples after dialysis
were in monomer form, and the similarity of results obtained using aluminium or the
less electrochemically active platinum electrodes indicated that generated multivalent
positive ions had not enhanced protein aggregation. The fact that DEP of the proteins
was observed at a threshold field factor, ∇E2

Th, much lower than that indicated in Figure 2
could possibly have resulted from pearl-chaining of the proteins. Such chaining arises
from dipole–dipole interactions, which should be proportional to d−4 (where d is the initial
spacing between dipoles). This was eliminated as a contributing factor by the similarity of
the dynamics of the DEP responses for initial protein concentrations of 0.01 µg/mL and
0.1 µg/mL. However, possible evidence that protein aggregation occurred at the higher
initial concentration of 1 µg/mL and for frequencies around 1 kHz was indicated by a
‘memory’ phenomenon. Samples that had already experienced DEP either exhibited a lower
threshold field value for the next measurement, or the DEP force acting on them gradually
increased with time of exposure to a constant field. Fluid motion arising from Joule heating
was also investigated and eliminated as a possible artifact. In their concluding comments,
Washizu et al. [7] state:

“although we may be seeing the combination of agglomeration and DEP at the low-
frequency region, agglomeration is not a prerequisite for molecular accumulation, and
DEP does occur with protein monomers.”

Based on this careful work of Washizu et al. [2] the following can be proposed as
guidelines for observing positive DEP of protein monomers:

(i) Validate (e.g., through gel chromatography) that the samples are protein monomers.
(ii Limit protein concentrations to below ~0.1 µg/mL (i.e., less than 7 µM for many

candidate proteins).
(iii) Adopt 1 mS/m as the upper limit for the aqueous solvent conductivity.

In protein eDEP experiments these guidelines have largely been followed. Solution
conductivities of 1 mS/m or lower have been employed, with protein sample concentrations
mostly below 10 µM. For all proteins investigated a consistent observation of positive DEP
has been reported for the frequency range 1 kHz–1 MHz, in line with expectations of the
empirical [4] and formal [1] theories. For some proteins a cross-over to negative DEP
has been reported in the range 1–10 MHz [4], a finding consistent with the proposal that
the DEP response for proteins can be predicted in terms of its dielectric β-dispersion [3].
However, the reported protein iDEP data for proteins is not consistent, and so it is here that
categories falling under the umbrella of ‘Something Else?’ can be suggested.

5.2. iDEP

As introduced by Cummings and Singh [86] and reviewed by its practitioners [87–89]
the complications that electrophoresis and electroosmosis can bring to eDEP experiments,
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especially at frequencies below 1 kHz, are translated through iDEP into facilitators of novel
microfluidic devices for the selective sorting or concentration of molecular and macroscopic
bioparticles. Negative DEP manifests itself as “streaming DEP” where the particles are
carried down an array of insulating posts, following stream lines dictated by the spacing
and geometry of the posts and the induced electroosmotic fluid flow. Streaming DEP occurs
when the DEP force overcomes particle diffusion but is weaker than the combined effects
of electrophoresis and electroosmosis. Increasing the magnitude of the externally applied
field can change streaming DEP to “trapping DEP”, where the DEP force dominates over
diffusion as well as electrokinetic flow and target particles can be reversibly immobilized
at the insulating posts [86]. This introduces increased difficulties of interpreting particle
motions, especially for submicron particles, where a host of potential linear and non-linear
electrokinetic and electrothermal effects are available for consideration [90].

Examples can be cited where iDEP of macroscopic particles has been successfully
interpreted in terms of the standard DEP theory. Kim et al. [91], in a review of DEP studies
of bioparticles below the size of a typical mammalian cell (e.g., microbes, organelles,
exosomes, nucleic acids and proteins), provide a comprehensive summary of the ‘one
core’, single- and multi-shell models that have been applied to spherical and non-spherical
bioparticles. While microbes can in many cases be described using such classical DEP
models, Kim et al. conclude that the theoretical basis of protein- and DNA-iDEP requires
further fundamental studies to allow the prediction of biomolecular DEP response and
hence their tailored applications. Using DC-iDEP, Lapizco-Encinas et al. [92] separated live
from dead E. coli and isolated Gram-positive from Gram-negative bacteria. However, the
spatial separation of different bacteria resulted from differences of their exhibited negative
DEP mobility—the separation by both positive and negative DEP previously reported
using eDEP (10–100 kHz) [93,94] to physically separate target bacteria from a mixture was
not possible. This result could be consistent with a DEP force determined by polarizations
of a bacteria’s electrical double-layer, where the Dukhin function now serves as the effective
[CM] factor [24]. In another study, by controlling the electroosmotic flow through a central
outlet port and side outlet channels in a DC-iDEP device, the negative DEP force acting
on the larger crystals in a mixture of protein crystals (size range ~80 nm to 20 µm) was
sufficient to direct them into a central fluid outlet [95]. The weaker DEP force acting on the
smaller crystals (size range ~80–200 nm) resulted in them remaining in the main stream
emerging from the side outlets. In another example of controlled iDEP for macroscopic
particles, polystyrene beads and yeast cells were focused into a thin stream line using an
applied field in the form of a 0.1 Hz square wave. In this situation the negative DEP force
remained unchanged in direction but there was a periodic reversal of the electroosmotic
and electrophoretic forces [96].

Inconsistent iDEP results for proteins occur when the field is generated using a direct
current (DC) voltage. Voltages as high as 4000 V have been used to concentrate PEGylated
RNase by positive DEP [97,98]. However, the DEP force acting on the native protein was
considered to be too weak to overcome electroosmosis [97]. An interesting situation is shown
in Figure 11a where BSA samples, at the same pH and buffer conductivity, exhibit either
negative [21] or positive [26,99] DEP. The concentration of the sample exhibiting negative
DEP sample is 0.15 mM—much higher than the guideline of less than 10 µM adopted
for eDEP studies. Positive DEP was observed for a BSA concentration of 7 nM [26,99].
The tendency of a solvated protein to dimerize or aggregate to form small crystallites is
concentration-, temperature-, pH- and buffer-sensitive [4,100,101]. For example, BSA can
be driven to a metastable state at a high mass concentration and high values of buffer pH
and conductivity. In this respect, it is also of interest to note that in their iDEP experiments
with high protein concentrations, Liu and Hayes [23] reported negative DEP responses for
α-chymotrypsinogen (4 mM), immunoglobulin G (0.7 mM) and lysozyme (7 mM). Proteins
in an iDEP experiment can also be subjected to shear stresses and high electric field strengths,
factors known to influence initial protein crystal growth [102,103]. A field driven mechanism
(possibly involving pearl chaining) whereby proteins in a metastable state may crystalize is
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proposed in Figure 11b. As shown in Figure 2, crystallites of diameter 50~100 µm are large
enough to exhibit DEP according to standard theory. This is an aspect of protein DEP within
the mesoscale between [CM]macroscopic and [CM]molecular, where κ or Ndip, respectively, may or
may not equal unity in either Equation (21) or (50), respectively.

Figure 11. (a) BSA samples at the same buffer conductivity and pH exhibit negative iDEP at a
concentration of 0.15 mM [21], but positive iDEP at 7 nM [26,98]. The low magnitude of ∇E2

m
associated with the negative DEP result suggests minimal influence of a non-linear electrokinetic or
electrothermal effect. (b) A simple protein phase diagram [99,100] to show how crystallization might
occur during the DEP of a protein sample in a metastable state.

As reviewed by Hill and Lapizco-Encinas [104], significant efforts have been made to
mathematically model iDEP-based microfluidic devices and to identify empirical correction
factors that can be added to align model predictions with experimental observations. These
correction factors are intended to take account of electrothermally induced fluid flow, Joule
heating, particle–particle interactions and temperature gradients, for example. For micron-
sized particles (e.g., bacteria, blood cells, polystyrene beads and yeast cells) most correction
factors are found to be small (0.3 to ~15), whilst particles of diameter ~1 µm attract larger
correction factors—in some cases as large as 500~600, depending on the geometry and
layout of the insulating posts, hurdles or restrictions [104].

The electrokinetic forces of electrophoresis and electroosmosis that, together with
DEP, act on a particle in an iDEP experiment are traditionally assumed to have a linear
dependence on the applied electric field. Their superposition is commonly referred to as
‘linear electrokinetics’. However, as recently reviewed [89,91] an increased understanding
of how insulators alter the magnitude and non-uniformity of an applied electric field
has led to a realization of the importance of non-linear electrokinetic effects [105–109]. For
example, a nonlinear field dependence of electrophoresis can give rise to unexpected particle
trapping in fluidic channels that is clearly different in origin from DEP trapping [105]. A
high magnitude DC uniform electric field can induce nonlinear particle velocities, leading to
particle flow reversal beyond a critical field magnitude, referred to as the electrokinetic (EK)
equilibrium condition [106,107]. The concept of an amplification factor has been introduced
to describe how an insulator constriction can greatly magnify the electric field—information
that can be used to significantly reduce (to sub-100 V) the DC voltage required in an iDEP
device to manipulate micron-sized particles [108]. This realization that in a so-called iDEP
device the DEP force may in fact be largely irrelevant, with non-linear electrophoresis and
electroosmosis effects the leading actors, has led to new particle separation strategies. An
important example is provided by Quevedo et al. [109], who show that synthetic lysozyme
and BSA sub-micron particles, as well as their blends, are separable based on differences
in their isoelectric points and as manifested in large differences of the voltage required
to selectively trap them. These results mirror to some extent the unique electrokinetic
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signatures found by Liu and Hayes for α-chymotrypsinogen, immunoglobulin G and
lysozyme in their innovative gradient insulator-based (g-iDEP) device operated under DC
conditions [23]. Although these proteins exhibited behaviours consistent with negative DEP,
non-linear electrokinetic effects may have complicated this interpretation.

Until such time as electrothermally induced fluid flow and electroosmosis is proven to
have not been responsible for the DEP cross-over at MHz frequencies shown for avidin, BSA
and PSA in Figure 7, this effect should also be included in the “Something Else?” category.

6. Concluding Comments

Practitioners of DEP have backgrounds across the biological, chemical, engineering
and physical sciences. Most will appreciate having a simple formula to use when predicting,
modelling or analysing experimental data. In the standard DEP theory, for particles of
known spheroidal size and shape and without a permanent dipole moment, [CM]macroscopic
serves this purpose very well. However, the only way to predict the DEP response of a
solvated globular protein molecule in the frequency range 1 kHz to 100 MHz is to examine
either its published dielectric β-dispersion or full spectrum (e.g., Figures 4 and 5), or to
obtain these details by means of dielectric spectroscopy and/or MD simulations.

A simple equation that can be derived from Equation (36) for a mixture of two polar
molecules is of the form

εmixture(ω) ∝

 vpgkpm2
p(

1 + ω2τ2
p

)
+

{[(
1− vp

)
gkwm2

w
]

(1 + ω2τ2
w)

}
(61)

where vp is the volume fraction of the component of lowest concentration, with vp + vw = 1
where vw is the volume fraction of the other component. For the case of a small concentra-
tion of protein (p) dissolved in water (w), the dielectric spectrum should reveal two distinct
and separable dispersions. The second term on the right-hand side of this equation repre-
sents the γ-dispersion due to relaxation of the water dipoles and is centred near 10 GHz. At
~250 MHz where

(
1 + ω2τ2

w
)
≈ 1, and

(
1 + ω2τ2

p

)
� 1, the decrement of the γ-dispersion

should equal (1 − vp) and so provide an indication of the effective volume of the protein
with its hydration shell. The magnitude and frequency dependence of the first term on the
right-hand side of Equation (61) represents the β-dispersion and provides the information
regarding the predicted DEP response (see Figure 10). For a protein of medium molecular
weight (e.g., BSA), the small in amplitude but identifiable δ-dispersion near 70 MHz should
be observed [41]. For proteins of low molecular weight (e.g., ubiquitin) the δ-dispersion
manifests itself as a slight distortion of the high-frequency tail of the β-dispersion [75].
The combined magnitude of gkpm2

p can be calculated or estimated from classical dielectric
theory, but calculation of each component is only now, for the first time, possible as a result
of the innovative theory and new microsecond MD simulations presented by Heyden and
Matyushov [1].

Equation (9) provides a simple DEP force equation to be used for globular proteins,
with the DEP susceptibility χDEP given by Equation (49). For lysozyme and ubiquitin, the
magnitudes and frequency-dependencies of the susceptibility factor Re[K], obtained by
Heyden and Matyushov [1], are shown in Figure 10. In the absence, for other proteins, of
values for the susceptibility factor χHM

c of Equation (51) (which effectively replaces the
empirical parameter, b, of Equation (48)) empirical values given elsewhere [4,24] can be
used because they are based on experimental values for ∆ε(β)/vp and provide information
regarding the relative magnitudes and frequency profiles to be expected. The new theory [1]
and empirical one [4] do not take into account relaxations of electrical double layers and ion
diffusion processes, and so cannot be relied upon to predict DEP responses for frequencies
below ~1 kHz.
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