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Abstract: The belt conveyor is the most commonly used conveying equipment in the coal mining
industry. As the core part of the conveyor, the belt is vulnerable to various failures, such as scratches,
cracks, wear and tear. Inspection and defect detection is essential for conveyor belts, both in academic
research and industrial applications. In this paper, we discuss existing techniques used in industrial
production and state-of-the-art theories for conveyor belt tear detection. First, the basic structure of
conveyor belts is discussed and an overview of tear defect detection methods for conveyor belts is
studied. Next, the causes of conveyor belt tear are classified, such as belt aging, scratches by sharp
objects, abnormal load or a combination of the above reasons. Then, recent mainstream techniques
and theories for conveyor belt tear detection are reviewed, and their characteristics, advantages and
shortcomings are discussed. Furthermore, image dataset preparation and data imbalance problems
are studied for belt defect detection. Moreover, the current challenges and opportunities for conveyor
belt defect detection are discussed. Lastly, a case study was carried out to compare the detection
performance of popular techniques using industrial image datasets. This paper provides professional
guidelines and promising research directions for researchers and engineers based on the leading
theories in machine vision and deep learning.

Keywords: machine vision; deep learning; smart mining; smart cities

1. Introduction

With the development of industrial automation, conveyor belts have been used as
one of the most significant pieces of equipment for the transportation of various industrial
products. The belt-strengthened conveyor, with the advantages of simple structure, low cost
and high carrying capacity, is widely used in the energy and mining industries. However,
factors such as aging by long-term operation, heavy or impact loads, complex operating
environments and long transport distance result in adverse conveyor belt phenomena, even
wear and puncture. Undetected worn or punctured spots on conveyor belts can develop
into long-range tears. No matter how short the unexpected downtime is, the company still
suffers from huge financial losses. Furthermore, some kinds of serious emergencies caused
by conveyor belt failure may lead to a major accident in mining enterprises.

In order to explore the factors of belt failure and research conveyor belt tear detection
methods in depth, we studied the basic composition and structure of conveyor belts.
Conveyor belts, which consist of several composite layers, even steel cord, are commonly
used in the mining industry, mainly to transport heavy loads of ore and coal. The complex
composition and structure of conveyor belts makes tear detection difficult, and extra
preparatory work for failure inspection is required for different detection methods.

Considering long-distance transportation and the harsh underground environment,
comprehensive manual inspection of conveyor belts is a tough and tedious task. With the
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improvement of industrial inspection and the development of high-sensitivity sensors,
non-destructive testing (NDT) methods have drawn more and more attention. Considering
the different sensors and algorithms, NDT methods can be divided into several categories:
sensor-based methods, X-ray/multispectral-based methods and 2D/3D image-based meth-
ods. For sensor-based methods, conveyor belts are redesigned or modifications are made to
provide detecting sensors with special signals. For other NDT methods, various acquisition
devices, such as CCD cameras, X-ray emitters/receivers, multispectral sensors, etc., are
installed to acquire the necessary data. Nowadays, NDT methods based on abundant
data acquired by various sensors possess incomparable advantages and have become
mainstream techniques.

In this article, we reviewed 90 papers collected from SciVerse, ScienceDirect (http:
//www.sciencedirect.com/), Springer Link (http://link.springer.com/) and IEEE Xplore
Digital Library (http://ieeexplore.ieee.org) and the reference lists of contained articles. The
reviewed papers were published since 1980s and available online before May 2021 and
discuss the development of inspection methods for conveyor belt tears. Starting with the
basic structure of the conveyor belt, we will discuss the advantage and shortcomings of
various tearing detection methods. The contribution of this paper can be categorized as
three parts:

Firstly, we study the basic structure of conveyor belts and classify the causes of
common conveyor belt tears.

Secondly, we review the mainstream techniques and theories for conveyor belt tear
detection and discuss their advantages, shortcomings and characteristics.

Thirdly, we survey the datasets of acquisition and preparation theory, which is the
most important part for supervised machine learning algorithms.

Finally, we discuss the opportunities and challenges for conveyor belt tear detection
under the rapid development of information computing and processing technology.

The structure of the rest of the paper is presented in Figure 1. The common basic
structures of conveyor belts are presented in Section 2. The mainstream techniques of sensor-
based methods, 2D/3D image-based methods and X-ray/multispectral-based methods
are reviewed in Section 3. Section 4 discusses dataset preparation for machine vision and
deep learning algorithms. The future opportunities and challenges of conveyor belt surface
inspection are discussed in Section 5, and Section 6 concludes the paper.

Figure 1. Overview of defect detection for conveyor belts.

2. Basic Structure of Conveyor Belts

As one of the most commonly used pieces of transportation equipment in industry,
conveyor belts can be classified into several categories by type, such as food-grade conveyor
belt (polyurethane, PU or polyvinyl chloride (PVC)) in the food industry; flexible-chain
conveyor belts in automated industry; and reinforced multilayer conveyor belts in the min-
ing industry. Conveyor belts with heavy loads used in power plants, the mining industry
and the chemical field consist of several layers and steel cords, which are usually processed
with a variety of chemical components. Chemical-treated multilayer composite belts have
the advantages of high strength and wear resistance. Common conveyor belts used in
underground coal transportation consist of three layers. The mid-layer crossed by steel
cord is made a mixture of styrene–butadiene rubber (SBR) [1] and natural rubber (NR) [2]
to gain extra adhesiveness with steel wire ropes. The upper and lower layers is made of
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butadiene rubber (BR) [3] to acquire abrasion resistance for long-term transportation. The
sandwich structure of conveyor belts crossed by steel cord is shown in Figure 2. Normal
conveyor belts are the same as the belt described above, except embedded steel cord and
made of composite rubber or nylon, which leads to lower capacity and wear resistance.

Figure 2. Sandwich structure of a conveyor belt crossed by steel cord.

Based on the basic structure, conveyor belts can be designed with different thickness
and can be processed by different chemicals for application in various scenarios. The surface
of conveyor belts can be molded rugged lines to increase friction. For some specialized
fields, conveyor belts are embedded with coils, which results in high strength and cost.
Because of the special sandwich structure of conveyor belts, scholars have come up with
many methods to inspect belt tears in real time.

3. Defect Detection for Conveyor Belts
3.1. Problem Definition

The goal of conveyor belt detection methods is to identify defects on the conveyor belt
surface or damages to the inside and classify these defects into several categories, such as
wear damage or puncture damage. Most such failures can be distinguished by load strength
and duration. The characteristics of low load strength and long duration is reflected in
wear damage, which is mainly caused by cracks or scratch extension in the surface layer
and does not result to unexpected failure. If wear damage accumulates or the conveyor
belt suffers from a huge load impact imposed by sharp metal objects, puncture damage
occurs. Differently from wear damage, the punctured spot simultaneously affects all layers
of the conveyor belt and greatly weakens the belt carrying performance. If the punctured
spot on the conveyor belt cannot be detected in time, it could lead to catastrophic failure.
Conveyor belt deviation may cause an imbalance of the left and right sides along the length,
as well as abnormal tension. Imbalanced belts are worn with frames and bearings, which
could lead to belt tear in some extreme situations. Belt aging due to pool quality, lack of
maintenance, overloading or overheating is another of the most significant causes of belt
damage or failure. Furthermore, tear detection methods focus on the inspection of torn
parts on the conveyor belt and provide some kind of immediate alarm.

3.2. Mainstream Techniques

The basic structure of conveyor belts is discussed in Section 2. Various modifications
may be applied to adapt to different fields. For the mining industry, the composite layers
of conveyor belts are processed with special chemical treatment and most commonly
embedded with steel cords. Considerable research has been conducted on conveyor belt
tear detection, and the mainstream NDT detection methods can be classified into three
categories: sensor-based detection methods, X-ray/multispectral-based detection methods
and 2D/3D image-based and hybrid detection methods (Table 1).
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Table 1. Classification of conveyor belt defect detection methods.

Taxonomy Devices Theory Description and Advantages/Disadvantages

Sensor-based methods Magnetic induction sensor,
electromagnetic induction sensor

Convert belt damages into electromagnetic signals; then,
analyze signal patterns to indirectly obtain the state of the

conveyor belt.
Simple principle, high cost and low precision.

X-ray/spectrum-based
methods

X-ray emitter and receiver,
industrial hyperspectral camera

X-ray penetrates conveyor belt and is captured by a special
receiver, and the conveyor belt damage can be recognized

by analyzing X-ray images.
Hyperspectral cameras can image in infrared light, which
decreases the influences of dusty and dark environments.

X-ray-based methods can internally inspect the belt directly
and precisely; complicated devices, high cost, harmful to
humans. Spectrum-based methods are less influenced by

environment; high cost, low precision.

Machine vision-based/deep
learning-based methods

CCD, COMS or 3D industrial
cameras

Industrial cameras take pictures of the conveyor belt surface
in real time, which are simultaneously processed by a
specially designed algorithm; not complicated devices,

medium cost, complex algorithms.

3.3. Detecting Sensors

The leak of transported goods from the bottom of the belts often indicates the puncture
damages to the conveyor belts. Hence, some sensor-based detection methods, such as
LTCD, detect protrusion or leakage from the lower surface of an idle belt [4]. In general,
the main idea of similar detection methods is to interpret other invalid status signals of
the conveyor belt, such as belt relative width or transported material spillage or leakage,
as the valid belt longitudinal tearing discriminant. These types of sensors and devices
are sensitive to installed location, belt materials and parameter settings, which lead to
poor adaptability.

Magnetic-based methods require some extra preparation, such as the implementation
of coils and magnetized steel cords attached on different parts of the conveyor. Earlier
research [5] was conducted on conveyor belt detection based on the measurement of
magnetic field changes generated by injured steel cords embedded in the mid-layer. A
special device records the magnetic field distribution in advance and dynamically compares
the real-time magnetic field distribution to the recorded distribution. If the magnetic field
differences are beyond a threshold value, it means that the belt has been torn. Derivative
methods [6] based on magnetic field changes have been developed for many years and kept
the essential theory untouched. G the limitation of integrated circuit and microcomputer
performance, the analysis of magnetic field changes for a large span and duration is quite
tricky. Although the data of each channel narrow with the increasing number of the
magnetic sensors, users still need to analyze the fluctuation of each signal [7]. With the
development of sensor technology and high-performance processors, methods [8,9] based
on multidimensional magnetic signal acquisition and optimization have become possible.
Damaged spots of conveyors belt have been detected with abundant sensors and 2D digital
imaging [10,11]. These magnetic-based methods convert injured locations into sensor
signals, which are visualized as 2D images in real time.

Other methods [12] based on electromagnetic interaction set up electromagnetic energy
pathways from transmitter to receiver. The transmitter and the receiver are installed on
the both sides of the conveyor belt surface. The electromagnetic signal emitted by the
transmitter reaches to the receiver on the other side along the vulcanized conveyor belt.
As long as the continuous signals are interrupted and the receiver cannot read a sufficient
signal, the conveyor belt is considered torn, and the conveyor stops immediately.
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3.3.1. X-ray/Spectrum

As a typical NDT method, X-ray detection is widely used to construct and analyze
internal images of samples. X-ray based NDT methods [13–19] used in online industrial
inspection require special designs since X-ray has the characteristics of high penetration
and can be harmful to human beings. In simple terms, the X-ray goes through the running
conveyor belt, and the intensity of radiation received on the other side constantly fluctuates
in a fixed range if the conveyor belt is in good condition. If parts of belt are internally
damaged, the value of radiation is abnormal. A detection algorithm in an industrial
computer records and analyzes data of radiation intensity and makes judgments about the
state of the conveyor belt in real time.

To avoid damage to the human body, the X-ray source and X-ray detector are sur-
rounded in lead shell. Considering the transported materials on the conveyor belt surface,
the X-ray source and X-ray detector are installed on the opposite sides of the lower conveyor
belt (Figure 3). Hence, in addition to the complex structural design of the X-ray radiator
and receiver, the significant disadvantage is that online X-ray-based NDT methods cannot
immediately detect conveyor belt tears.

Figure 3. Basic hardware topology of the X-ray-based conveyor belt method.

To overcome the disadvantage of X-rays being harmful to human body, infrared
and multispectral cameras have been studied by increasing numbers of researchers. The
dusty and dark underground environment in coal mines leads to poor image quality
with normal industrial cameras, which is a key problem for image feature extraction
and analysis. However, the infrared light, whose wavelength is longer than those of the
visible light, has strong diffraction and can penetrate the dust. It makes clear images of
conveyor belt tears with CMOS sensors. Furthermore, the different layers of conveyor
belts are made of different materials, the radiation wavelengths of which are distinct from
each other. This primary feature makes conveyor belt wear or tear detection possible in
dusty and dark environments since the mid-layer material would be exposed when the
tear damage to the surface layer of the belt happens. The key points of infrared-based
conveyor belt tear detection method are optical path design and image feature analysis.
Yang et al. [20] made use of an infrared camera and proposed a tear detection algorithm
containing image enhancement and binarization. Yang et al. [21] analyzed the belt damage
process and designed a novel conveyor belt tear detection method based on infrared thermal
imaging technology. With the appropriate spectral passband selected and the radiation
fitting image, spectrum features are extracted from 2D spectrum signals obtained by Fast
Fourier Transform. The experimental results showed significant detection performance
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and effectiveness. To compensate for poor image quality in underground environments,
a hybrid method was proposed [22] with normal CMOS sensors and infrared sensors. A
special optical path was designed to address the synchronous image-fusion issue, since the
infrared image and the normal image are acquired by different devices. In the last step, the
fused 2D image is processed with machine vision algorithms. Inspired by the above theory,
Yu et al. [23] proposed a dual-band infrared detection method with long-infrared CCD
sensors and mid-infrared CCD sensors. With several splitting films and plane mirrors, the
infrared radiation from substances is split into two parts and obtained by MIR CCD and LIR
CCD, respectively. To improve the image feature quality, a multispectral-based method [24]
was proposed, combining far-infrared images, visible light images and mid-infrared images.
A comparison of X-ray/spectrum methods is presented in Table 2.

Table 2. Comparison of X-ray/spectrum methods.

Method Pros Cons

X-ray [13–19] Can detect internal damage of steel
cord belt.

(1) Expensive and complicated equipment;
(2) Requires large space to deploy;
(3) X-ray is harmful to humans, and extra protection
is required;
(4) Instable detection.

Infrared [20] (one camera)
(1) Acquires infrared images;
(2) Can detect early wear of
conveyor belt.

(1) Based on image binarization and morphological,
low robustness;
(2) Uses special camera, poor portability.

Spectrum [21] (one camera)
(1) Acquires infrared images;
(2) Obtains features in frequency
domain.

(1) Domain transformation may lead to information loss;
(2) Complicated computation.

Infrared [22] (two cameras)

(1) Novel optical path; obtains
synchronous infrared and normal
images;
(2) Acquires extra information in
fusion images.

(1) Direct image fusion; no information filtering.

Spectrum [23] (two cameras)

(1) Novel optical path; uses two
infrared cameras to obtain different
spectrum images;
(2) Can detect belt tear in severe
conditions.

(1) Uses expensive equipment;
(2) Image resolution is low.

Spectrum [24] (two cameras) Acquires images of different spectra;
can obtain abundant useful features.

(1) Uses expensive equipment and requires large space to
deploy cameras;
(2) Complicated algorithm and computation.

The wavelength of visible light spans from approximately 400 nm to 780 nm, in which
the images captured by CMOS cameras are poor-quality and feature-limited. Spectrum-
based methods broaden the conveyer belt tear features by applying extra infrared devices.
With extra infrared sensors and a special optical path, the fusion images are significantly en-
hanced. However, the disadvantages are also obvious: infrared devices are quite expensive,
and optical path design and device installation are complex, taking up more space.

3.3.2. 2D/3D Images

With the application of state-of-the-art image processing techniques on digital con-
veyor belt images, conveyor belt inspection has been revolutionized. Given the rapid
development of artificial intelligence and computer processing speed, image-based failure
detection methods have higher inspection speed and precision than other methods. Fur-
thermore, less modification and easier maintenance of original devices make image-based
methods more competitive. The basic inspection system consists of an image acquisition
module, image preprocessing module and image analysis module, which are shown in
Figure 4. The image acquisition module contains industrial cameras, lighting sources
and auxiliary equipment, such as an encoder or trigger switch. Image preprocessing and
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analysis modules are handled by high-performance computers or embedded devices. The
significant differences between image-based detection methods and other methods are the
means of data acquisition and data processing. In contrast to other sensor-based detection
methods, image-based detection methods have the characteristics of visualization and more
information data for conveyor belts, which are achieved by employing high-speed CCD or
CMOS cameras and high-performance computers.

Figure 4. Fundamental components for image inspection system.

The development of image-based conveyor belt detection methods has mainly experi-
enced two stages: machine vision-based image processing algorithms and deep learning-
based image processing algorithms. The typical machine vision-based image processing
algorithms consist of some basic steps, such as preparation, computation and analysis,
which are carefully designed for particular targets. Hence, a lot of experience is need
for machine vision engineers to complete algorithm design at each step, from equipment
selection to data processing and analysis. However, as opposed to a special design for
algorithms, the framework of deep learning-based image processing is designed, and the
neural network is trained automatically with sample datasets prepared in advance. Com-
pared with machine vision-based image processing algorithms, deep learning-based image
processing is focused on hierarchical structure design for the higher levels and computed
on more efficient GPUs with higher speed.

3.3.3. Machine Vision

Machine vision-based methods depend on artificially designed feature extraction
algorithms, which is the core part of the whole defect detection algorithm. As shown in
Figure 5, feature extraction algorithms can be classified into four parts: (1) grayscale-based;
(2) texture-based; (3) shape-based; and (4) transform-based algorithms.

Figure 5. Taxonomy of feature extraction methods.
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The most useful terms for grayscale-based algorithms, which are used to reflect the
statistical features, can be described by the following formulas.

µ =
1
l

l−1

∑
i=0

Vi (1)

σ =

√
∑n

i=1(xi − x)2

n− 1
(2)

Skew(X) = E

[(
X− µ

σ

)3
]

(3)

K =
1
n

n

∑
i=1

(
xi − µ

σ

)4
(4)

ε(X, Y) = 2EdX−Yed − E
∣∣X− X′

∣∣
d − E

∣∣Y−Y′
∣∣
d (5)

S = −K
n

∑
i=1

(pi log2 pi) (6)

The characteristics, i.e., long span, dim and dusty underground environment and
arched section of the mine conveyor belt, result in a similar equipment layout, which is
shown in Figure 6. An array of several industrial cameras and light sources, high-speed data
transmission cables, embedded computing units and accessories are common hardware
for image acquisition and processing. In order to satisfy the requirement of real-time
detection, the light sources and cameras are usually deployed between upper and lower
belts and capture undersurface images of the upper belt. Being mounted in this way,
cameras can obtain damage images in real time as long as tear or wear damage happens.
However, the major differences in detection performance are caused by image processing
strategy for various machine vision-based defect detection methods, which contain one
or more processes, e.g., feature extraction methods, image enhancement methods, pattern
recognition, etc.

Figure 6. Sketch of underground image acquisition devices.

Li et al. [25] designed a conveyor belt inspection method adopting a feature extraction
algorithm, including image conversion, denoising and enhancement. Based on the theory
of maximum mutual information entropy, an improved image segmentation method was
proposed to obtain tearing region. Several features were empirical selected to determine
the status of the belt. An improved image segmentation method targeting belt tearing
and deviation was proposed in [26]. Based on the obvious difference between the gray
value of belt in tearing and other parts, the average column vectors acquired by the height
direction projection was adopted to identify belt edges. Rip and deviation identification
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were processed through the self-adaptive threshold segmentation method. Li et al. [27]
analyzed fuzzy images captured underground and compared single-scale retinex (SSR)
and multi-scale retinex (MSR) algorithms. A combined algorithm of morphology gradient
and SSR was applied to enhance image contrast in edge regions and smooth the image
in non-edge regions. A series of image processing, i.e., threshold segmentation, binariza-
tion and characteristics extraction, was adopted to make belt failure detection possible.
Zeng et al. [28] proposed a feature fusion method consisting of Gaussian filtering, local
image enhancement and Canny edge detection. The length of the rectangular area outlined
by Canny edges and the ratio of length to width of the rectangular area are considered main
geometric features. Gray template-matching level, examined by normalized coefficients
between template and search graph, is chosen as similarity feature. Several failure char-
acteristics of conveyor belt images were studied in [29], and a multi-class support vector
machine (SVM) classifier was proposed to identify belt damages. An adaptive threshold
method based on visual saliency enhances image contrast, decreases image noise and
prepares characteristics extraction. Three types of surface damages, i.e., scratch, crack
and tear, are detected with SVM classifiers. Hou et al. [30] proposed an improved image
segmentation and morphological operation algorithm with aided audio analysis to detect
conveyor belt tearing regions. The region growing algorithm was applied to the potential
defect parts, and the segmentation result, combined with processed audio information,
was examined. A conveyor belt tearing classifier based on Haar-like features and the
AdaBoost algorithm was designed in [31]. The characteristics of conveyor belt tearing
regions, edge features, line features and special diagonal line features were selected to
construct Haar-like features. The strong classifier, which was adopted to detect tearing
regions with a much higher detection accuracy, was trained and connected by a cascade
algorithm. Laser-assisted methods [32–34] convert conveyor belt tear features into several
linear laser breakages, which are captured by CMOS or CCD cameras, and then indirectly
detect these breakage points by machine vision algorithms. Multiple sets of laser images
were acquired in [32], and the Sobel operator with a specially shaped kernel was applied
to ROI containing enhanced laser stripes to detect belt tear areas. Lv et al. [33] proposed
an improved gray-gravity center (IGGM) method to determine the centerline of the laser
region. The IGGM method weakens the influence of image noise and sets up the connection
of gray-gravity center points in different rows. Table 3 lists the pros and cons of machine
vision methods.

Table 3. Comparison of machine vision methods.

Method Pros Common Cons

Segmentation [25,26,28,30] (1) Based on image segmentation;
(2) The logic of the algorithms is simple.

(1) Designs of artificial features and some of
methods need to set special threshold, which
leads to poor robustness;
(2) Some algorithms contain complicated
manually designed features;
(3) Some methods adopt linear cameras to
acquire high-resolution images; hence, the
algorithm speed is limited and cannot realize
real-time detection.

SSR [27] Based on reflection image model and SSR
algorithm to extract belt tear features.

Classifier [29,31]

(1) These algorithms extract belt tear features
and apply classic classifiers, which have stable
performance;
(2) Have made efforts to address poor
robustness.

Edge or corner features [32,33]

(1) Based on edge or corner features, which can
focus on the region of belt tear;
(2) Adopt linear cameras to obtain
high-resolution images.

3.3.4. Deep Learning

With the development of high-performance GPUs and big datasets, deep neural net-
works have received more and more attention from scholars, which heralds the deep
learning renaissance. The essential goal of deep learning-based image processing algo-
rithms for conveyor belts is target detection—more specifically, detection of scratches, wear
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or tear on conveyor belt images. Deep convolutional neural networks (DCNNs), the leading
architecture of deep learning-based methods for detection or classification tasks, consist of
several basic components: convolutional and pooling layers, usually grouped as modules,
activation layers, fully connected layers, etc. As shown in Figure 7, the input image is
classified into a certain category after weighing with convolutional, activation and fully
connected layers.

Figure 7. Pipeline of convolutional neural networks.

Mainstream object detection methods based on deep learning are classified into two cat-
egories: two-stage methods, represented by R-CNN (region convolutional neural network)
series; and single-stage methods, represented by YOLO (You Only Look Once) methods
and SSD (single shot multibox detector) series. Over the last few years, many robust and
accurate deep learning algorithms represented by R-CNNs have been developed.

(1) Backbone Networks
Backbone networks in deep learning algorithms are applied to extract features from

input images. Considering computational efficiency and detection accuracy, the common
backbone network is chosen from well-performing deep neural network image classifiers,
except that the last layer used for classification is replaced by another specially design
layer. As a result, the deep learning algorithm obtains higher detection accuracy and
better computational efficiency. For certain resource constraints, network depth, width
and input image resolution are the key factors, which can influence ConvNet accuracy.
Besides the gradient vanish problem, it is well known that deeper neural networks have
stronger feature extraction capability [35–37]. Another widely used technique is to expand
the ConvNet width for small networks. More fine-grained features tend to be acquired in
wider networks [38–40]. However, feature extraction capability is restrained in extremely
wide but shallow networks because of higher-level feature loss. Recently, more and more
ConvNets have taken high-resolution images as input, and experimental results in [41]
show that image resolution increases with limited accuracy gain and reduced computational
efficiency. Some favorite backbone networks with these specific characteristics are discussed
as follows. Four typical backbone networks are listed in Figure 8, i.e., VGG16, ResNet18,
Inception v1 and DenseNet121.

VGGNets [42] are characterized by the combination, as a basic unit, of convolutional
layers with small 3 by 3 filters and a 2 by 2 max pooling layer. The difference between
VGG16 and VGG19 is the depth of the neural network: 13 convolutional layers and
16 convolutional layers, respectively. As the champion of the ImageNet Challenge in 2014,
VGGNet still is one of the most popular networks.
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Figure 8. Architecture of deep neural networks: (a) VGG16; (b) ResNet18; (c) Inception; (d) DenseNet.

ResNets [35] are designed with residual blocks, which solves the gradient vanish
problem by appending a shortcut connection from input to output in each block. The use
of residual block in ResNets makes training very deep neural networks possible. ResNet,
with the advantage of much deeper networks, won the ImageNet Challenge in 2015.

Inception networks [37] make networks deeper and larger by parallel paths with
1 × 1, 3 × 3 and 5 × 5 convolutional filters, followed by max pooling layers. The features
in different scales can be simultaneously extracted in the same layer. Hence, the feature
extraction efficiency of inception networks is increased, which makes them faster than
VGGNet.

DenseNet [36] creates a densely connected network in which the input of each layer is
the stack combination of the outputs from all previous layers. DenseNet takes advantage
of lower-level features and shared parameters so that the vanishing-gradient problem can
be alleviated and network accuracy can be increased without performance loss.

(2) R-CNN series deep learning-based algorithms
The salient feature of R-CNN [43] methods is contained in two stages, namely region

proposal and prediction. The objective of region proposal is to locate potential regions
in the target image that may contain certain objects. In other words, it should have the
highest possibility to predict specific targets in the generated regions by region proposal.
In the following stage, a convolutional neural network is applied to make predictions in
the above regions.

Mainstream region proposal methods include multi-scale combinatorial grouping
(MCG) [44], constrained parametric min-cuts (CPMCs) [45] and region proposal networks
(RPNs) [46]. MCG is a unified method that creates and combines fine-quality multi-
scale regions. The initial step is to construct the image pyramid by supersampling and
subsampling. For each layer in the image pyramid, single-scale segmentation is performed.
The following operations of rescaling, alignment and combination are executed in order,
and segmented regions are obtained. In general, segments are generated by solving CPMC
with several parameters. A large number of features comprising 34 categories and related
to three sets, i.e., graph, region and Gestalt properties, are extracted from segments. The
above normalized features are ranked through random forests regression on the largest
overlap with ground truth. Small sets of segments representing the objects in an image
are acquired. The RPN, as a fully convolutional network, shares image convolutional
features and instructs the following network in the region to detect, which can reduce
region proposal cost and significantly improve detection accuracy. A unified detection
network merged with RPN achieved state-of-the-art performance on public datasets, which
makes RPN a competitive region proposal method.
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(3) YOLO and SSD series deep learning-based algorithms
Single-stage methods, represented by YOLO [47–49] and SSD [50] series, remove

the region proposal step and treat object detection as regression. Given the simplicity of
one-stage methods, the number of trainable parameters and layers is significantly reduced.
YOLO series with improvements, such as multiple scales, feature pyramids, fully connected
layer abandon, relative location, binary cross entropy loss, etc., have achieved high accuracy
without significant loss of detection speed. SSD series, the other representative one-stage
method, applies the strategy of multi-layer detection, hard negative mining and data
augmentation. Except for poor detection accuracy on small objects, SSD has achieved
satisfying performance on various benchmark datasets.

(4) Deep learning algorithms for conveyor belt tear detection
Deep neural networks for general-purpose object detection are designed for common

objects. With several special designs, these general-purpose object detection networks
can be improved for conveyor belt defect detection. Because of the underground working
environment in coal mines, the images captured by industrial cameras usually have the
characteristics of high noise and low contrast. Hence, the feature extraction ability of
backbone networks is essential for conveyor belt detection algorithms. As the depth of
backbone networks increases, more semantic features can be acquired. The neural network
cannot be too deep because of the existence of the gradient vanish problem in early days.
To address this problem and make deep neural networks generic, a residual module has
been widely used in recent research. YOLOv3 [49], as a general-purpose object detection
algorithm, adopted Darknet53 as backbone network by five repeats of the residual block
and contained the strategy of multi-scale feature extraction.

Some research focused on the above problems has been published, and several
improved deep learning-based conveyor belt detection methods have been proposed.
Liu et al. [51] designed an improved conveyor belt damage detection method based on
YOLOv3 in which EfficientNet [52] was applied as backbone network instead of Darknet53,
and a dataset containing damage images of conveyor belts was established. Efficient-
Net is characterized by compound scaling and best compromise between network depth,
width and image resolution with limited resources. With compound scaling applied, lim-
ited computational resources can be maximumly used. Hence, the improved conveyor
belt damage detection method in [51] shows excellent performance. A deep convolution
network with special adaptability (adaptive deep convolutional network (ADCN)) was
proposed by Qu et al. [53], and a dataset of diverse conveyer belt damage images was
established. The backbone, neck and head of the deep neural network are specially de-
signed according to the characteristics of conveyor belt damage images. With the special
techniques of ResBlock, Mish activation, spatial pyramid pooling (SPP) [54] and feature
pyramid networks (FPNs) [55], the improved ADCN method is more competitive than the
compared SVM method. Targeting conveyor belt deviation failure, Yi et al. [56] adopted an
inspection robot and a MobileNet-based deep neural network to extract region of interest
(ROI), containing the belt edge and the exposed idler from original images. Hough line
transform and template matching algorithms were applied to detect the belt edges. The
combined hybrid method of deep learning and machine vision can efficiently detect ROI
and belt deviation degree in real time. The core in ROI detector based on a deep neural
network is called depthwise separable convolution (DSC), which consists of two pars,
i.e., a depthwise convolution and a pointwise convolution. The DSC module separates
normal convolution into a depthwise convolution and a pointwise convolution. Compared
with normal convolution, DSC obtains similar receptive fields with a significantly smaller
number of parameters—one third, approximately. Hence, based on these advantages, DSC
is commonly applied in lightweight deep neural networks, e.g., Xception and MobileNet.
A summary of deep learning methods presented in Table 4.
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Table 4. Comparison of machine vision methods.

Method Pros Cons

R-CNN

(1) Typical two-stage algorithm; after many improvements,
algorithm is well developed and for applications that
require high precision;
(2)Based on region proposal networks; significantly
improves detection precision.

(1) Region proposal networks make redundant
bounding boxes, which leads to low speed;
(2) The models are complex, and computational
cost is high.

YOLO

(1) Simultaneously predicts object class and location as a
regression process and gets rid of the region proposal stage,
which simplifies the architecture and increases the speed;
(2) Introduces multi-scale feature maps, which can enhance
performance.

(1) The performance (except for speed) of YOLO
series is worse than that of R-CNN series;
(2) Anchors are fixed to a certain ratio;
generalization is poor;
(3) Poor performance for small object detection.

SSD

(1) A compromise between speed and precision; can achieve
excellent performance in certain applications;
(2) Multi-scale feature map fusion, which addresses poor
robustness to a certain extent;
(3) Less sensitive to the feature extraction ability of
backbone networks than two-stage algorithms.

(1) Many hyperparameters need to be set properly;
(2) Separated feature maps, which leads to
complicated computation.

3.4. Next-Generation Detection Methods

With the development of high-performance sensors, new composite materials and
cloud computing technology, the innovative methods of belt monitoring and damage
detection have been designed and proven to be effective.

A conveyor belt monitoring system called Aura IQ, developed in Australia by Min-
ing3/CSIRO, is based on optical fiber and cloud computing. The main principle of Aura IQ
is monitoring the variation of laser pulses along a fiber optic cable which deployed along
the length of a conveyor. High-performance computers monitor the laser pulses in real
time. As long as the signal changes of laser pulses (caused by bearing or belt wear) are
detected, Aura IQ analyzes these data, makes a quick decision and alerts workers. The
deployment of the optical fiber-based conveyor belt monitoring systems can reduce the
number of workers required and effectively avoid occupational injury.

3.5. Experimental Evaluation

In this section, various detection methods are compared with our custom belt damage
dataset. Considering hardware limitations, some conveyor belt damage detection methods
could not be tested. Hence, the compared algorithms and methods include support vector
machine (typical classification algorithm); Faster R-CNN and YOLOv5 (typical deep learn-
ing algorithms); and Y. The belt damage dataset consists of three categories, i.e., cracks,
tears and scratches, and each image may contain one or multiple damage points. The
capacity of the dataset is 1092, and the number of crack, tear and scratch images is 212, 192
and 688, respectively. Some sample images are shown in Figure 9.

Figure 9. Sample conveyor belt damage images; damage types are cracks, tears and scratches.

YOLOv5 and Faster R-CNN represent for one-stage and two-stage deep learning-based
object detection algorithms, respectively. YOLOX-s is designed for lightweight applications.
The experimental results are described in Table 5 and Figure 10.
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Table 5. Experimental results on custom belt damage dataset and public datasets in which the score
threshold is set to 0.5, image resolution of the custom dataset is 416x416 and the GPU is NVIDIA RTX
2080s. For public datasets, models were trained on VOC2007 and VOC2012 training datasets tested
on the VOC2007 testing dataset.

Method Backbone
Custom Dataset VOC2007 + VOC2012

FPS mAP(%)@.5 FPS mAP(%)@.5

Multi-SVM Null 28.4 61.3 24.3 47.1
AdaBoost Null 23.7 39.8 19.3 43.7
YOLOv5m Focus+CSP 128 82.5 117 63.2

YOLOX-X Modified
CSPv5 57.4 78.4 55.8 65.3

SSD300 VGG16 59.1 81.7 57.4 72.6
Faster

R-CNN ResNet-101 7.4 86.4 6.2 74.9

Figure 10. Visualization results contain anchor boxes and labels, showing that the obvious damage
regions can be successfully detected. However, some small or inconspicuous damage regions are
missed by detection algorithms.

The experimental results show that all methods except for Faster R-CNN satisfy the
real-time detection methods. Since these comparative algorithms are not specially opti-
mized, the performance of all comparative algorithms can be enhanced. According to
correlation theories, the factors influencing algorithm generalization are summarized as
follows. (1) The selected algorithms focus on general purposes and were not optimized
for belt damage detection. (2) For the traditional machine vision algorithms, some pre-
processing procedure need to be done before the detections limits the speed of detection.
(3) The custom dataset has fewer classes, and the acquisition condition of the custom
dataset is different from that of the well-known public datasets. These reasons lead to better
performance for most deep learning methods than identical methods trained and tested
on public datasets. In general, the traditional machine vision algorithms are based on a
combination of artificial feature extraction and certain classifiers. The essential problem is
that the performance of certain algorithms depends on artificially designed features and
engineering experience, which limits the development of machine vision algorithms. With
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the development of deep learning methods, a variety of network architectures have been
proposed. The performance of deep learning algorithms is overwhelming and pleasurable.
However, trained models are becoming bigger and more redundant, which is not suitable
for limited computing resources, such as mobile applications. However, the inspiration
from the experimental results is that deep learning-based detection algorithms have the
potential to improve performance by improving feature extraction ability and modifying
model architecture, loss function or training procedures.

4. Challenges and Solutions
4.1. Challenges for Image Preprocessing

In general, pixels in a normal image can be categorized into foreground, background
and mixed pixels. Foreground pixels usually form the region where the desirable target is
located, and background pixels make up areas that do not concern users. These two parts
usually occupy 90% or more of the whole image. Mixed regions are significant for image
segmentation. Since the “sharp boundary” or “soft boundary” determines the complexity
of segmentation, image preprocessing procedures to obtain the desired “boundary” are
essential for detection algorithms.

The working condition of conveyor belts for mines is underground for the most part.
This means that there is no interference from sunlight at all, which is an advantage of
setting up camera lights. However, working environment in mines is full of coal and ore
dust, which could cause uneven brightness and has a negative impact on image acquisition
by industrial cameras. However, with the progress of advanced technology, a variety of
industrial cameras with hardware denoising ability and high-sensitivity chips can reduce
the influence of dark, dusty and even moist working conditions to a certain extent. How-
ever, research has illustrated that the unprocessed images captured by industrial cameras
still cannot satisfy the requirement of defect detection algorithms, and the procedure of
image preprocessing is indispensable because of gray imbalance, noise, low contrast, etc.
However, deep learning-based defect detection methods usually contain no steps of image
preprocessing and feed image-label datasets directly into training networks. Image pre-
processing procedures in most of machine vision-based literature we reviewed consist of
image denoising, histogram equalization and contrast enhancement, which can increase
the feature extraction ability and trained-model performance of algorithms.

Conveyor belt tear detection methods based on machine vision have developed from
a singular reliance on visible light to a combination of visible light [27–29,31], hyperspec-
tral [20–22,34], multispectral [23,24] and even audio-assisted [30] methods. No matter
which methods are proposed, similar threshold algorithms are adopted in the image pre-
processing step. The transfer conveyor belt tear features to several linear laser breakages
and algorithms based on laser breakage location were proposed [32,33] to detect damaged
belts, which greatly reduces the effect of acquired image quality on the performance of the
proposed algorithm. However, image preprocessing steps, e.g., grayscale transformation
and denoising, are still carried out linear laser images.

In summary, preprocessing is one of the most important steps in image processing
algorithms. However, in contrast to images captured in other domains, images captured
in dark and dusty underground environments cannot satisfy the requirement of defect
detection because of low contrast and lots of noise. Thus, image preprocessing determines
the final performance of detection algorithms to a large extent.

4.2. Challenges in Dataset Imbalance

In recent years, machine learning and deep learning methods based on pretrained
models have gained attentions from researchers. The performance of supervised learning
and deep neural networks is significantly dependent on the model used in the inference
process, which is trained from a prepared dataset. He et al. [57] believe that the definition
of data imbalance can be described as ratio of majority to minority distributed from 100:1
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to 1000:1 in a large dataset. In the real world, problems caused by dataset imbalance, one of
the most common dataset challenges, occur frequently.

As discussed in [58], data-level methods and algorithm-level methods are two general
categories that tackle the data imbalance problem in traditional data or big data. For
data-level methods, which can be classified as either oversampling or undersampling
methods, are proposed to construct several training subdatasets. Data sampling is per-
formed with a specially designed sampling approach or simply random selection. Random
undersampling (RUS) [59], random oversampling (ROS) [60] and the synthetic minority
oversampling technique (SMOTE) [61] are the most used data sampling approaches. For
random oversampling methods, samples from the minority class are copied and extracted
repeatedly in the oversampling process by some kind of algorithm [62]. Compared with
ROS, random undersampling (RUS) methods construct various training subdatasets by
applying random sample removal strategy. In contrast to ROS methods, SMOTE creates
synthetic samples in feature domains instead of replacing in oversampling. Furthermore,
SMOTE methods consider the k nearest neighbors in feature space and generate a new sam-
ple by interpolation strategy. Feature selection methods, which have been barely explored
by scholars, are generally adopted to enhance classification performance [63] by extracting
unique features for class discrimination.

Algorithm-level methods explore data classification at the algorithm level and can be
classified into cost-sensitive methods and ensemble methods. Cost-sensitive methods apply
more weight to misclassified instances in training process and select the most interesting
samples. Ensemble methods consist of several parallel or serial classifiers, which output
combined results from above classifiers. Ensemble methods are presented as bagging and
boosting [64] types or hybrid methods, which have their own advantages. Bagging builds
subclassifiers by training subsamples extracted from the whole dataset and combines the
individual models into the final classification. Boosting implements the same procedure,
which trains models from several individual subsamples extracted from the whole dataset,
like bagging, and weights each classifier with adaptive value based on the misclassified
ratio. Hybrid methods combine multiple data sampling methods with basic learning
algorithms, e.g., naïve Bayes [65], and addresses currently known problems.

We believe that a certain class-balancing algorithm could not achieve best performance
in all domain datasets because different characteristics are contained in different datasets.
Fernandez et al. [66] conducted some experiments and examined data balancing in big data.
The results show that RUS, ROS and SMOTE have significant performance differences
in certain datasets. RUS and ROS have their own advantages in different configurations,
whereas SMOTE performs the worst of the three.

Deep neural networks are trained with big data, which are usually much larger
than traditional datasets, and acquire better performance because of their strong feature
extraction capability. Although the methodologies for class equalization are similar between
traditional datasets and big data, methods for addressing data imbalance in big data require
specially designed algorithms. Data imbalance problems in the mining domain for deep
learning methods can be classified into class imbalance and scale imbalance [67].

Class imbalance means a certain class in the dataset is over-represented. For the belt
tear datasets, it refers to foreground- (tear part in belt image)-to-background (other objects
in belt image) imbalance, which usually means background objects outnumber foreground
objects. To address class imbalance problems, two typical sampling methods are frequently
used: hard sampling and soft sampling methods. In general, the difference between hard
sampling and soft sampling methods is the definition of bounding box (BB) contribution
to the loss function. The term representing the BB contribution to the loss function is
as follows:

lBB = ωiCE(ps) (7)

where CE(∗) is cross-entropy loss and ps represents confidence score of the ground truth
class. For hard sampling methods, ωi can be either 0 or 1. On the other hand, ωi is a
real number between 0 and 1 for soft sampling methods. The simplest hard sampling
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method is random sampling, which is applied in R-CNN detectors [43,46]. In the process
of training RPN, 128 positive examples and 128 negative anchors are sampled randomly.
Hard-sampling mining methods are based on the hypothesis that samples, which lead to
high loss in loss function, contribute more to object detection performance. Single-shot
detectors [50], as the first deep learning detector based on hard-sampling mining, take only
the negative samples leading to the highest loss. In contrast to hard sampling methods,
soft sampling methods assign the weight for each sample, and all samples in the dataset
contribute to updating the model parameters. Focal loss [68], as the typical soft sampling
parameter, dynamically weights examples as follows:

ωi = (1− ps)
λ (8)

where ps represents the confidence score of the ground truth class and λ is a constant.
In [68], λ = 2 makes a good compromise between performance and complexity. The
gradient harmonizing mechanism (GHM) [69], another typical example of soft sampling,
alleviates the variance of gradients derived from easy positive and negative examples.
However, GHM assumes that easy examples lead to similar gradients, which has been
proven to be useful for both classification and regression tasks.

On the other hand, scale imbalance occurs when positive instances appear in different
scales and different quantities, which can be explained by the fact that tear parts are
different in size and number for certain belt image datasets. Hence, the scale imbalance
problem is inevitable because tear defects occur randomly as large regions or small spots.
To address scale imbalance problems, we should review the basic detection procedure
of deep neural networks. Early deep learning-based detectors [43] contained a backbone
network and made predictions based on the last layer of the backbone network. However,
the features extracted from the last layer of the backbone are restricted to a certain scale. In
other words, the tear part whose size is beyond or within certain scale cannot be detected by
the deep neural network. To address scale imbalance problems, a scale-diversity strategy,
listed in Table 6, for input images or feature detection networks is applied.

Table 6. List of scale-diversity strategies and descriptions.

Strategy Description

(a) No scale • Does not employ scale balancing strategy.

(b) Multi-scaled features [50,70,71] • Features extracted from different layers of backbone network are used to
make predictions.

(c) Feature pyramid networks (FPN) [55,72–74]
• Based on up-sampling or down-sampling methods; intermediate features

extracted from adjacent layers of backbone network are merged to new
features, which are used to make predictions.

(d) Scaled image pyramids [75,76] • Input image is scaled into different levels, and each scaled image is fed
into the backbone network.

Strategies of multi-scaled features, feature pyramid networks and image scaling pyra-
mids in (Table 6) try to alleviate scale imbalance problems in different ways. Considering
diverse features encoded in different scales, early research applied the multi-scaled features
strategy and the designed deep neural networks extracted various scaled features from
layers of backbone networks. To enhance feature extraction ability and mine semantic in-
formation buried among multiple layers of backbone networks, feature pyramid networks
were proposed to merge low-level and high-level features. The concept of multi-scaled
image pyramids is popular in machine vision-based methods because of its straightforward
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and simple theory. Since each layer of image pyramids fed into deep neural network
cost computational time and memory, they would not be cost-efficient to employ in deep
learning-based methods. Singh et al. [76] proposed scale normalization for image pyramids
(SNIP) and discussed that multiple region proposal and detection networks can ensure no
feature loss in training datasets.

Deep learning-based algorithms, a typical supervised learning method, possess great
high-dimension feature extraction ability, which is based on prelabeled big datasets. How-
ever, limited to the mining industry, well-labeled datasets for conveyor belt defects do not
exist, and deep learning-based algorithms cannot obtain stronger competition than tradi-
tional machine learning algorithms with artificially designed features. Different domain
datasets, e.g., defect images of conveyor belts or features extracted by certain algorithms,
have specific characteristics. The class of the conveyor belt image datasets can mainly be
categories into normal belt, scratched surface, wear, cracked and torn belt, with unique
corresponding visual features. Compared with cracks and tears, belt images of minor
damage are predominant in conveyor belt datasets, and serious damage, e.g., cracks and
tears, are rare but significant. Since the ratio of each class in conveyor belt datasets is
uneven, classifiers trained by imbalanced datasets tend to predict the major categories and
ignore the minor ones. To enhance the performance of deep learning-based algorithms,
research and technologies such as transfer learning (TL) [77] and adversarial neural net-
work (GAN) [78] target training with insufficient datasets and have been gaining more and
more attention.

Transfer learning is another promising machine learning method that attempts to
address data imbalance problems. TL methods aim at enhancing model performance based
on transferring existing knowledge in the source domain to the target domain, which can
reduce the dependency on the target domain dataset to some extent. Based on the above
advantages, TL methods have been widely employed in medical image analysis [79,80],
engineering [81], text processing [82], natural language processing [83] etc. Considering
whether the existing dataset is labeled or not, TL can be classified into three categories,
i.e., inductive, transductive and unsupervised transfer learning [77]. Based on the dataset
distributions of source domain and target domain, TL approaches can be divided into
homogeneous transfer learning and heterogeneous transfer learning. Considering the
situation of the coal mining domain, dataset acquisition and labeling of conveyor belt defect
images is extremely difficult and inconvenient. Hence, heterogeneous transfer learning
from other similar domains to belt defect detection could be one possible solution to address
data imbalance problems. Based on the hypothesis of Inception-v3 network possessing
excellent feature extraction ability, Feng et al. [84] adopted a transfer learning strategy and
improved the architecture of the Inception-v3 network in infrastructure damage detection.
Gao et al. [81] tried to address the same problem of insufficient datasets. An improved
VGGNet was proposed, and transfer learning was introduced. With several experiments,
it was proven that the last two layers in a CNN network contain most high-level features
for structural damage detection and classification. The surface defects of conveyor belts,
i.e., scratches, cracks, tears, etc., are similar but different from those of injection-molded
products, textiles or cold-rolled steel sheets. Hence, without modifying the architecture of
deep neural networks and augmenting the dataset, transferring pretrained networks from
other domains is one feasible approaches.

The concept of generative adversarial networks (GANs) was first proposed by Good-
fellow et al. [78] in 2014 based on game theory. GANs consist of two networks, called
generator and discriminator networks. The generator network tries to create the realest
samples that can cheat the discriminator. At the same time, discriminator plays the role of
judge to determine whether a given sample is artificial. Hence, a conflict exists between
the generator and discriminator networks until the Nash equilibrium is achieved in the
zero-sum game described by Pan et al. [85]. Architecture modification of deep neural
networks based on GANs can be classified into three categories: (1) modified CNNs [86];
(2) conditional GANs [87,88]; and (3) autoencoders [89,90]. Modifying convolutional neural
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networks with the theory of GANs is a simple and straightforward way to implement
GANs. Radford et al. [86] proposed a deep convolutional generative adversarial network
(DCGAN), which introduces a deconvolution layer instead of the original fully connected
layer in CNN. A conditional GAN was proposed in [87], and the conditional variable c
was introduced in both the generator and discriminator, which makes the data generation
process controllable. Autoencoders are another type of deep neural network, which has a
process of input data encoding and reconstruction for output data. Makhzani et al. [89]
merged the concept of GANs with autoencoding theory and proposed an adversarial au-
toencoder (AAE). Introducing GANs into defect detection for conveyor belt surfaces could
alleviate data imbalance problems and enhance the performance of deep neural networks
relating to GANs since GAN approaches extract low- and high-level features and generate
new data based on existing datasets.

5. Conclusions

In this paper, we summarized the background and related knowledge of defect detec-
tion methods for conveyor belt surfaces in coal mining environments, including the basic
structure of common conveyor belts, the several causes of conveyor belt tear, inspection
system architecture and detection methods. The most common approaches consist of
sensor-based, X-ray/spectrum-based and vision-based methods. Finally, the image pre-
processing and data imbalance problems were investigated, and future research directions
are discussed.

Industrial production in the field of coal mining requires automatic and intelligent
inspection of production equipment. Hence, scholars and engineers have never stopped
working on the research of automatic inspection and detection methods. In early days, the
lack of high-performance processors and high-resolution cameras limited the development
of non-destructive testing methods based on multiple sensors. These methods have the
characteristics of simple installation, low cost and accuracy and high probability of false
alarm. Therefore, defect defection for conveyor belt surfaces could not reach the goal of
unmanned operation. Since the 21st century, without the limitation of hardware perfor-
mance, more and more competitive methods have been proposed. To achieve the goal
of automation and artificial intelligence in industrial production, vision-based detection
methods are the most promising choice. In early 21st century, scholars proposed abun-
dant machine vision-based defect detection methods with artificially designed features.
In the last decade, because of high-level feature extraction ability, high performance and
end-to-end network architecture, deep learning-based detection methods have been and
will continue be the most promising approach. However, until existing shortcomings
are overcome, deep learning-based methods cannot be widely applied. Future research
should focus on the design and optimization of network architecture, efficient utilization of
hardware resources, processing and preparation of datasets, etc.
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