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Abstract: The detection of early-stage cancer offers patients the best chance of treatment and could
help reduce cancer mortality rates. However, cancer cells or biomarkers are present in extremely
small amounts in the early stages of cancer, requiring high-precision quantitative approaches with
high sensitivity for accurate detection. With the advantages of simplicity, rapid response, reusability,
and a low cost, aptamer-based electrochemical biosensors have received considerable attention as a
promising approach for the clinical diagnosis of early-stage cancer. Various methods for developing
highly sensitive aptasensors for the early detection of cancers in clinical samples are in progress.
In this article, we discuss recent advances in the development of electrochemical aptasensors for
the early detection of different cancer biomarkers and cells based on different detection strategies.
Clinical applications of the aptasensors and future perspectives are also discussed.

Keywords: aptamer; aptasensor; electrochemical; cancer diagnostic; EIS; nanomaterials

1. Introduction

Cancer is a major cause of death worldwide [1]. Based on a World Health Organization
(WHO) Report, new cancer cases are increasing at an alarming rate from 10 million new
cases globally in 2000 to 20 million in 2021, with 10 million deaths [2]. At present, more
than 90% of cancer deaths result from the metastasis of primary cancer tumors, and failure
in the early diagnosis of cancers is a direct cause of this high mortality rate [3]. Hence, a
significant challenge in molecular oncology is early diagnosis [4]. Early and effective cancer
detection is critical to facilitate timely treatments and improve the survival rate of patients,
since most treatment strategies generate more successful results with smaller-size tumors.
The development of enhanced detection approaches based on interdisciplinary research
is critical to facilitating the development of new and improved early cancer detection
technologies. The identification of biomarkers at ultra-low levels during the early stages
of the disease and the development of molecular probes that bind to these biomarkers
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is a successful method for effective diagnosis and accurate pre-treatment staging of the
cancer [5]. To date, various methods have been applied for biomarker detection, such
as electrochemistry [5], electrochemiluminescence (ECL) [6] and inexpensive detection
techniques for biomarkers [7–11]. Most of the sensors developed for biomarkers’ and
various cancer cells’ detection rely on antigen–antibody interactions [12]. It is well known
that antibodies, as a major class of biomolecular probes, can specifically bind to tumor
cell biomarkers, but immunogenicity and peptidase susceptibility limit their theranostic
value [13–16]. The development of a combinatorial chemistry-based assay termed the
systematic evolution of ligands by exponential enrichment (SELEX) has provided an al-
ternative, yielding oligonucleotides, called aptamer, which can be selected to specifically
bind various target molecules [17–23] as well as cell membranes through cell-SELEX [24,25].
Owing to their significant advantages, such as high sensitivity, simplicity, rapid response,
reusability, and low cost, aptamer-based electrochemical biosensors have received con-
siderable attention as a promising approach for clinical diagnostics [26]. Electrochemical
detection methods are based on either redox indicators or label-free detection. Most of
the methods based on redox indicators involve tedious modification or immobilization
techniques, which are often time-consuming, costly, and, more importantly, may affect
the affinity of the aptamer. Hence, label-free aptasensors present a promising strategy.
Among the various electrochemical biosensing methods, label-free aptasensors based on
electrochemical impedance spectroscopy (EIS) have attracted considerable attention. EIS is
not only a powerful method to characterize biomolecule-functionalized substrates but also
a sensitive technique to monitor recognition events that occur on electrode surfaces [27].
Electrochemical techniques both offer an alternative to developing biosensors for cancer cell
detection [28] and serve as impedimetric micro-transducers for measuring the swelling be-
havior of different types of cancer cells [29]. Some reported examples include applications
for the target detection of breast cancer cells [30], leukemia cells [31], and prostate-specific
antigens [32]. This article discusses advances in the development of novel electrochemical
aptasensors for the early detection of various cancer biomarkers and cells, with an emphasis
on different detection strategies.

2. Label-Based Electrochemical Aptasensors
2.1. Redox-Active Molecules

A simple way to generate an electrochemical signal is through the use of redox-active
labels [33,34]. Using this strategy, aptamers can be incorporated to develop enhanced
aptasensors. Aptamers can fold their flexible single-stranded chains into three-dimensional
(3D) structures upon binding to a target molecule and can easily be immobilized on
a conductive surface. These features enable redox-active molecules to be anchored to
aptamers, allowing for the identification of the formation of aptamer–target complexes
by probing the electron transfer features of the redox probes of rigidified complexes [35].
Generally, redox-active molecule-based electrochemical aptasensors include two subclasses:
“signal-on” or “signal-off”. Due to the conformational change in aptamers in the signal-on
mechanism, redox-active molecules are brought close to the electrode surface, and removed
from the electrode surface (Figure 1a–c) [36].
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Figure 1. Label-based electrochemical aptasensor. (a) The redox-active label Aptamer–Aptamer Duo
strategy. (b,c) The redox-active label Aptamer–Antibody strategies. (d,e) The redox-active label
Aptamer-switching and replacement strategies. (f,g) Enzyme-based label electrochemical aptasensor
strategies. Ab: antibody, RCA: rolling circle amplification.
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Recently, a signal-on electrochemical differential pulse voltammetry (DPV) aptasensor
that detects mucin 1 (MUC1) was reported [37]. The approach combines a dual signal
amplification strategy of poly (o-phenylene diamine)–gold nanoparticles (PoPD–AuNPs)
hybrid film as a carrier, along with gold nanoparticles-functionalized silica/multi-walled
carbon nanotubes core-shell nanocomposites (AuNPs/SiO2@MWCNTs) as a tracing tag.

The PoPD–AuNPs film provides an appropriate substrate to stabilize the primary
aptamer, and the AuNPs/SiO2@MWCNT improves the surface area to immobilize the
secondary aptamer, as well as to load large amounts of redox-active probe thionine. When
MUC1 is introduced to the assay, the sandwich-type recognition reacts on the aptasensors’
surface, and the Thi-AuNPs/SiO2@MWCNTs nanoprobes are captured onto the electrode
surface. AuNPs and MWCNTs accelerate the electron transfer from Thi to the electrode, thus
amplifying the detection response. This proposed method has detected MUC1 at rates as
low as 1 pM. This aptasensor also showed great reproducibility, with a value of 2.8% RSD at
40 nM of MUC1 with long-time stability at 4 ◦C. In another study, Zhu et al. [30] reported an
electrochemical stripping voltammetry biosensor for the detection of both human epidermal
growth factor receptor 2 (HER2) protein and SK-BR-3 breast cancer cells, which takes
advantage of hydrazine and aptamer-conjugated gold nanoparticles. A sensor recognition
element was immobilized onto a nanocomposite layer, which was prepared from self-
assembled 2,5-bis (2-thienyl)-1H-pyrrole-1-(p-benzoic acid) (DPB) on gold nanoparticles.
A hydrazine/AuNP/aptamer bioconjugate was utilized to reduce silver ions for signal
amplification. Here, hydrazine reduces silver ion to silver metal, and is bound to AuNPs
to provide a bioconjugate of hydrazine/AuNP/aptamer (Hyd/AuNP/Apt), where the
aptamer specifically binds to breast cancer cell biomarkers. In the presence of biomarkers
or cancer cells, a sandwich structure was formed on the surface of the electrode. Finally,
by introducing silver ions, hydrazine reduced the silver ions to silver metal. After that,
silver metal deposits onto the Hyd/AuNP/Apt bioconjugate and reacts with biomarkers or
cancer cells. The deposited silver is then quantified via stripping voltammetry. The method
showed a detection limit of 26 cells/mL for the detection of breast cancer cells in human
serum. The reproducibility was reported with a standard deviation of less than 5% for the
detection of HER2.

An electrochemical DPV aptasensor based on a signal-off strategy was reported by
Qu et al. [38] for the detection of circulating tumor cells in blood cells. In their work,
two cell-specific aptamers, TLS1c and TLS11a, which recognize BNL 1ME A.7R.1 liver
cancer cells (MEAR), were simultaneously conjugated to the surface of a glassy carbon
electrode. These aptamers were coupled to the electrode surface using controlled linkers:
TLS1c through a single-stranded DNA linker and TLS11a through a double-stranded DNA
linker. The ss-TLS1c/ds-TLS11a design showed improved sensitivity for the effective
recognition of cancer cells in comparison to other designs. with electrodes modified by
a single type of aptamer or by dual-type aptamers. The specificity and sensitivity of the
designed aptasensors were investigated using a DPV technique with [Fe(CN)6]3−/4− as the
redox indicator. The aptasensor detected cancer cells of as low as a single MEAR cell within
1 × 109 whole-blood cells (WBC). While this approach is suitable for the highly sensitive
detection of tumor cells, their long-term use and efficiency cannot be ascertained without
reproducibility and stability information being reported. Liu and coworkers developed a
square wave voltammetry (SWV) aptasensor for the detection of TNF-α in complex media,
which mimicked the human blood [39]. The principle of the biosensor operation is based on
conformational changes in the aptamer. When the target binds to the aptamer, the distance
between the redox reporter and electrode changes so that a detectable electrochemical signal
is produced. The aptasensor detected TNF-α with high sensitivity in spiked whole blood.
The aptasensor delivered a detection limit of 10 ng/mL and a linear range of 100 ng/mL for
TNF-α in whole blood. Overall, redox-active molecules provide stability to aptamers and
enhance the surface area for immobilization, which allows for high-reliability nonvolatile
application in electrochemical-based detections. In the above studies, both the signal-on
and signal-off strategies provide good specificity, sensitivity, and acceptable reproducibility,
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demonstrating that redox-active molecules can be used as an electrochemical signaling
strategy for cancer diagnostics.

2.2. Enzyme-Based Aptasensors

Although the application of redox-active molecules is a simple method to generate an
electrochemical signal, electrochemical aptasensors suffer from low sensitivity [34]. There-
fore, the development of signal-amplification strategies to enhance sensitivity is critical.

To date, a wide variety of amplification strategies have been designed. Among them,
enzymes (biocatalysts) show the advantage of enhancing through enzymatic electrochemi-
cal processes (Figure 1f,g) [40–42]. For example, Ravalli et al. [40] described an enzyme-
amplified electrochemical DPV aptasensor for the detection of vascular endothelial growth
factor (VEGF), a well-known biomarker associated with the diagnosis of different types of
cancer. The aptasensor was fabricated based on a gold-nanostructured, graphite, screen-
printed electrode using alkaline phosphatase as an enzyme label. Two different DNA
aptamers were utilized to complete a sandwich format. First, the primary thiolated aptamer
was self-assembled onto the electrode, followed by the incubation of the VEGF protein
on the aptasensor. After this, an enzyme detection strategy based on the coupling of
a streptavidin–alkaline phosphatase conjugate and the secondary aptamer was applied,
and, finally, an electro-inactive substrate was introduced to the aptasensor. The enzyme-
catalyzed transformation of the substrate led to a product that is electroactive and can
be detected using the DPV technique. The aptasensor detected VEGF at rates as low as
30 nmol/ L with a dynamic range of 0 and 250 nmol/L. The average coefficient of variation
was around 6% and the aptasensor signal was unaffected in the presence of other interfering
proteins, providing good reproducibility and selectivity, respectively. In another recently
reported piece of research, an electrochemical DPV aptasensor based on hybrid enzyme and
nanomaterials was developed for the detection of human liver hepatocellular carcinoma
(HepG2) cells [41]. For this purpose, an aptamer/cell/nanoprobe sandwich format was
fabricated onto the AuNPs modified glassy carbon electrode surface using a whole-cell
aptamer as a recognition element and electrochemical nanoprobe. A thiolated TLS11a
aptamer was attached to the electrode surface via a gold-thiol bond to capture HepG2
cells. Electrochemical nanoprobes are constructed using the G-quadruplex/hemin/aptamer
complexes and horseradish peroxidase (HRP) immobilized on the surface of Au@Pd core-
shell nanoparticle-modified magnetic Fe3O4/MnO2 beads (Fe3O4/MnO2/Au@Pd). The
hybrid Fe3O4/MnO2/Au@Pd nano-electrocatalysts, G-quadruplex/heminHRP-mimicking
DNAzymes, and HRP enzyme efficiently enhanced the electrochemical signals. The de-
tection limit of this electrochemical aptasensor was 15 cells/ mL. It also demonstrated an
acceptable reproducibility, in addition to being regenerated two more times without sig-
nificant loss of sensitivity. The enzyme-based strategy provides more rapid and enhanced
signaling compared to redox-active molecules due to the high and efficient electron transfer
by enzymes. However, enzymes could have limitations, with instability during usage in
sensor devices, a low temperature being required for storage, and the nonspecific oxidation
(or reduction) of redox-active interferences on the electrode.

2.3. Nanomaterials-Based Aptasensors

Owing to the unique characteristics of nanomaterials, such as their small size, increased
surface-to-volume ratio, biocompatibility, and chemical stability, along with the excellent
selectivity of aptamers as recognition elements, the combination of nanomaterials and
aptamers can promote new innovations for the detection of cancer cells [43]. Different
strategies have been described to conjugate aptamers with nanomaterials [44] (Figure 2 and
Table 1). Nanomaterials can be utilized as either supporting substrates for immobilizing
ligands or as labeling probes for signal amplification. Importantly, aptamer-conjugated-
nanoparticles (Apt-NP) can be detected using electrochemical techniques, depending on
their physical and/or chemical properties [45]. Recently, an amplified electrochemical DPV
biosensor was reported, based on an aptamer/antibody (Apt/Ab) sandwich format, for
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the detection of epidermal growth factor receptor (EGFR), a cancer biomarker [46]. In this
study, a capture probe was designed by immobilizing a biotinylated anti-human EGFR Apt
onto streptavidin-coated magnetic beads. On the other side, an anti-human EGFR antibody
was conjugated to gold nanoparticles to be utilized as a signaling probe. When a sample
containing EGFR was introduced to the magnetic bead-Apt system, EGFR was captured in
the Apt–EGFR–Ab sandwich. Subsequently, a DPV of gold nanoparticles was used for the
detection of EGFR. The detection limit and dynamic concentration range of the sensor were
50 pg/mL and 1–40 ng/mL, respectively. In addition, less than 4.2% RSD was reported as
the reproducibility value.

Micromachines 2022, 13, x FOR PEER REVIEW 7 of 31 
 

 

 

Figure 2. Schematic presentation of nanomaterials-based Aptasensors. (a) Nanomaterial–Aptamer 

Duo sandwich-type aptasensors. (b) Encapsulated nanomaterials “Bio-gate” aptasensors. (c,d) Gra-

phene oxide/nanotubes–electroactive aptasensors. 

Table 1. Various Electrochemical Aptasensors for cancer detection applications. 

Cancer Type Target Technique Sample 
Assay 

Time 
LOD Linear Range Reference 

Breast 

Cancer  

EGFR DPV Serum 30 min 50 pg/mL 1–40 ng/mL [46] 

ER DPV Buffer 10 min 0.001 ng/mL 
0.001–1000 

pg/µL 
[47] 

Exosomes CV buffer 1 h 
96 

particles/μL. 

1.12 × 102–1.12 × 

108 particles/μL 
[48] 

Figure 2. Schematic presentation of nanomaterials-based Aptasensors. (a) Nanomaterial–Aptamer
Duo sandwich-type aptasensors. (b) Encapsulated nanomaterials “Bio-gate” aptasensors. (c,d)
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Table 1. Various Electrochemical Aptasensors for cancer detection applications.

Cancer Type Target Technique Sample Assay Time LOD Linear Range Reference

Breast Cancer

EGFR DPV Serum 30 min 50 pg/mL 1–40 ng/mL [46]
ER DPV Buffer 10 min 0.001 ng/mL 0.001–1000 pg/µL [47]

Exosomes CV buffer 1 h 96 particles/µL. 1.12 × 102–1.12 × 108 particles/µL [48]
Exosomes (MCF-7 cells) ECL Blood serum sample 120 min 7.41 × 104 particle/mL 3.4 × 105 –1.7 × 108 particle/mL [49]

HER2 stripping voltammetry Human serum 20 min 26 cells/mL 50 to 20,000 cells/mL [30]
HER2 EIS Buffer - 0.047 pg/mL 0.01 to 5 ng/mL [50]
HER2 CV, EIS Serum 2 h 1 pM 1 pM–100 nM [51]
HER2 EIS Serum sample 40 min 50 fg/mL 0.1 pg/mL–1 ng/mL [48]
HER2 CV, DPV, EIS PBS buffer 5–10 min 0.001 ng/mL 0.001–100 ng/mL [52]
MCF-7 CC, CV, EIS Serum 25 min 47 cells/mL 0–500 cells/mL [53]
MCF-7 SWV, CV Human plasma 2 h 328 cells/mL 328–593 cells/mL [54]
MCF-7 CV, DPV Human serum 60 min 20 cells/mL 50–106 cells/mL [55]

MCF-7 Exosomes PEC Buffer 110 min (total) 1.38 × 103 particles/µL 5.00 × 103 to 1.00 × 106

particles/mL
[56]

MDA-MB-231 DPV Blood Serum 30 min 5 cell/ mL 10–1 × 103 cell/mL [57]
MUC1 DPV Serum sample 25 min 0.79 fM 1 fM–100 nM [58]
MUC1 SWV, CV Buffer 1 h 0.33 pM 1.0 pM–10 µM [59]
MUC-1 EIS PBS buffer 2 h 38 cells/mL 100 to 5.0 × 107 cells/mL [33]

Nucleolin DPV Buffer 1 h 8 ± 2 cells ml/mL 10–106 cells/mL [60]
Nucleolin ECL Buffer 10 min 10 cells 10–100 cells [61]
Nucleolin EIS Buffer - 40 cells/mL 103–107 cells/mL [62]
Nucleolin CV, EIS Phosphate buffer 30 min 4 cells/mL 1 × 101–1 × 106 cells/mL [63]

OPN CV, SWV Synthetic human
plasma 60 min 1.3 ± 0.1 nM CV: 25 to 100 nM

SWV: 12 to 100 nM [64]

OPN CV PBS buffer 60 min 3.7 ± 0.6 nM 25–200 nM [65]
PDGF-BB,

MCF-7 cells CV, SWV PBS buffer - PDGF-BB: 0.52 nM
MCF-7: 328 cells/mL

PDGF: 0.52–1.52 nM
MCF-7: 328 to 593 cells/mL [54]

Lung Cancer

CEA, NSE CV, DPV Serum 1 h CEA: 2 pg/mL
NSE: 10 pg/mL

CEA: 0.01–500 ng/mL
NSE: 0.05–500 ng/mL [66]

CEA DPV, EIS Human serum 85 min (total) 1.5 pg/mL 5 pg/mL to 50 ng/mL [67]

CEA EIS Buffer, serum - Buffer: 0.45 ng/mL
Serum: 1.06 ng/mL 0.77–14 ng/mL [68]

Lung tumor EIS Blood plasma ~25 min - - [69]
Lung cancer tissues

(proteins) SWV Blood plasma 1 h 0.023 ng/mL 230 ng/mL to 0.023 ng/mL [70]

VEGF165 CV, EIS Lung cancer Serum
samples 40 min 1.0 pg/mL 10.0–300.0 pg/mL [71]

Lung cancer tumor CV, DPV, SWV, EIS Human blood - - - [14]
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Table 1. Cont.

Cancer Type Target Technique Sample Assay Time LOD Linear Range Reference

Lung/Breast/
others cancer

VEGF DPV Buffer 45 min 30 nmol/L 0–250 nmol/L [40]
CEA DPV Spiked Serum 50 min 0.9 pg/mL 3 pg/mL to 40 ng/mL [35]
CEA DPV, EIS, CV Human serum 1 h 0.34 fg/mL 0.5 fg/mL to 0.5 ng/mL [43]
CEA DPV, CV, EIS Serum 1 h 0.31 pg/mL 1 pg/mL–80 ng/mL [72]
CEA EIS Buffer/Blood sample 1 h 30 min 0.5 pg/mL 1 pg/mL–10 ng/mL [73]
CEA DPV Buffer 1 h 40 fg/mL 0.0001–10 ng/mL [74]
CEA PES Serum 60 min 0.39 pg/mL 0.001–2.5 ng/mL [75]

VEGF165 CV Buffer 1 h 30 fM 100 fM to 10 nM [76]
MUC 1 CV, SWV, EIS Buffer 120 min 4 pM 10 pM to 1 µM [77]

CEA CV, EIS Buffer 1 h 3.4 ng/mL 5 ng/mL–40 ng/mL [78]

CEA CV PBS/spiked human
serum 40 min 6.3 pg/mL 50 pg/mL to 1.0 µg/mL [11]

CEA DPV Buffer/spiked human
serum 45 min 0.84 pg/mL 10 pg/mLto 100 ng/mL [79]

CEA and CA153 PEC Serum samples 20 min CEA: 2.85 pg/mL
CA153: 0.0275 U/mL

CEA: 0.005–10 ng mL, CA153:
0.05–100 U/mL [80]

Prostate Cancer

PSA EIS Buffer 2 h 0.5 pg/mL 0.05 ng/mL to 50 ng/mL [5]
PSA EIS Buffer 2 h (total) 1 pg/mL 1 × 102 pg/mL–1 × 102 ng/mL [32]
PSA DPV Serum samples 40 min 0.25 ng/ mL 0.25 to 200 ng/mL [81]
PSA SWV, EIS Spiked human serum - EIS: 10 pg/mL EIS: 10 pg/mL to 10 ng/mL [82]
PSA DPV Blood serum 30 min 50 pg/mL 0.125 to 128 ng/mL [83]
PSA PEC Human serum - 0.34 pg/mL 0.001 to 80 ng/mL [84]
PSA DPV Human serum 30 min 0.064 pg/mL 1 pg/mL to 100 ng/mL [85]

PSA DPV, EIS Serum
sample 40 min 1.0 pg/ mL DPV: 0.005–20 ng/mL

EIS: 0.005–100 ng/mL [86]

PSA EIS Human serum 2 h 30 min 0.33 pg/mL 5 to 2 × 104 pg/mL [87]
PSA CV, SWV, EIS Buffer 30 min 0.028 * and 0.007 ** ng/mL 0.5–7 ng/mL [88]

PSA PEC PBS buffer/ spiked
Serum 40 min 4.300 fg/mL 1.000 × 10−5 to 500.0 ng/mL, [89]

PSA SWV, EIS Serum sample 4 h (total) 2.3 fg/mL 10 fg/mL–100 ng/mL [90]

PSA PEC Human serum 90 min 0.52 pg/mL 1.0
pg/mL to 8.0 ng/mL [91]

PSA ECL Human serum 60 min 0.17 pg/mL 0.5 pg/mL to 5.0 ng/mL [92]

PSA DPV Spiked Urine Blood
serum 60 min 280 pg/mL 1 to 300 ng/mL [93]

PSA DPV Human serum 30 min 6.2 pg/mL 0.01–100 ng/mL [94]

PSA, SAC SWV 50%
Human serum

PSA: 2 h
SAC: 1 h

PSA: 2.5 fg/mL, SAC: 14.4
fg/mL

PSA: 1 fg/mL to 500 ng/mL
SAC: 1 fg/mL to 1 µg/mL [95]

Blood cell cancer Ramos cell LSV Human serum 3 h 10 cells/mL 1 × 101–1 × 106 cell/mL [42]
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Table 1. Cont.

Cancer Type Target Technique Sample Assay Time LOD Linear Range Reference

Breast/
Liver cancer HeLa, MCF-7, HepG2. PEC Buffer 4 h 20 min (total) 19 cell/mL (HeLa) 50–5 × 105 cell/mL (HeLa) [96]

Breast/
Prostate cancer

CTC
HER2, PSMA, and

MUC1
LSW Spiked in Blood 1 h 2 cells/sensor 2–200

cells/sensor [97]

PDGF-BB DPV PBS buffer 40 min 0.65 pM 0.0007–20 nM [98]

PDGF-BB CV, EIS ID water, 5% trehalose 40 min CV: 7 pM
EIS: 1.9 pM

CV: 0.01–50 nM
EIS: 0.005–50 nM [99]

PDGF-BB DPV PBS buffer 2 h 0.034 pg/ mL 0.0001 to 60 ng/mL [100]
PDGF-BB EIS PBS buffer 2 h 0.82 pg/ mL 1 pg/mL to 0.05 ng/mL [101]

CAT HER2 EIS, CV Diluted human serum 2 h 20 min
(total) 15 fM 0.1 pM to 20 nM [102]

Cervical cancer HeLa EIS Buffer 2 h 90 cells/mL 2.4 × 102–2.4 × 105 cells/mL [103]

Colon cancer
MUC-1 EIS, CV Buffer 120 min 40 cells/mL 1.25 × 102–1.25 × 106 cells/mL [104]

CEA PES Human serum 1 h 1.9 pg/mL 0.01 ng/mL to 2.5 ng [105]
CEA PEC Serum 90 min 4.8 pg/ mL 10.0 pg/mL–5.0 ng/mL [106]

inflammation-
associated

carcinogenesis
TNF-α SWV Human blood 4 h 10 ng/mL 10–100 ng/mL [39]

Leukemia, blood
cancer

CCRF-CEM SWV Buffer 40 min 10 cells/mL 1.0 × 102–1.0 × 106 Cells/mL [107]
K562 cells EIS Buffer 40 min 30 cells/mL 1 × 102–1 × 107 cells/mL [108]

Liver cancer

HepG2 EIS Buffer 2 h 2 cells/mL 1 × 102–1 × 106 cells/mL [22]
HepG2 DPV, CV, EIS PBS buffer 60 min 15 cells/mL 1 × 102–1 × 107 cell/mL [41]
MEAR DPV, CV, EIS Diluted human blood 60 min (Total) 1 cell/mL 1−14 Cells/mL [38]
HepG2 CV buffer 2 h 2 cells/mL 1 × 102–1 × 106 cells/mL [22]

AFP EIS PBS/ diluted human
serum 30 min 0.3 fg/mL 1 fg/mL to 100 ng/mL [109]

Abbreviations: SWV: square wave voltammetry, PEC: photoelectrochemical, AFP: alpha-fetoprotein, CEA: carcinoembryonic antigen, HepG2: human liver hepatocellular carcinoma,
PSA: prostate-specific antigen, MUC 1: Mucin1, HER2: human epidermal growth factor receptor 2, EGFR: epidermal growth factor receptor, MCF-7: breast cancer cell, OPN: osteopontin,
VEGF165: vascular endothelial growth factor, MDA-MB-231: breast cancer cell, PSMA: prostate-specific membrane antigen cell line, ER: estrogen receptor, CCRF-CEM: human T
lymphoblasts, SAC: sarcosine, MEAR: BNL 1ME A.7R.1 liver cancer cell line, PDGF-BB: platelet-derived growth factor-BB, CAT: cancer-associated thrombosis. * Total PSA, ** Free PSA.
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In another report, taking advantage of the target-binding-induced, structure-switching
aptamer and magnetic separation technology, Zhang et al. [107] developed an electrochem-
ical voltammetric aptasensor for the sensitive detection of acute leukemia cells. The ap-
tasensor utilized the competitive binding of whole-cell aptamers to Human T lymphoblasts
(CCRF-CEM) cells with the voltammetric quantification of silver ions. A synergistic strategy
was applied through dual-signal amplification using magnetic nanoparticles with a high
loading of gold nanoparticles and a AuNP-catalyzed silver deposition. The described
aptasensor (cytosensor) showed a detection limit of as low as 10 cells and a reproducibility
value of 3.8% with acceptable stability for 30 days when stored at 4 ◦C. A research study
described a nanoparticle-based, multi-marker strategy using a linear sweep voltammetry
(LSV) technique for the identification of circulating tumor cells (CTC) [97]. In this approach,
an electrochemical chip with multiple sensors was designed to capture cancer cells based
on an epithelial marker. Subsequently, Cu, Ag, and Pd nanoparticles were introduced as
marker-specific reporters that were modified with antibodies or aptamers via electrostatic
binding and a thiol/metal bond, respectively, for the detection of cancer cell biomarkers
to provide electrochemical detection. The electrochemical assay enabled the measure-
ment of the oxidation signal of the metal nanoparticles for the simultaneous detection
of different cancer cells. The electrochemical biochip detected cancerous biomarkers of
as low as two cells per sensor and simultaneously measured three different cancer cells.
Another nanomaterial strategy was to apply an electrochemical aptasensor using DPV
and EIS techniques for the detection of carcinoembryonic antigen (CEA) using dendritic
Pt@Au nanowires (Pt@AuNWs) [72]. Dendritic Pt@AuNWs were utilized as nanocarriers
to immobilize thiol-labeled CEA aptamer2 and a redox tag toluidine blue (Tb), to form the
AuNWs-CEAapt2-Tb bioconjugate. In the presence of CEA, the bioconjugate was captured
onto the surface of the electrode via a sandwich strategy. The electrochemical signal was
achieved through the catalysis capacity of dendritic Pt@AuNWs towards the decomposition
of H2O2, which was added to the electrolytic cell. This aptasensor showed a linear dynamic
range of from 0.001 to 80 ng/mL and a detection limit of 0.31 pg/mL. Additionally, the
aptasensor had an acceptable reproducibility value of 5.6% RSD and retained its sensitivity
capacity after 10 days of storage at 4 ◦C. In conclusion, nanomaterials are excellent signaling
transducers that provide a high surface area, electrical and electro-chemical properties,
allowing aptamers to recognize targets with great selectivity and sensitivity. Most of the
nanomaterial-based biosensors were reproducible and had good stability, but presented
challenges regarding their fabrication, conjugation, and cost.

3. Label-Free Electrochemical Aptasensors

Label-based aptasensors have attracted considerable attention, and have extensively
been used in a variety of applications because they easily generate an electrochemical
signal. However, most redox label-based methods can alter the natural activity of the
analyte and involve a labeling process or immobilization steps, which are often costly and
time-consuming [110,111].

Moreover, these modification or immobilization steps can affect the affinity of the
aptamer [112]; hence, the development of label-free aptasensors is promising (Figure 3).
Among the various electrochemical methods, electrochemical impedance spectroscopy (EIS)
is of significant interest. EIS is not only a powerful method to characterize biomolecule-
functionalized electrodes, but can also be used to monitor biorecognition events that
occur on electrode surfaces [27]. More importantly, EIS is a non-destructive technique,
making it highly attractive for biosensors [103,108] (Table 1). Using this technique, Kashefi-
Kheyrabadi et al. [22] developed a sensitive label-free electrochemical aptasensor that
used HepG2, a hepatocellular carcinoma cell line. This aptasensor takes advantage of
the TLS11a aptamer, which specifically binds to the surface biomarkers of hepatocellular
carcinoma cells. In their work, an amino-labeled TLS11a aptamer was immobilized onto
a carboxylic acid-modified gold electrode via coupling chemistry to capture target cells
in a sandwich assay with an unmodified secondary aptamer (Figure 3B). The aptasensor



Micromachines 2022, 13, 522 11 of 28

showed a dynamic range of from 1 × 102 to 1 × 106 cells/mL and an LOD of 2 cells/mL. The
aptasensor was also highly selective for HepG2 and demonstrated excellent reproducibility
with acceptable stability after 7 days of storage at 4 ◦C.
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Another electrochemical impedance aptasensor was developed using a Mucin-1 ap-
tamer attached to carbon nanospheres (CNSs) for the detection of human colon cancer
DLD-1 cells [104]. The use of CNSs enhanced the electron transfer rate and provided
a stable matrix for aptamer conjugation, resulting in amplified electrochemical signals.
The CNSs-based EIS aptasensor displayed a wide dynamic range of from 1.25 × 102 to
1.25 × 106 cells/mL, with a detection limit of 40 cells /mL and a great specificity for DLD-1
cells. In addition, the reproducibility was excellent, with a value of 3.5% RSD. The stability
was also very good (15 days) when stored at 4 ◦C. A label-free EIS aptasensor based on
the merger of biomolecular recognition elements and molecular imprinting has also been



Micromachines 2022, 13, 522 12 of 28

reported [32]. First, a thiolated DNA aptamer, which targets the prostate-specific antigen
(PSA), is coupled with PSA, and then this is immobilized on the surface of a gold electrode.
Afterward, electropolymerization of dopamine is formed around the complex to both
entrap the complex and localize the PSA binding site on the surface of the sensor. The PSA
was removed to create a polymer binding pocket, resulting in a synergistic effect, along
with the embedded aptamer, to provide a hybrid receptor. This hybrid showed superior
recognition properties to the aptamer alone. To evaluate the subsequent re-binding of PSA
to the apta-MIP surface, electrochemical impedance spectroscopy (EIS) was used. The
apta-MIP sensor delivered a linear dynamic range of from 100 pg/mL to 100 ng/mL PSA
and a detection limit of 1 pg/mL, which is three-fold higher than that of the aptamer. How-
ever, the aptasensor demonstrated low selectivity for PSA in the presence of a homologous
protein. In addition, the reproducibility and stability of the sensor were not ascertained. In
conclusion, label-free aptasensors are cheap and have demonstrated a higher selectivity,
sensitivity, and stability for the early detection of cancer cells compared to typical clinical
techniques. Due to their relatively simple sample preparation, label-free aptasensors are
fabricated without labelling an electroactive probe; hence, they provide a low-cost and
user-friendly platform for clinical applications. In Table 1, the results of the recent EIS
aptasensors for the detection of various cancers have been summarized.

4. Cancer Diagnosis and Early Detection
4.1. Early-Stage Detection of Lung Cancer

Lung cancer, most prevalently non-small cell lung cancer (NSCLC), is the most com-
mon cause of cancer-related mortality in the world, responsible for 1.4 million deaths per
year. The 5-year overall survival rate is less than 15% in the USA [112]. To overcome
the false-positive rate and the radiation risk of lung cancer screening, such as conven-
tional low-dose computed tomography (CT), various methods that rely on circulating
tumor cell (CTCs), non-small cell lung cancer (NSCLC), and validated biomarkers in-
cluding carcinoembryonic antigen (CEA), CYFRA 21-1, or neuron-specific enolase have
been investigated for early lung cancer detection (Table 1 and Figure 4). The vascular
endothelial growth factor (VEGF) plays an important role in angiogenesis and is found in
lung and many other cancer types. There are many methods of detecting VEGF, includ-
ing immunohistochemistry, enzyme-linked immunosorbent assays (ELISA), and radioim-
munoassay. However, these methods are costly, rely on sophisticated instruments, and
are time-consuming. Ye et al. [113] immobilized an aptamer on a glassy carbon electrode
(GCE) and used the aptasensor to detect VEGF using a differential pulse voltammogram.
The alloy and core-shell Au-Pd nanomaterial was used to immobilize the aptamer as the
nanocomposite platform for the detection of lung cancer factors at ultra-trace levels. The
limit of detection was 0.5 pM and 0.78 pM for signal-off and signal-on modes, respectively,
which is comparable with ELISA sensitivity. RSD was estimated at 2.7% and 3.4% after
10 detections at 1 pM for single and three modified electrodes. The stability was within
an acceptable range, with only 5.8% and 10.1% decay when stored at 4 ◦C for 14 days
and at room temperature, respectively. VEGF165, an important glycosylated protein from
the VEGF family, promotes lung tumor progression and is over-expressed in cancer cells
during tumor growth, leading to abnormally fast growth and division.
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Da et al. [78] developed a photoelectrochemical (PEC) aptasensor that uses both optical
and electrochemical platforms for the detection of VEGF. Graphitic carbon nitride (g-C3N4),
which is a metal-free photoactive semiconductor with desirable photo-to-current conver-
sion efficiency, was used to provide a photocurrent signal (Figure 4A). A bridged DNA
aptamer-binding network was assembled, providing a dsDNA platform that improved the
conductivity of DNA and helped enhance the PEC signal. The PEC aptasensor showed high
sensitivity with a detection limit of as low as 0.03 pM (Figure 4B) and excellent specificity
when compared with other biomolecules, such as L-Cystine, thrombin, hemoglobin, BSA,
and IgG. The aptasensor also demonstrated excellent stability with little loss of activity
observed. RSD was estimated at 2.7% and 3.4% after 10 detections at 1 pM for a single and
three modified electrodes, respectively. The aptasensor’s stability was within an acceptable
range, with only 5.8% and 10.1% decay when stored at 4 C and room temperature, respec-
tively. The aptasensor photocurrent was stable under periodic on–off-on lighting for nine
cycles, showing great stability. In the presence of other proteins in high concentrations, the
sensor was shown to be highly specific for the detection of VEGF165. Tabriziand and co-
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workers developed a CV and EIS aptasensor for the detection of VEGF165 [73]. An aptamer
was attached to gold nanoparticles of an OMC-Aunano composite that was immobilized
and dried onto the surface of a screen-printed electrode. Even with other biomolecular
interference concentrations of 100 times higher than VEGF165, the aptasensor did not
show any significant differences in the produced signal, demonstrating high selectivity
for the target molecule. The range of detection was 10.0–300.0 pg/mL, with an LOD of
1.0 pg/mL. The RSDs for intra- and inter-reproducibility estimated at 150 pg/mL were
5.4% and 6.9%, respectively.

Carcinoembryonic antigen (CEA) is a highly glycosylated protein and an important
biomarker, which is overexpressed in a variety of cancer cells, making its early, accurate,
and sensitive detection key to cancer diagnosis. The normal cutoff value for serum CEA
levels is 5 ng/mL or less, and current methods for detecting low levels of CEA generally
use antibodies. However, the drawbacks of these antibody-based biosensors include
their high cost, ethical concerns associated with the production of antibodies, stability
issues, and a high molecular weight [114–116]. A highly sensitive and selective label-
free electrochemical impedimetric aptasensor has been proposed for CEA detection [117].
The aptasensor is developed by the covalent immobilization of an amino-aptamer on an
amino-functionalized, mesoporous, silica, thin films AuNPs/AMCM-modified, glassy
carbon electrode. The detection limit was estimated to be about 9.8 × 10−4 ng/mL and the
aptasensor worked well in the presence of interfering species, with an RSD calculated at
4.7%. The average concentration of CEA was found to be 1.5 ± 0.1 ng/mL for the healthy
sample and 136.5 ± 5.0 ng/mL for samples from healthy persons, and 136.5 ± 5.0 ng/mL
for samples from patients, in keeping with the data obtained from ELISA. The efficiency of
the aptasensor, however, was reduced to 93.5% after 3 days of storage in PBS at 4 ◦C.

Taking advantage of the signal-on sandwich platform, Wang and co-workers devel-
oped an antibody-free, electrochemical sandwich, CEA biosensor based on concanavalin A
(ConA) and a DNA aptamer against CEA using the DPV technique [78]. Horseradish perox-
idase (HRP) was labeled on the sandwich structure for signal production and amplification.
Both the CEA and the HRP are bound to ConA through sugar–lectin interactions. The
ConA-Aptamer aptasensor for the detection of CEA showed high sensitivity and specificity,
with a detection limit of as low as 3.4 ng/mL, lower than the threshold value in the serum
of cancer patients. It also demonstrated excellent reproducibility and stability, with RSD
measured at 3% for 40 ng/mL of CEA, and little to no difference in activity after 20 days
storage at 4 ◦C. By utilizing a nanomaterial-based strategy, Wen and co-workers reported
a new method based on the DPV technique using a triplex signal amplification strategy
for the high-precision biosensing of cancer biomarkers based on the use of hairpin-shaped,
aptamer-functionalized gold nanorods (HO-GNRs) as a signal enhancer [67]. In the pres-
ence of CEA, the binding interactions of CEA and the loop portions of the HOs cause
HOs’ loop–stem structure to expose the biotins, which helps to capture HRP-GNRs-HO.
The SA-CS/GR/GCE-based biosensor exhibited a wide dynamic range from 5 pg/mL to
50 ng/mL, with a CEA detection limit of as low as 1.5 pg/mL, with excellent selectivity.
The competence of the system was unchanged in the presence of other interfering proteins
with 10-fold the concentration of CEA. The detection was reproducible among five inde-
pendently prepared electrodes, with an RSD of 5.6%. The system still showed exceptional
efficiency at 92.7% after 21 days in storage at 4 ◦C. However, the design of a signal-off
electrochemical DPV aptamer biosensor for CEA detection in lung cancer diagnosis was
developed for detection in the semi-pg/mL range using DNA-based amplification tech-
nique. The proposed electrochemical aptasensor uses a CEA-induced bridge assembly on a
gold electrode to enhance the detection of CEA [35]. CEA aptamers 1 and 2 were fabricated
to the electrode and, in the presence of CEA, formed a bridge through their complementary
strand, producing a weak current response. When CEA is absent, the complementary
strand does not form a bridge between Apt1 and Apt2, leading to a strong peak signal. The
CEA aptasensor had a linear range of from 3 pg/mL to 40 ng/mL and an LOD of 0.9 pg/mL.
The sensor showed good specificity towards CEA, with satisfactory reproducibility. Besides
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CEA, no noticeable signal was observed for non-target common proteins, suggesting accept-
able selectivity for the sandwich aptamer. A DNAzyme-assisted aptasensor was developed
using EIS, CV, and DPV techniques to detect CEA [43]. By integrating a Pb2+-dependent
DNAzyme-assisted signal amplification and GQDs-IL-NF composite film, the aptasensor
demonstrated a highly sensitive detection range from 0.5 fg/mL to 0.5 ng/mL, with an LOD
of 0.34 fg/mL. In the presence of non-target proteins, the aptamer provided an insignificant
difference in signal intensity, suggesting comparable selectivity. The RSD of 4.4% was
determined using the DPV method at 100 pg/mL CEA, and the aptamer was stable after
one week of storage, with only about 6.3% degeneration in sensitivity at 4 ◦C.

Paper-based biosensors have recently attracted attention due to their low cost, porta-
bility, and user-friendliness. These characteristics make paper platforms a promising
alternative for a variety of applications, such as diagnostics and the quantitative detection
of biological elements. Graphene and poly (3,4-ethylene dioxythiophene):poly(styrene
sulfonate) (PEDOT: PSS)-modified, conductive, paper-based electrochemical impedance
spectroscopy was developed for the detection of CEA [68]. The biosensor uses graphene
ink and PEDOT: PSS, progressively modified on a paper substrate to form a conductive
composite paper electrode to detect CEA. Graphene has excellent mechanical strength,
good electrical conductivity, and a high surface-to-volume ratio which makes surface-
transporting electrons highly sensitive to the adsorbed molecules. The detection limit was
1.06 ng/mL for human serum samples and the dynamic range was 0.76–14 ng/mL. a com-
parable specificity was observed, with a relative change rate of charge transfer resistance
magnitude of less than 10% in the presence of 2-fold concentration of common interferences.
For reproducibility, the coefficient of variation was calculated at 0.26% and 0.64% in PBS
and in serum, respectively.

Multiple tumor biomarkers can significantly improve the performance of cancer di-
agnostics [118,119]. Cai’s group reported a paper-based electrochemical DPV aptasensor
with high specificity and sensitivity for the detection of multiple tumor biomarkers, includ-
ing CEA and NSE [66]. The paper-based device was constructed through wax printing
and screen-printing, enabling sample auto-injection and sample filtration (Figure 4C).
Amino functional graphene-thionin-gold nanoparticles (AuNPs) and Prussian blue-poly
(3,4-ethylenedioxythiophene)-AuNPs nanocomposites were used to modify the working
electrodes, both to promote the electron transfer rate but for the immobilization of CEA
and NSE aptamers. Under optimal conditions, the aptasensor showed a high specificity
with 1 ng/mL of CEA and NSE and a dynamic range of 0.01–500 ng/mL for CEA and
0.05–500 ng/mL for NSE, which covered CEA and NSE cutoff values. The LOD was as low
as 2 pg/mL for CEA and 10 pg/mL for NSE (Figure 4D). Coefficients of variation of 0.56%
and 1.22%, for graphene-thionin and poly (3,4-eth-ylenedioxythiophene)-modified elec-
trode, respectively, suggest good reproducibility. Additionally, the paper-based aptasensor
provided exceptional stability, with 96.5% competence after 4 weeks of storage at 4 ◦C. The
sensor also showed the potential to detect early point mutations relating to certain diseases,
creating opportunities for the development of new treatment strategies. The aptasensor
had good reproducibility for both targets and demonstrated excellent stability after 4 weeks
of storage at 4 ◦C. Deng and co-workers reported a simple, accurate, and cost-effective
electrochemical aptasensor for the parallel detection of MUC1 and CEA [120]. The detec-
tion of MUC1 and CEA is vital for the early identification of various cancerous cells. The
aptasensor reported in the article is a label-free impedimetric electrochemical aptasensor,
designed using CEA as a selective target. It showed a dynamic range of 0.001–100 ng/mL
and a detection limit of 9.8 × 10−4 ng/mL. The sensor’s reproducibility was satisfactory,
and its specificity was good for the detection of CEA amongst interfering proteins. The
stability of the sensor was also evaluated, and it was shown to retain 93.5% of its sensitivity
after 3 days of storage at 4 ◦C.

Epidermal growth factor receptor (EGFR) is a cancer biomarker, and its overexpres-
sion can signal cancer. It can be used for lung cancer detection. Ilkhani et al. [46] reported
the development of an Aptamer/Antibody DPV aptasensor for the detection of EGFR. A
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biotinylated anti-human EGFR Apt-linked streptavidin-coated magnetic bead (MB) was
used as a capture probe and polyclonal EGFR-coated AuNP was used as a signaling probe.
In the presence of EGFR, an Apt–EGFR–Ab sandwich forms on the MB surface. Under
optimal conditions, the dynamic concentration range of the aptasensor spanned from
1 to 40 ng/mL, with a low detection limit of 50 pg/mL, which is six times more sensitive
than commercial EGFR ELISA. With its hairpin design, the highly effective discrimina-
tion property of the aptasensor enabled the differentiation of one base-mismatched DNA
strand from the target DNA strands at low concentrations. RSDs of 4.23% and 3.28% for
4 and 30 ng/mL of EGFR, respectively, were calculated, suggesting great reproducibility.
The sensor was reported to be stable after 7 days of storage at 4 ◦C.

In another signal amplification approach, Wang et al. [77] investigated an electrochem-
ical aptasensor for the detection of MUC 1 through exonuclease-assisted target recycling
and amplification. The interaction between the aptamer on the electrode and MUC 1 caused
a dissociation that led to decreasing signal strength. Square wave voltammetry (SWV) was
used for the detection of the electrochemical signal. There was an inverse relationship
between SWV response and MUC 1 concentration. The linear relationship was in the range
of from 10 pM to 1 µM, with an R-value of 0.993. The limit of detection was 4 pM. The re-
producibility of the aptasensor was tested with the same concentration of MUC 1, scanned
10 times with a standard deviation of only 5.7%. The effective detection of the target was
also demonstrated in the presence of a 200-fold higher concentration of interferences.

Small cell lung cancer (SCLC) is a fatal tumor that consists of about 15% of lung cancers,
but is biologically, pathologically, and molecularly different from other lung cancers [121].
Zamay and co-workers have developed an electrochemical aptasensor for the direct detec-
tion of lung cancer cells using the DNA aptamer LC-18, which has a high binding affinity
and specificity for lung cancer tissue [70]. They first used an electrochemical aptasensor
with square wave voltammetry (SWV) to analyze crude clinical blood plasma samples from
lung cancer patients (LCP) and healthy people (HP). To enhance the sensitivity, magnetic
beads were used to promote the reduction in the active surface of the electrode, resulting in
a decrease in current to allow for the detection of protein concentrations that are 100 times
lower compared to protein detection without a sandwich approach. The detection limit
obtained with the LC-18-based aptasensor was 0.023 ng/mL, with a linear range between
230 ng/mL and 0.023 ng/mL. Zamay’s team also studied blood plasma samples of healthy
patients and lung cancer patients of both sexes (32–65 years old) [69]. They developed an
aptasensor using the aptamer 17_80, which has a high-affinity and -specificity binding
to lung tumor cells, coated on gold electrodes. By measuring the electrical resistance of
the samples, the results showed a significantly lower cell index for LCPs compared to
healthy patients. Moreover, the aptasensor showed the potential to detect even stage I lung
cancer. Although lung cancers appear latent in their early stages, making early detection
challenging, the high sensitivity reported by these aptasensors offer great promise for
specific screening and early diagnosis to provide rapid treatment to patients. Therefore, the
recent advances and improvements made with the use of aptasensors suggest that they can
be applied for preclinical detection of the numerous biomarkers expressed during different
stages of lung cancer.

4.2. Early-Stage Detection of Breast Cancer

Biomarkers such as carcinoembryonic antigen (CEA), vascular endothelial growth
factor (VEGF165), MUC1, platelet-derived growth factor (PDGF), and human epidermal
growth factor receptor 2, play a critical role in the diagnosis of breast cancer in the early
stages (Table 1) [22,33,48–51,53–55,57–65,73–75,105,106,122]. The conformational changes
in target-induced aptamers were successfully applied in aptasensors for the electrochemical-
based detection of breast cancer to improve the detection limit and sensitivity. Nucleolin,
found in MCF-7 cells, is another biomarker that is often targeted for breast cancer cell
detection using aptamers. One such aptasensor, functionalized with porous GO/Au
composites and PtFe alloy, was designed to detect nucleolin in MCF-7 cancer cells [33]. The
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sandwich-type assay involved a GO/Au composite as a capture substrate, bioconjugated
with PtFe to provide an improved detection limit of 38 cells/mL. The cancer cells were
directly detected at an optimum pH condition of 7.5, which is similar to the physiological
pH. The aptasensor showed promise for clinical use in early breast cancer detection. The
potential for clinical detection was further strengthened by its high selectivity for MCF-7
cells, demonstrated after mixing equal amounts of HepG2cells, MCF-7 cells and SK-BR-3
cells. This aptasensor demonstrated good reproducibility before and after storage at 4 ◦C.
Using a similar biomarker, Cai et al. [53] developed an aptasensor using a combinational of
DNA walker and aptamer technologies to detect MCF-7 cells. The breast cancer cells were
detected when a free-running DNA walker was released upon the addition of MCF-7 cells,
providing a detection limit of 47 cells/mL and a reproducibility of 1.26 RSD. Several other
aptasensors have been designed to target nucleolin-containing MCF-7 cells. For example,
an aptasensor used signaling probe displacement to detect MCF7 cells that carried nucleolin
biomarkers with an 8 ± 2 cells/mL detection limit in human plasma [60]. To rapidly and
conveniently detect MCF-7 cells in complex biological media, a branched peptide was used
to overcome nonspecific surface interactions, allowing for the aptasensor to detect MCF-7
cells in serum with high selectivity and a detection limit of 20 cells/mL [55]. In addition, the
aptasensor was effectively used to detect MCF-7 cells in serum samples and could be used
for the treatment and early detection of breast cancer. Aptasensors can detect nucleolin in
MCF-7 cells with excellent selectivity and sensitivity, including electrochemiluminescence
(ECL) with a detection limit of 10 cells [61], and nanocarrier probe with a low detection
limit of 0.33 pM [59]. Recently, a graphene-based aptasensor was designed for the early
detection of nucleolin in MCF-7 cells in breast cancer samples [63]. The biosensor, which
showed high selectivity for MCF-7 cells, had a detection limit of 4 cells/mL. To improve
sensitivity, graphene oxide was combined with a MUC1 binding aptamer to produce
an aptasensor with a detection limit of as low as 0.79 fM in a buffer solution [58]. The
aptasensor was also applied to detect MUC1 cells in spiked serum samples and showed
excellent reproducibility, selectivity, and stability. With a nanomaterial-based strategy, an
aptasensor used a graphene oxide platform to improve the detection sensitivity of MUC1
with a detection limit of 40 cells/mL (Figure 5B) [62].
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Another biomarker that can be used for early breast cancer detection is thrombin.
Thrombin detection with an aptasensor has been reported, using a sandwich method based
on a signal enzyme-assisted amplification strategy with a detection limit of as low as
15 fM [102]. The electrochemical response of the aptasensor for interfering proteins was
negligible compared to thrombin, demonstrating high specificity along with a reproducibil-
ity RSD value of 4.96%. In two independent studies, the recognition of osteopontin (OPN)
with aptasensors was reported for the early detection of breast cancer [64,65]. In their
first study, using the synthesized aptamer and a ferro/ferricyanide solution redox probe,
OPN was detected in a standard solution with a detection limit of 3.7 ± 0.6 nM, which
is within the OPN detection range of patients with metastatic breast cancer [65]. In the
second study, the OPN aptamer was selected by SELEX and an electrochemical aptasensor
showed a detection limit of 1.3 ± 0.1 nM in synthetic human plasma [64]. This aptasensor
demonstrated a lower LOD, with low signal interference from other proteins compared
to the first aptamer. It detected OPN in human plasma similarly to the standard ELISA
assay. Both aptasensors reportedly showed great reproducibility and stability and could
thus potentially be used for early breast cancer prognosis. As efforts are being made to
improve early diagnosis, many of the designed aptasensors are targeted towards ubiquitous
biomarkers, such as CEA, which is often expressed in the serum or plasma of breast cancer
patients. One such aptasensors, the Ag NCs-HRP nanoprobe aptasensor, was able to detect
CEA in a clinical serum sample with a detection limit of 0.5 pg/mL [73]. The aptasensor
was able to selectively and repeatedly detect 1 ng/mL CEA in the presence of 10 ng/mL
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of interfering proteins in a standard solution. In a similar study, Liu et al. [74] reported
the detection of CEA with a lower detection limit of 40 fg/mL in PBS. They assembled the
CEA aptamer on the surface of AuNPs-HGNs/GCE and studied the sensitivity using the
differential pulse voltammetry technique. This aptasensor demonstrated high specificity
and selectivity for CEA in the presence of 100 ng/mL interfering proteins. In another study,
Deng et al. [75] utilized a photochemical aptasensor, involving a resonance energy transfer
between pinnate titanium dioxide nanorod arrays (P-TiO2) and carbon nanotubes-gold
nanoparticles (CNTs-Au). In their study, CNTs-Au composites quenched the florescence
of excited P-TiO2 NA and inhibited the generated photocurrent. In the presence of CEA,
the florescence was recovered, and the photocurrent sensor showed a detection limit of
0.39 pg/mL in serum samples. A similar approach was carried out by another group, using
ZnO flower-rods (ZnO FRs) modified with g-C3N4-Au nanoparticle (AuNP) nanohybrids,
and displayed a detection limit of 1.9 pg/mL in human serum [105]. The aptasensor was
reproducible, with an RSD value of 3.16% after five assays, and thus could be used for
the early detection of the breast cancer. Another interesting study developed a ratiometric
photoelectrochemical aptasesnor, which was fabricated on a 3D printing device for the
detection of CEA under 980 nm illumination (Figure 5A) [106]. The aptasensor, with a
detection limit of 4.8 pg/mL, reportedly showed greater specificity for 0.1 ng/mL CEA
compared to the 10 ng/mL of each interfering protein. The stability was also assessed
by repeating “on and off” irradiation measurements, as the aptasensor was able to pre-
serve 93.2% of initial photocurrent for 0.1 ng/mL CEA detection after storage for 200 days.
Aptasensor-based detection of other biomarkers and whole cells, such as HER2, exosomes,
and MDA-MB-231, has also been reported and used for the detection of the breast can-
cer. Hu et al. [122] reported the detection of human epidermal growth factor receptor
2 (HER2) in both buffer and serum. In their sandwich assay, HER2 was captured on a
gold electrode surface and its specific aptamer was added to bind HER2 and generate a
redox current signal. The concentration of HER2 present was proportional to the amount
of current generated, and the detection limit was 5 pg/mL. The response of the aptasen-
sor to 5 ng/mL HER2 was significantly higher than the 5 ng/mL of interfering proteins.
Using a similar DNA current-generating approach, Shen et al. [50] showed the detection
of HER2 with a higher sensitivity in both buffer and patient’s serum. Their aptasensor
was integrated with a DNA self-assembly, which extended the length of the DNA and
improved the detection limit to 0.047 pg/mL. The great selectivity and reproducibility of
the aptasensor, as well as the rapid detection time, are promising indicators for early breast
cancer diagnosis. Using a different approach, Arya et al. [51] reported that their capacitive
aptasensor detected HER2 from undiluted serum at a detection limit of lower than 1 pM.
They used an HER2-specific aptamer to prepare the bio-recognition layer on interdigitated
gold surface and measured changes in capacitance. They indicated that the aptasensor
can be used for early-stage breast cancer diagnosis. Another research team designed a
highly reproducible and specific aptasensor for HER2 recognition, with a detection limit of
50 fg/mL in serum samples [48]. With this method, they were able to differentiate the sera
of healthy patients from that of breast cancer patients. In addition, the aptasensor retained
94% of the initial detection efficiency after being stored for a month. To diagnose breast
cancer using a different biomarker, an aptasensor [49] based on electrochemiluminescence
was used to detect exosomes in serum with a detection limit of 7.4 × 104 particle/mL.
In another study, a biomarker called estrogen receptor alpha (Erα) was targeted, with a
detection limit of 0.001 ng/mL within 10 min in cancerous breast tissue samples [47]. A
gold-plated aptasensor was reportedly used to analyze the expression of estrogen receptor
in breast cancer to determine endocrine responsiveness for subsequent therapy. The ap-
tasensor’s sensitivity was intact after 60 days of being stored at 4 ◦C. When the same gold
nanoparticles were used, supported by α-cyclodextrin, a different research group was able
to analyze platelet-derived growth factor and MCF-7 cells in unprocessed human plasma
with low detection limits of 0.52 nM and 328 cells/mL [54]. Their study indicates that more
than one biomarker can be accounted for in early breast cancer prognosis. All these studies
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have shown that the early diagnosis of breast cancer can be readily achieved using carefully
designed aptamers, and in biosensors that are facile and rapid. More research studies are
ongoing to create new and improved diagnostic tools for early breast cancer detection.
For example, the detection of invasive breast cancer disease using a metastatic model has
been reported. The study involved an apta-cyto-sensor developed for the quantification
of circulating human MDA-MB-231 breast cancer cells in spiked blood serum [57]. The
apta-cyto-sensor was used for the early detection of breast cancer with a quantitation limit
of 5 cells/mL. Upon evaluating the selectivity of the aptasensor, it showed a high specificity
for its target cancer cells, along with a reproducibility of 4.2%. A 5.1% regeneration ability
of the aptasensor was also ascertained, indicating a high potential for reusability. Overall,
there has been much success in developing biosensing methods for the early detection
and progression monitoring of human breast cancer. The design and utilization of various
aptasensors in diagnosis have helped to speed up treatment processes and reduce breast
cancer mortality in patients.

4.3. Early-Stage Detection of Prostate Cancer

Prostate cancer is a common cancer among men and is often detected by high lev-
els of prostate-specific antigen (PSA), a 33–34 kDa glycoprotein that is produced by the
prostate. Normal levels of PSA in humans range from 0–0.4 ng/mL; levels between 4 and
10 ng/mL are considered troublesome, and levels higher than 10 ng/mL often indicate
prostate cancer [81]. The early detection of prostate cancer is necessary to increase the
chances of successful treatment. However, prostate cancer is often diagnosed in the late
stages of the disease. Thus, delayed diagnosis of prostate cancer is a contributing factor
to the high death rates associated with this disease. Common methods used to diagnose
prostate cancer include digital rectal exam and conventional immunoassays [123], along
with a transrectal ultrasound [32]. For example, the prostate antigen blood tests yield false
positives about 75% of the time, placing significant psychological and physical stress on the
person being tested [82]. A more recent technique that has been developed can detect lower
levels of prostate blood antigen, making it more efficient and sensitive than the classical
prostate blood antigen test. The technique relies on ratiometric electrochemical sensors [32],
which measure biological targets through the collection of at least two response signals [82].
It has been reported that this method is more precise because the output of the signal is
measured as a ratio, which helps to eliminate external interference, and increase efficiency
and sensitivity compared to the classical blood test [83,84]. In addition, it is important to de-
velop new and improved techniques with increased sensitivity for the diagnosis of prostate
cancer. An ideal method for prostate cancer detection is expected to be efficient, scalable,
and accurate enough to detect early-stage cancer or precancerous samples. Aptamers are
oligonucleotides or peptides that are easily synthesized, have long shelf lives in vitro, and
are cheaper to produce as specific bioaffinity ligands for target molecules. They are specific,
stable, and have high sensitivity for the detection of various cancer biomarkers including
PSA. Different aptamer-based biosensor platforms were developed for the detection of
prostate cancer biomarkers or direct detection of prostate cancer cells, such as electrochemi-
cal impedance spectroscopy (EIS) [124], Square Wave Voltammetry electrochemical [90],
photoelectrochemical [91], and electrochemiluminescence [92] (Table 1). Among them, EIS
techniques, which measure changes in electrode impedance upon target recognition, were
reported to have sensitivities at the attomolar range, and thus are a promising method for
the diagnosis of prostate cancer [124,125].

For example, Ma et al. [92] developed an enzyme-free recycling amplification electro-
chemical aptasensor that used a target-induced catalytic hairpin assembly and bimetallic
catalysts for the detection of PSA. The Au/Pt-PMB probe used exhibited strong electrocat-
alytic activity that decomposed H2O2 with a strong initial electrochemical signal due to the
strong redox groups attached to it. The aptasensor had a dynamic range of from 10 fg/mL
to 100 ng/mL and an ultrasensitive LOD of 2.3 fg/mL.
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Tang et al. [91] developed an aptasensor for detecting PSA using a sensitive signal-
on photoelectrochemical (PEC) sensing platform. The technique used exciton–plasmon
interactions between nanoparticles, including CdS QDs-coated mesoporous TiO2 and
AuNPs-functionalized graphene nanosheet (AuNPs/GN). Compared to traditional PEC
immunoassays, this PEC aptasensor exhibited high sensitivity for PSA detection, with a dy-
namic linear range of from 1.0 pg/mL to 8.0 ng/mL and a lower LOD of from 0.52 pg/mL
for exciton–plasmon interaction between CdS QDs and AuNPs. Focusing on the transduc-
ing material to enhance the sensitivity, Villalonga et al. [93] developed an electrochemical
DNA aptasensor by covering gold electrodes with a thin, mesoporous silica film (MSF) that
acted as a transducing material (Figure 6A). Diffusion of the electroactive probe towards the
sensing surface through the nanochannels was achieved by electrochemically inducing the
deposition of MSF. The detection of PSA relied on the ability of the aptasensor to reduce the
diffusion of the [Fe(CN)6]3/4− redox probe through the mesoporous film that had anti-PSA
specific DNA aptamers on the outside. The DNA aptasensor had an LOD of 280 pg/mL
and was very sensitive to PSA within a range of from 1 to 300 ng/mL. Ma et al. [92]
developed an electrochemiluminescence aptasensor using a luminol-based ECL system
and gold nanorods that were functionalized with graphene oxide (GO@AuNRs) labeled
with glucose oxidase for the detection of PSA. Multiple signal amplification was achieved
by adding SA-biotin-DNA and GOD on the GO@AuNRs signal probes. The ECL signal
was also amplified by the combination of SA and Biotin-DNA, and the high content of
AuNRs and GOD in the signal probe. A hybridization reaction between the biotin-DNA
and the PSA aptamer enabled the signal probes to be secured onto the electrode in the
absence of PSA. This led to the abundant generation of reactive oxygen species (ROSs)
from the AuNRs-catalyzed H2O2, produced by GOD catalyzing glucose into H2O2. The
aptasensor showed a detection limit of 0.17 pg/mL and a range of from 0.5 pg/mL to
5.0 ng/mL. By using a paper-based platform, Yang et al. [43] developed a microfluidic
paper-based analytical aptasensing device. Their device used hydrophobic and hydrophilic
layered paper electrodes created by wax printing to detect PSA. Three electrodes were
screen-printed onto the device, including a counter and reference electrode and a working
electrode. The DNA aptamer probe was immobilized by coating reduced graphene oxide
(rGO), gold nanoparticles (AuNPs), and thionine (THI) nano-composites onto the working
electrodes. The AuNPs and rGO aided in electron transfer due to their conductivity, and the
biological recognition between PSA and the DNA aptamer was transduced with the THI
serving as the mediator. The aptasensor had an overall range of from 0.05 to 200 ng/mL
and a detection limit of 10 pg/mL for PSA.

Combining aptasensors to nanoparticles for prostate antigen blood tests will allow
for a more efficient diagnosis. Jolly et al. [82] reported that the use of gold nanoparticles
fabricated as aptasensors can significantly improve sensitivity. The AuNP-fabricated ap-
tasensors have detected prostate-specific antigen levels of as low as 10 pg/mL in human
serum samples [32,82,94]. This method shifted the limit of quantification from 60 ng/mL
to 10 pg/mL, an improvement of nearly four orders of magnitude. Recently, an amplified
electrochemical biosensor based on a flower-like MoS2 nanostructure and SiO2 nanopar-
ticle for the detection of PSA and sarcosine, a prostate cancer biomarker, was reported
(Figure 6B) [95]. The MoS2 nanostructure was fabricated on the electrode to improve the
DNA hybridization efficiency and a SiO2 nanoparticle was used as a signal amplification
probe. The aptasensor showed a high dynamic range of from 1 fg/mL to 500 ng/mL for
PSA and from 1 fg/mL to 1 µg/mL for sarcosine. Under optimal conditions, the LOD
was as ultra-low as 2.5 fg/mL and 14.4 fg/mL for PSA and sarcosine, respectively. Hence,
the incorporation of nanomaterials such as nanoparticles and aptamers into technologies
designed for the detection of prostate-specific antigen could be a great fit for clinical elec-
trochemical assays for the diagnosis of prostate cancer. Therefore, the use of aptasensors
provides a rapid and facile tool to not only detect early prostate cancer but also provide
accurate testing in diagnosis compared to traditional methods. The lower limits of detection
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that were reported suggest that aptasensors can be constructed to detect PSA levels well
within applicable clinical limits, making clinical applications possible.
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5. Conclusions and Outlook

Aptasensors are promising biosensors, which take advantage of aptamers as recog-
nition elements. Aptamers, also called chemical antibodies, are very small compared
to antibodies and can bind with high affinity and specificity to their targets. Moreover,
nonspecific binding events are less observed on aptamer-modified surfaces compared to
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antibody-modified surfaces. Leveraging the excellent characteristics of aptamers with the
unique advantages of electrochemical techniques, such as being easy to operate, economical,
sensitive, miniaturize, and suitable for automation, make the application of electrochemical
aptasensors promising for the early diagnosis of cancers.

Despite the outstanding advantages of electrochemical aptasensors, challenges remain
relating to aptamers, which limit their practical applications. As the immobilization of
aptamers onto surfaces can affect the aptamer conformation, which is also affected by the
composition of the binding environment [126], the application of aptasensors is limited
in complex biological systems. Additionally, challenges still exist; some proteins may
nonspecifically interact with aptamers and cover the specific binding site of the analyte
if not carefully designed. Furthermore, the nucleic acids present in biological fluids may
hybridize with aptamers to affect the conformation of the aptamer and, subsequently, the
binding site of the analyte.

Whilst emerging research in the field is partly focused on addressing the aforemen-
tioned challenges, it also focuses on new approaches, such as the development of elec-
trochemical aptamer-based micro-/nanochips in clinical applications. Aptamer microflu-
idic/wearable devices are also expected to play a key role in the early-stage detection of
cancers. There are various reported methods by which aptasensors have been utilized for
cancer diagnostics. The aptamers used in these biosensors are designed to provide great
specificity and improved sensitivity for the early testing of major cancer types, such as those
affecting the human lung, breast, and prostate. Specific biomarkers that are usually ex-
pressed on the surfaces of these cancer cells play significant roles in diagnostics. Although
many of the reported aptasensors are purely electroanalytical, without clinical applications,
the development of techniques that rely on ratiometric electrochemical sensors can improve
the signal output, specificity, and sensitivity of cancer biomarkers [42,74]. In addition, new
techniques with increased sensitivity, which are scalable and specific enough for early-stage
cancer detection, are needed to develop a point-of-care testing (POCT). The development
of POCT is the next step that will catalyze the commercial application of electrochemical
aptasensors for widespread cancer diagnostics. Despite the existing challenges, such as the
insufficient long-term stability of bioelectronic chips, associated with aptasensors, there
are clear advantages, including their relatively rapid analysis time and low cost, making
them very promising for clinical applications. Therefore, with additional research efforts,
aptamer-based biosensors can be developed as robust tools for the reliable and efficient
analysis of biomarkers of various cancer cells in physiological fluids.
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