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Abstract: Finding process parameters for laser-drilled blind holes often relies on an engineer’s
experience and the trial-and-error method. However, determining such parameters should be
possible using methodical calculations. Studies have already begun to examine the use of neural
networks to improve the efficiency of this situation. This study extends the field of research by
applying artificial neural networks (ANNs) to predict the required parameters for drilling stainless
steel with a certain depth and diameter of blind holes, and it also pre-simulates the drilling result of
these predicted parameters before actual laser processing. The pre-simulated drilling results were also
compared with real-world observations after drilling the stainless steel. These experimental findings
confirmed that the proposed method can be used to accurately select laser drilling parameters and
predict results in advance. Being able to make these predictions successfully reduces time spent,
manpower, and the number of trial-and-error shots required in the pre-processing phase. In addition
to providing specific data for engineers to use, this method could also be used to develop a set of
reference parameters, greatly simplifying the laser drilling process.

Keywords: laser; percussion drill; blind hole; plasma; artificial neural network

1. Introduction

Laser processing has the characteristics of high speed and stable energy. These prop-
erties have led to the widespread adoption of laser processing in the manufacturing,
automotive, and electronics industries. Lasers can be applied in various ways, including
cutting specific shapes on diamonds [1], material removal on CBN (cubic boron nitride) [2],
drilling YSZ (yttrium stabilized zirconia) materials [3], micro-drilling aluminum materi-
als [4], drilling holes without creating cracks on surfaces [5], and sintering materials [6].
However, controlling the depth of blind holes in laser drilling remains a challenge. In
fact, the depth of laser-drilled holes is affected by many factors, such as the energy of the
laser pulse, the pulse frequency, properties of the material being worked, spatter, and gas
pressure. Controlling high-aspect-ratio blind holes with small diameters represents even
more of a challenge, as accurately controlling the depth of blind holes in laser drilling re-
quires a substantial amount of effort [7]. Daniel et al. [8] presented a mathematical model to
estimate the drilled hole depth based on the homogenous distribution radiation of the laser
on the wall of the drilled holes. However, it must be assumed that the drilled hole is conical,
and it might not be suitable in cases full of variables. Numerical simulation techniques
have also been applied to predict the depth and processing time in the laser drilling process.
Meshless and particle-based methods were suitable for the simulation of the laser ablation
process regarding its material loss in the process. The smoothed particle hydrodynamics
(SPH) modeling technique was used to model the transient heat conduction during the
interaction between the laser and material [9]. In order to improve the robustness and
efficiency of the computational calculation, several techniques have been developed, such

Micromachines 2022, 13, 529. https://doi.org/10.3390/mi13040529 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13040529
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0001-7905-2361
https://doi.org/10.3390/mi13040529
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13040529?type=check_update&version=2


Micromachines 2022, 13, 529 2 of 17

as the particle strength exchange (PSE) method [10], the symmetric smoothed-particle
hydrodynamics (SSPH) method [11], or the meshless local Petrov–Galerkin (MLPG) colloca-
tion method [12]. A three-dimensional simulation of the laser drilling process by meshless
methods with six different schemes was performed to compare runtimes at three different
resolutions of particles [13]. With numerical simulation techniques, however, process vari-
ables, for example, absorptivity of material, latent heat, or assist gas, were ignored in the
computational modeling.

Neural networks can construct nonlinear models, can accept different kinds of vari-
ables as input, and have strong adaptability. They have been used for prediction, modeling,
and parameter optimization in various laser processing techniques in recent years. One
study indicated that artificial intelligence could extract knowledge concealed in experimen-
tal data, so that complex decisions could be made without manual intervention [14]. In
2003, Yousef employed a neural network to predict laser energy using just the material
type, drilling depth, and diameter for single-shot laser processing as inputs. This investi-
gation demonstrated that neural networks can be used to predict the required processing
parameters [15].

Since artificial neural networks (ANNs) can only determine parameter conditions
through constant recalculation, they may not provide the best processing solution. For this
reason, Solati et al. [16] combined an ANN with a genetic algorithm (GA), using the ANN
to process the relationship equation first for material removal, and then using the GA to
optimize the parameters. Sibalija et al. [17] proposed a method of integrating ANNs with
GA and compared this design with Taguchi’s quality loss function. Experimental laser
drilling results showed that the integration of an ANN generated a system that could find
a global solution within a continuous space.

In addition to optimizing ANNs, a GA can also be used alone to generate predictive
algorithms. In one study, a GA was employed to establish multi-gene genetic programming
(MGGP). Subsequently, scholars compared outcomes between ANNs when combined with
MGGP, predicting the strength and processing time of processed graphene sheets using
processing temperature, drill speed, and drill feed. Their results showed that MGGP-
enhanced ANNs significantly outperformed conventional ANNs [18].

Patel et al. [19] compared the accuracy of fuzzy logic, regression models, and ANNs
when predicting groove widths in laser-cut, glass-fiber-reinforced polymers. As input
parameters, they tested changes in laser power, auxiliary gas pressure, and cutting speed.
Mustafa et al. [20] compared the results of extreme learning machines (ELMs) with ANNs
to predict droplet spatter area, hole diameter, and hole inclination for the laser drilling of a
titanium alloy, a material commonly used in aerospace engineering. In this study, not only
was the ELM model more accurate than the ANN, but its operation time was shorter.

Another study incorporated analysis of variance into the response surface method-
ology (RSM) to enhance prediction accuracy, and then compared it with a feed-forward,
back-propagation ANN to predict groove depth, groove width, and pattern similarity for
machined Al–SiC composites. The input parameters comprised auxiliary gas flow, focus
position, pulse frequency, and laser current. Overall, the ANN demonstrated a more uni-
form performance [21]. Dhaker et al. [22] used an adaptive neuro-fuzzy inference system
that combined a GA and fuzzy logic to optimize parameters. It achieved accurate results
by governing control parameters.

Most of the study works focused on predicting process parameters or predicting
drilling depth and geometry, separately. Thus, this study proposes a complete architec-
ture combining process parameter prediction and processing result simulation. With the
proposed method, the operator only needs to input the desired drilling depth and hole
diameter, and then the system can predict the required process parameters. At the same
time, the proposed system can also simulate the processing results, and the operator can
check whether the simulation error is within the acceptable range as the basis for whether
to adjust the parameters. Through such a pre-simulation, the number of trial parameters
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can be reduced and the preparation time of finding parameters can be shortened. The
quality of the drilled holes can also be confirmed in advance.

2. Pre-Processing of the Experiment

The laser source in this study was a 20-W EP-Z Pulsed Fiber Laser (PFL). Detailed
specifications of the experimental setup are presented in Table 1. A schematic figure of
laser drilling is shown in Figure 1. The processing material selected for testing was 304
stainless steel, 50 mm × 50 mm × 2 mm with a surface roughness Ra of 0.07. Table 2 shows
the precise material composition provided by the stainless steel manufacturer.

Table 1. Laser source information.

Laser Specifications

Model SP-020P-A-EP-S-A-Y

Laser module dimensions 347 × 201 × 95 (H,W,D) mm

Nominal average output power 20 W

Central emission wavelength 1059–1065 nm

Pulse repetition frequency (PRF) range 1–1000 kHz

Beam quality factor (M2) 1.3

Pulse duration range 3–500 ns
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Figure 1. Schematic figure of laser drilling.

Table 2. 304 stainless steel material properties.

SUS304 Fe C Mn P S Si Cr
Percentage

(%) 78.85 0.08 2.00 0.045 0.03 1.00 18.00

Properties Density (g/cm3)
Thermal Conductivity

(W/m-◦C) Specific Heat (J/g-◦C) Melting
Point (◦C)

Value 7.93 16.3 @ 100 ◦C 0.50 1398

Before processing, an ultrasonic vibration machine was used to clean the surface of
the material with acetone and ethanol for 20 and 25 s, respectively. The focus position was
located on the surface of the material. Each hole’s drilling location was located 0.5 mm
apart. To ensure experimental reliability and reproducibility, the position of the material
and the z-axis of the laser processing machine were not adjusted when the material was
placed onto the laser machining platform.
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2.1. Experimental Data Collection

Many factors affect laser processing results, including laser pulse width, pulse repeti-
tion frequency, pulse waveform, pulse energy, number of pulses, and auxiliary gas pressure.
The amount of laser energy applied to the material surface directly affects the laser drilling
depth; therefore, among these factors, the combination of laser pulse energy and number
of pulses is the most direct factor affecting drilling depth. Therefore, this study selected
these two factors as the key variables of interest and held other parameters fixed for the
duration of the experiment. The laser pulse energy settings used in this study were 0.45,
0.475, and 0.5 mJ. The number of shots used ranged from 1 to 40. Each combination of shots
at each energy level were performed nine times for reliability, thus obtaining 1080 sets of
data. Each data set contained the laser pulse energy, number of shots, drilled-hole diameter,
and depth.

2.2. Measurement of Hole Diameter and Depth

In order to reduce any errors caused by measurement and to ensure that the mea-
surements were as accurate as possible, we used two types of instruments to measure
the diameter and depth of the drilled holes. The first instrument was a SWIM-1510MS
white-light interferometer obtained from Taizhi Precision Technology Company. It has a
measurement accuracy of 1 nm increments and was used to measure the depth of shallow
drilled holes. The measurement method is illustrated in Figure 2.
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Figure 2. Depth measurement using the white-light interferometer.

Where the number of shots exceeded 10, the drilled-hole depth could not be measured
accurately with a white-light interferometer. Therefore, a microscopy with an Olympus
U-PMVTC was used in focus mode with a resolution of 0.5 µm. By using this instrument,
the hole diameters were also measured from the captured images, as shown in Figure 3.
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3. Methodology

This study established two neural network models based on the deep learning toolbox
in MATLAB and combined these with the practical laser machining process shown in
Figure 4. First, the target diameter RT and target depth DT data were fed into the laser
parameter prediction model (LPPM). The number of laser shots NP and the laser pulse
energy EP required were given in the output. Second, the LPPM output was then input
to the simulated laser drilling model (SLDM) to simulate the drilling results and provide
the values of the simulated hole diameter RO and depth DO. Third, the LPPM-predicted
NP and EP values were verified by actual laser machining, whereupon the drilled-hole
diameters and hole depths, RV and DV, respectively, were recorded for verification.
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To build the models of LPPM and SLDM, 70% of the 1080 data sets were used for
training and 30% were used for testing. The LPPM and SLDM were trained separately.

3.1. LPPM

The LPPM was used to predict the laser pulse energy EP and number of laser shots
NP required for drilling a hole of a certain size. Therefore, the inputs of the LPPM were
hole diameter and depth, and the outputs were laser pulse energy and number of shots. In
order to find suitable numbers of hidden layers and neurons of the LPPM, the following
trials were conducted and the optimal one was selected. As shown in Table 3, group A had
five hidden layers and the number of neurons in each layer were 4, 6, 8, 10 and 12. Group B
had four hidden layers and the number of neurons in each layer were 2, 5, 6 and 8. Group
C had three hidden layers and the number of neurons in each layer were 2, 5 and 6. After
comparing the results of using three, four, and five hidden layers, a five-layer structure was
selected because its error value was the smallest, as shown in Table 3. In order, the hidden
layers of the LPPM contained 4, 6, 8, 10, and 12 neurons. The output layer contained two
neurons, and as Figure 5 shows, the network type was feed-forward, back-propagation.
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Table 3. Errors as they varied by number of hidden layers.

Item A B C

Training EP error (%) −0.28 0.25 0.25
NP error (%) 0.79 2.36 1.89

Testing EP error (%) −0.53 0.04 0.04
NP error (%) 1.23 3.58 2.75

A: Five hide-layer, neuron numbers 4, 6, 8, 10, 12; B: four hide-layer, neuron numbers 2, 5, 6, 8; and C: Three
hide-layer, neuron numbers 2, 5, 6.
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Figure 5. ANN-based LPPM for parameter prediction.

3.2. LPPM Training with Five-fold Cross-Validation

The 1080 data entries were sorted, randomly numbered, and divided into 5 groups of
216 entries. The group order was changed, and they were fed into the ANN for calculation
and analysis. Table 4 shows that there was no particularly beneficial performance for a
given combination, implying that there was no specific pattern to the data.

Table 4. Neural network five-fold cross-validation results.

Data Order: VWXYZ WXYZV XYZVW YZVWX ZVWXY

Training EP error (%) −0.28 0.14 0.53 0.18 −0.20
NP error (%) 0.79 0.74 0.74 0.39 0.29

Testing EP error (%) −0.53 0.01 0.69 0.20 0.17
NP error (%) 1.23 0.37 0.37 0.65 −0.23

Mean-Square Error 0.325 0.34 0.423 0.331 0.40
V: Data No. 001–No. 216; W: Data No. 217–No. 432; X: Data No. 433–No. 648; Y: Data No. 649–No. 866; and Z:
Data No. 867–No. 1080.

The group with the smallest mean square error (MSE) of approximately 0.325 was
selected for use in subsequent experiments. During the training process, and using the
groups, the minimal MSE was arrived at on the 110th iteration. The R value was 0.999, as
shown in Figure 6.
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3.3. SLDM

The SLDM was the second ANN and was used to simulate the laser drilling results.
The inputs for the SLDM were the number of shots and laser pulse energy, and outputs for
the SLDM were hole diameter and depth. Through the same attempt as with the LPPM,
the model of SLDM chose five hidden layers, each with 8, 10, 12, 14, and 16 neurons,
respectively, as shown in Figure 7. The MSE obtained after training was 1.8254 and the R
value was 0.9985, as displayed in Figure 8.
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4. Experimental Results
4.1. LPPM

For training the LPPM, 70% of the 1080 data entries was used and 30% of the data
were for testing. When the training was completed, the average error of EP was 0.27% and
the average error of NP was 0.43%. On the other hand, for testing, the average errors for
EP and NP were 0.52% and 0.57%, respectively, as shown in Table 5. One of the sources of
these errors is explained below.

Table 5. Average error of training and testing for the LPPM.

Item Average Error (%)

Training Predicted energy EP 0.27
Predicted shot no. NP 0.43

Testing Predicted energy EP 0.52
Predicted shot no. NP 0.57

The output of predicted shot number by the LPPM may be a number with decimals,
but the shot number should be an integer number. Thus, the predicted value was rounded
to an integer. As a result, there is a gap visible between the actual and predicted values.
The effects of rounding are discussed below. As Table 6 indicates, the initially predicted
number of shots for data entry 1 was NPi = 13.69. Rounding this to the nearest integer
NP = 14 results in the actual diameter and depth (RV and DV) exceeding the target values
(RT and DT). For data entry point 9, the NPi was 10.39, and after rounding, NP = 10. The
difference resulted in RV and DV being smaller than RT and DT, respectively. The table
shows that when (NP−NPi) is positive, the actual drilling results RV and DV are both
larger than the target values RT and DT, respectively, where the errors are positive. When
(NP−NPi) is negative, RV and DV are both smaller than RT and DT, respectively, and the
errors are negative.
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Table 6. Errors when rounding to produce the number of shots required.

Data Entry: 1 2 3 4 5 6 7 8 9 10

Target
RT 64.07 76.19 63.35 62.46 57.30 79.61 76.22 63.08 61.39 73.55

DT 29.50 68.50 26.00 23.50 18.68 71.00 71.00 23.50 21.50 62.00

Predicted
parameters EP 0.50 0.475 0.475 0.45 0.45 0.475 0.475 0.45 0.45 0.475

Without
rounding: NPi 13.69 29.73 12.37 11.34 8.17 28.14 30.90 11.38 10.39 26.91

Rounding: NP 14.00 30.00 12.00 11.00 8.00 28.00 31.00 11.00 10.00 27.00

Actual
RV 65.96 78.86 59.61 57.98 57.23 77.95 76.47 61.95 58.43 75.86

DV 31.00 71.00 25.50 20.00 17.94 67.00 74.50 22.50 19.20 63.00

Errors

NP-NPi +0.31 +0.27 −0.37 −0.34 −0.17 −0.14 +0.10 −0.38 −0.39 +0.09

ERV-T 1.89 2.67 −3.74 −4.48 −0.07 −1.66 0.25 −1.13 −2.96 2.31

EDV-T 1.50 2.50 −0.50 −3.50 −0.75 −4.00 3.50 −1.00 −2.30 1.00

In the experiments, it was revealed that the laser pulse energy and number of laser
shots predicted by the LPPM did not correspond to those in the original training data, but
the target drilling results can still be achieved using the parameters predicted by the LPPM.
For example, the training set contained two records A1 (RT, DT, N, and E) = (76.93, 53, 21,
and 0.5) and A2 (RT, DT, N, and E) = (77.1, 53.5, 22, and 0.45). Here, N and E refer to the
required number of shots and laser pulse energy, respectively. The target values predicted
for A1 and A2 are very similar, despite the different N and E values. Because the total laser
energy (Eall = N*E) for A1 and A2 is the same, the predicted laser drilling results with either
A1 or A2 parameters are similar. In order to verify the feasibility of the predicted pulse
energy and number of shots, EP and NP were used as inputs for the laser machine for actual
drilling. The results were then compared with the target value and the findings are shown
in Figures 9 and 10.

In Figure 9, to facilitate further examination of the relationship between the target
diameter RT and actual diameter RV, the number of laser shots multiplied by the laser
pulse energy were shown as total laser energy on the horizontal axis. The error is displayed
on the left vertical axis, and the right vertical axis is the diameter on micrometers. When
the total laser energy was smaller, the diameter was also smaller. As total laser energy
increased, the diameter also increased. When the total laser energy was 10 mJ, the diameter
value became stable and converged to 81.77 µm. When the total laser energy was less than
9 mJ, the percentage error on the diameter value ranged between 6.86% and −6.87%. When
the total laser energy reached 14 mJ, the percentage error gradually declined to between
3.71% and −4.11%. Regardless of the total laser energy, the error magnitude remained less
than 5 µm.

Figure 10 shows the error between the target depth DT and actual depth DV. When
total laser energy was increased, the hole depth increased proportionally. When the total
laser energy was less than 4 mJ, the processing hole depth error was between 1.27 and
−1.44 µm. After the total energy reached 4 mJ, the depth error increased with total laser
energy, converging on the range 6.77 to −5.83 µm. Once the total laser energy reached 7 mJ,
the depth error remained within ± 10%.

The percentage error decreases gradually as the total laser energy increases. The experi-
mental results show that the actual drilled diameter and depth errors based on the predicted
parameters by the LPPM were gradually stabilized in relation to total laser energy.



Micromachines 2022, 13, 529 10 of 17
Micromachines 2022, 13, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 9. The error ERV−T between the target and actual hole diameter (RT and RV) corresponds to 
the total laser energy. Note: ERV−T = RV − RT; EPRV−T = (RV − RT)/RT (%). 

Table 5. Average error of training and testing for the LPPM. 

Item Average Error (%) 

Training 
Predicted energy EP 0.27 

Predicted shot no. NP 0.43 

Testing Predicted energy EP 0.52 
Predicted shot no. NP 0.57 

Figure 10 shows the error between the target depth DT and actual depth DV. When 
total laser energy was increased, the hole depth increased proportionally. When the total 
laser energy was less than 4 mJ, the processing hole depth error was between 1.27 and 
−1.44 μm. After the total energy reached 4 mJ, the depth error increased with total laser 
energy, converging on the range 6.77 to −5.83 μm. Once the total laser energy reached 7 
mJ, the depth error remained within ± 10%. 

The percentage error decreases gradually as the total laser energy increases. The ex-
perimental results show that the actual drilled diameter and depth errors based on the 
predicted parameters by the LPPM were gradually stabilized in relation to total laser en-
ergy. 

Figure 9. The error ERV−T between the target and actual hole diameter (RT and RV) corresponds to
the total laser energy. Note: ERV−T = RV − RT; EPRV−T = (RV − RT)/RT (%).

Micromachines 2022, 13, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 10. The error EDV−T between the target and actual hole depth (DT, DV) corresponds to the total 
laser energy. Note: EDV−T = DV − DT; EPDV−T = (DV − DT)/DT (%). 

Table 6. Errors when rounding to produce the number of shots required. 

Data Entry: 1 2 3 4 5 6 7 8 9 10 

Target 
RT 64.07 76.19 63.35 62.46 57.30 79.61 76.22 63.08 61.39 73.55 
DT 29.50 68.50 26.00 23.50 18.68 71.00 71.00 23.50 21.50 62.00 

Predicted parameters EP 0.50 0.475 0.475 0.45 0.45 0.475 0.475 0.45 0.45 0.475 
Without rounding: NPi 13.69 29.73 12.37 11.34 8.17 28.14 30.90 11.38 10.39 26.91 

Rounding: NP 14.00 30.00 12.00 11.00 8.00 28.00 31.00 11.00 10.00 27.00 

Actual 
RV 65.96 78.86 59.61 57.98 57.23 77.95 76.47 61.95 58.43 75.86 
DV 31.00 71.00 25.50 20.00 17.94 67.00 74.50 22.50 19.20 63.00 

Errors 
NP-NPi +0.31 +0.27 −0.37 −0.34 −0.17 −0.14 +0.10 −0.38 −0.39 +0.09 
ERV-T 1.89 2.67 −3.74 −4.48 −0.07 −1.66 0.25 −1.13 −2.96 2.31 
EDV-T 1.50 2.50 −0.50 −3.50 −0.75 −4.00 3.50 −1.00 −2.30 1.00 

4.2. SLDM 
The errors of the machining results simulated by the SLDM according to the pre-

dicted machining parameters by the LPPM are shown in Figures 11 and 12. The final train-
ing errors are shown in a solid line from the 1st through 765th data entries, and the testing 
errors are shown in a dashed line from the 766th through 1080th data entries. The average 
error in the diameter value as simulated by the SLDM was 0.05 μm, and the average per-
centage error was 0.1%. The average error in magnitude and percentage for simulated 
depth were 0.07 μm and 0.14%, respectively. In testing, the magnitude of average error 
and percentage error for diameter were 0.67 μm and 1.25%, respectively. The magnitude 
of average error and percentage error for depth were 0.04 μm and 1.06%, respectively. 
Overall, the error in both diameter and depth values was less than 1.5%, as shown in Table 
7. As displayed in Figure 11, the maximal simulated diameter error did not exceed 6%. In 
Figure 12, eight sets of parameters had a percentage error exceeding 10%; however, these 

Figure 10. The error EDV−T between the target and actual hole depth (DT, DV) corresponds to the
total laser energy. Note: EDV−T = DV − DT; EPDV−T = (DV − DT)/DT (%).



Micromachines 2022, 13, 529 11 of 17

4.2. SLDM

The errors of the machining results simulated by the SLDM according to the predicted
machining parameters by the LPPM are shown in Figures 11 and 12. The final training
errors are shown in a solid line from the 1st through 765th data entries, and the testing errors
are shown in a dashed line from the 766th through 1080th data entries. The average error
in the diameter value as simulated by the SLDM was 0.05 µm, and the average percentage
error was 0.1%. The average error in magnitude and percentage for simulated depth were
0.07 µm and 0.14%, respectively. In testing, the magnitude of average error and percentage
error for diameter were 0.67 µm and 1.25%, respectively. The magnitude of average error
and percentage error for depth were 0.04 µm and 1.06%, respectively. Overall, the error in
both diameter and depth values was less than 1.5%, as shown in Table 7. As displayed in
Figure 11, the maximal simulated diameter error did not exceed 6%. In Figure 12, eight sets
of parameters had a percentage error exceeding 10%; however, these sets only required two
shots, which resulted in a shallow depth and a large percentage error.
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Table 7. Training and testing error for the SLDM.

Item Average Error (%)

Training Simulated diameter RO 0.1
Simulated depth DO 0.14

Testing Simulated diameter RO 1.25
Simulated depth DO 1.06

In Figure 13, the simulated diameter RO and actual diameter RV were very close. When
the total laser energy was less than 10 mJ, the drilled diameter value was proportional to
total laser energy. When the total laser energy exceeded than 10 mJ, the drilled diameter
tended to be stable. Figure 14 presents a comparison of RO and the RV. The simulated and
actual values were similar and in favorable agreement, and the depth was proportional to
the total energy of the laser.
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Figures 15 and 16, respectively, show the simulated depth DO, actual depth DV, and
the errors between them. The error magnitude was eventually stabilized and stayed
within ± 5 µm. The percentage error declined with the total laser energy. This means the
proposed SLDM has a good simulation ability for laser processing with low errors for deep
drilled holes.
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4.3. Combination of the LPPM and SLDM

After the LPPM and SLDM were established, the testing data was imported into the
LPPM to generate the EP and NP values. Then, the data was passed to the SLDM for
laser drilling simulation, which produced the RO and DO values. As shown in Figure 17,
the SLDM-simulated diameter RO was extremely close to the target diameter RT. The



Micromachines 2022, 13, 529 14 of 17

magnitude and percentage error for the diameter readings were within ± 5.5 µm and ±
6.5%, respectively. As illustrated in Figure 18, the SLDM-simulated depth DO had good
simulation and was very close to DT. The magnitude of error for the depth readings was
within ± 6.8 µm. Through these tests, the proposed combination of the LPPM and SLDM
models was shown to successfully predict the required laser processing parameters for
holes of a targeted depth and diameter. It was also possible to quickly simulate laser drilling
results by the SLDM when given the predicted process parameters in order to check the
prediction accuracy of the LPPM in advance.
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4.4. Parameter Verification

To determine whether the findings in the theoretical part of this study were suitable for
real-world application, 10 sets of data were selected from the original testing data entries.
Based on these 10 sets of data, the laser process parameters predicted by the LPPM were
simulated by the SLDM and the simulation results were also verified and compared with
outcomes from actual laser processing experiments. The experimental results and errors are
presented in Table 8 and Figures 19 and 20. They show that the actual hole diameter and
depth were subject to a machining error of approximately 10 µm and 5 µm, respectively.
These findings are in line with those of the previous experiment; that is, the percentage
error was larger when total laser energy was lower. The reason for this phenomenon is that
the LPPM output used to derive the number of shots uses a decimal system, which requires
rounding and causes some errors.

Table 8. Parameter verification results.

Item RT DT EP NPi NP EP*NP RO DO RV DV
Error (%)

ERV-O EDV-O ERV-T EDV-T ERO-T EDO-T

1 49.50 5.59 0.46 2.65 3.00 1.39 48.32 8.80 52.10 6.80 7.82 −22.73 5.25 21.65 −2.39 57.44

2 50.08 5.52 0.45 1.13 1.00 0.45 44.46 3.28 46.16 4.02 3.81 22.52 −7.83 −27.17 −11.21 −40.56

3 53.61 8.30 0.46 3.32 3.00 1.39 48.68 8.68 53.03 9.37 8.93 7.95 −1.08 12.83 −9.19 4.52

4 66.05 32.33 0.48 13.52 14.00 6.67 62.58 27.65 62.57 30.25 −0.03 9.39 −5.28 −6.43 −5.25 −14.47

5 67.04 40.50 0.48 18.16 18.00 8.62 69.18 46.51 68.03 41.75 −1.66 −10.23 1.47 3.09 3.19 14.83

6 67.35 37.17 0.48 15.57 16.00 7.64 64.28 32.03 66.01 35.25 2.68 10.06 −1.99 −5.17 −4.55 −13.83

7 76.92 46.00 0.48 18.56 19.00 9.05 70.23 45.26 75.92 46.00 8.10 1.65 −1.30 0.00 −8.69 −1.62

8 76.32 53.17 0.48 21.77 22.00 10.51 74.98 61.04 76.18 53.50 1.60 −12.35 −0.19 0.62 −1.76 14.80

9 76.58 100.50 0.49 38.75 39.00 19.04 81.22 101.69 79.45 100.00 −2.19 −1.66 3.74 −0.50 6.06 1.18

10 71.13 48.33 0.48 20.13 20.00 9.56 72.72 53.74 71.20 47.25 −2.09 −12.07 0.10 −2.23 2.24 11.19
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5. Conclusions

This paper has presented an ANN-based laser process parameter prediction and
drilling simulation system. The system was able to recommend parameters for laser drilling
on 304 stainless steel and it was able to simulate the laser drilling results, i.e., hole depth
and diameter. The magnitude of error for diameter measurements was within ± 5.5 µm or
± 6.5%, and error for depth was within ± 6.8 µm. The depth percentage error was lower
when total laser energy was larger; at energy values above 7 mJ, the depth error remained
within ± 10%. This system can be used as an auxiliary tool for laser operators to adjust
processing parameters. It can predict the result of drilling stainless steel in advance, and
then the operator can increase or decrease the parameters according to the predicted value,
which can reduce the time spent on adjusting the processing parameters.
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